• Sonuç bulunamadı

Measurement of sound, vibration and friction between soft materials under light loads

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of sound, vibration and friction between soft materials under light loads"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Wear276–277 (2012) 61–69

ContentslistsavailableatSciVerseScienceDirect

Wear

j o ur n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / w e a r

Measurement

of

sound,

vibration

and

friction

between

soft

materials

under

light

loads

Adnan

Akay

a,∗

,

Blair

Echols

b

,

Junqi

Ding

c

,

Anne

Dussaud

c

,

Alex

Lips

c

aBilkentUniversity,MechanicalEngineeringDepartment,06800Bilkent,Ankara,Turkey bCarnegieMellonUniversity,MechanicalEngineeringDepartment,Pittsburgh,PA15213,USA cUnileverResearch&Development,40MerrittBlvd.Trumbull,CT06611,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received25May2011

Receivedinrevisedform5November2011 Accepted14December2011

Available online 22 December 2011 Keywords:

Tactile Softmaterials Frictionmeasurement

a

b

s

t

r

a

c

t

Tactileperceptionofmaterialsandsurfacetextureinvolvesfrictionunderlightnormalloadsandis fundamentaltofurtheradvancingareassuchastactilesensing,hapticsystemsusedinroboticgripping ofsensitiveobjects,andcharacterizationofproductsthatrangefromfabricstopersonalcareproducts, suchaslotions,onskin.Thispaperdescribesanewapparatustomeasurefrictionsimultaneouslywith dynamicquantitiessuchasaccelerations,forces,andsoundpressuresresultingfromlightslidingcontact overasoftmaterial,muchlikeafingerlightlytouchingasoftmaterial.Thepaperalsointroducesanovel frictionandadhesionmeasurementmethodthatcanbeparticularlyusefulforsoftmaterialsandlight normalloads.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Inrecentyears,hapticperception,oneofthefundamentalareas of cognitive engineering, has advanced withsignificant contri-butions from researchin biology, engineering, and psychology. Althoughlesswellunderstoodthanauditionandvision,thetouch, orsomaticsensation,continuestohaveanincreasingsignificance inengineeringandmedicalfieldsalike.Forexample,inthe devel-opmentofroboticgripsorvirtualrealityhardware,tactilefeedback isanessentialelement.Inmedicine,tactilesensitivityatfingertips isthoughttohavea roleindiagnosisofand monitoringduring rehabilitationfordiabetes.

Haptic perceptionofmaterialsand surfacesrelieslargely on touch,ortactilesensing,butalsobenefitsfromvisualandauditory cuesand,insomecases,fromolfactoryandevengustatorysenses. Investigationshaveshownthatvisualorauditorycuescanhavea significantroleindiscriminatingsurfacecharacteristics[viz.,1–4]. Studiesontheroleofmultisensoryintegrationofthesesignalson perceptionofsurfacefinishortexturesuggestthatvisionandtouch

夽 ThisresearchwascarriedoutatCarnegieMellonUniversity.

∗ Correspondingauthorat:BilkentUniversity,MechanicalEngineering Depart-ment,06800Bilkent,Ankara,Turkey.Tel.:+903122903389;

fax:+903122664126.

E-mailaddresses:akay@bilkent.edu.tr,akay@cmu.edu(A.Akay).

actasindependentsources[4]althoughinsomecasesvisioncan improveperceptionbasedonsomaticsensation[5].

Multiplesensoryinputsareutilizednotonlyinjudgingor char-acterizingsurfacefinishoritstexture,asforfabricsandcosmetics, butalsoinidentifyingshapeandweightofanobject.Inapplications ofhaptictechnologiestograspandliftortomoveverylight-weight orfragileobjectsmechanically,tactilesensinghasaprimaryrole in theregulation oftheappliedpower.Inallsuchapplications, thereisaneedtorelatethephysicalcharacteristicsofsurface qual-itiesandtexturetosomaticsensationandperception.However, thequestionremainsopenwhetherornotthesubjective evalua-tionssuchasrough/smooth,sticky/slippery,andhard/softcanbe identifiedreliablyusingobjectivemeasures.Theextremesurface characteristics,ofcourse,canbeidentifiedusinganumberof differ-entmethods.Forsurfaceswithmixedorlesspronouncedphysical characteristics,however,objectivemeasureshavenotyetreplaced humanperceptions,andtherecontinuestobeaneedtodevelop measurementtechniquestoemulatesomaticsensationthatalso correlatewellwithperception.

Thepurposeofthispaperistodescribeamethodtomeasure sig-nalssimilartothetactilesignalsthatafingersenseswhenitlightly touchesasoftsurfacewhilesimultaneouslycapturingtheair-borne acousticsignalsgeneratedduetothefrictionforcesthatdevelop betweenthem.Themethodalsoincludesa uniqueapproach to measuringfrictionandadhesionbetweentwo surfacesthatcan pavethewaytodiscernbetweeneachpairofthesubjective quali-tiesdescribedabove.

0043-1648/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.wear.2011.12.004

(2)

Fig.1.Schematicdescriptionofapparatustomeasuretribologicalandacousticsignalsfromfrictionbetweensoftmaterialswiththecrosssectionalviewofcontactbetween fingerprobeandarmduringcontactindicatingthepositionsofaccelerometersinsidethefingerprobeandforcetransducersinthearm.

2. Contactparametersbetweensoftsurfacesandtheir measurement

Themechanicalstimulithatformthebasisofsomaticsensory perceptionoriginatefromcontactforcesthatdevelopduringthe rubbingprocess,whichcontainsinformation aboutsmoothness, roughness,stickiness,slipperiness,hardness,andsoftnessofthe surfaces.

Atroomtemperature,thephysicalparametersthatareclosely related to and influence subjective measures are the material properties,surfacetextureandshape,andadhesionbetweenthe surfaces.Theslidingspeedandcontactpressuredefinethedynamic effects of these parameters. As a by-product of light rubbing, structure-andair-bornesoundsprovideadditionalsignalsthatcan beusedinevaluatingthesurfacecharacteristicsandcorrelating themeasurementswithperception[6].Effectsofsomeofthese materialandtexturepropertiescanalsobemeasuredbymounting accelerometersonafingertodetectsurfaceroughnessand slipper-iness.

Similarly, accelerometers placed on a probe can provide information regarding surface roughness/smoothness and even hardness/softnessof a surface throughthe transientoscillatory responseof theprobetipwhen theyfirstcomeintocontact as discussedbelow.Forexample,surfacesthat areoftendescribed asstickycorrelatewiththetangentialforce[viz.,7–9],whichon anotherwisesmoothsurfacestemsfromadhesiveforcesthatare knownto be dissipative and, consequently,those described as smoothandsilkyproducealowtangentialdissipativeforce.The magnitudesandtime(orfrequency)dependenceofthesesignals influencetheperceptionaboutasurface.Inaddition,thirdbodies suchaslubricantsbetweenthesurfacesalsoaffectthemagnitude ofthetangentialdissipativeforce[10].

Theapparatusdescribedinthispapercanmeasuretribological anddynamicalparametersthatresultfromfrictionbetweensoft materialsunderverylightloads,suchthattheycanbeusedtorelate dynamicaloutputtomaterialandtextureproperties.Thesimple apparatusdescribedheremimicsverylightpassivetouchofa fin-geroveranothersurface.Thedevicehasthecapabilitytomeasure air-andstructure-borneacousticsignalsaswellasthetangential contactforcesandnormalloadsduringthecontactprocess.

3. Testapparatus

3.1. Designcriteria

Thefunctionalrequirementsonwhichthedesigncriteriaare basedinclude:(i)afinger-likemechanismthatcanlightlytoucha movingsurface,(ii)signalsgeneratedduringitsoperationlargely resultfromthecontactofthe“fingerprobe”withasample,with negligible contributionsof ancillary signals from othersources, and(iii) theapparatusallowsaccess tosensorsandaccessories formeasurementsduringitsoperation.Inadditiontothese func-tionalrequirements,furtherdesignrulesweredevelopedforease ofoperationandmeasurementswiththeapparatus.

Likeafinger,theprobeshouldbeabletoretractfromorpress onamovingsurface,withadesirednormalcontactloadsimilar toalight touchthatanactualfingercanexert.Asafingerdoes whileprobingasurface,therelativemotionbetweentheprobeand sampleshouldbesteady,controlled,andpreferablywithconstant velocity.Also, thedevice shouldenableeasy changeof materi-alsoneithersurfaceinordertobeabletotestdifferentmaterial combinations.

Signalsgeneratedbyalightcontactarenormallylocalizedand canbedetectedbycollocated sensors.However,theyareoften

(3)

A.Akayetal./Wear276–277 (2012) 61–69 63

Fig.2. (a)Contactforcecomponentsbetweentheprobeandarm.(b)Schematic descriptionofthecontactforceasittravelsonthesampleandthemomentarmh.

contaminatedbyancillarysignals,suchasthoseassociatedwith thepowerand transmissioncomponentsofthesystem,as well assourcesexternal tothetest apparatus,effectsof whichneed tobemitigated. Justas a fingersenses surface properties with themechanoreceptorsinthedermisnearestthecontactarea,the apparatusshouldbeabletosensethesurfacetopography,suchas itsroughnessandcontour,asslidingtakesplace.Itisdesirablethen thatthenoiseandvibrationproducedbyotherpartsofthesystem thanthecontactareashouldbenegligiblecomparedwiththe sig-nalstobemeasured.Theapparatusshouldalsohavetheability

tomonitorsoundradiationandvibrationresponseduetorubbing and,asimportantly,havetheabilitytomeasurefrictionforceand adhesionduringcontact.

3.2. Designdescription

The test apparatus,depicted in Fig. 1, consists of four sub-systems.Theseare:

i.An arm assembly that consists of a hollow box beam, an 203.2mmdiameterdrivepulley,motionsensorflags,bearing housing,andafloatingcontactplatform.

ii.Afingerprobeassemblythatconsistsofafingeractuator,fine andcoarseheightadjustments,andaparallelposition adjust-mentmechanismforthefinger.

iii.Thedrivetrainconsistsofadrivemotor,beltsandpulleys. iv. Themotioncontrollerconsistsofthecircuitsthatcontrolthe

armmotion.

Eachofthemechanicalpartsisdescribedinthefollowing sub-sections.

3.3. Thearmassembly

Thecantileverarm,constructedfromahollowboxaluminum beamwithrectangularcrosssection,rotatesaboutaverticalpost towhichitisattachedwithhighprecisionbearings.Thearmcan swinginahorizontalplane,sweepinga90◦arctoslideunderthe stationaryfingerprobe.Powertorotatethearmisprovidedbya DC-drivebrushmotor poweredbyasinglevoltage.Atwostage beltsystemisused:a12.7mmtimingbelttransmitstorquefrom themotortotheintermediatepulleys.Thebeltisarrangedsuch thatitsthreadsfaceawayfromthecenterofthepulleyinorder

Fig.3.Schematicdescriptionoftherelationshipbetweenthemeasurednormalforcesandcontactforce.Thedistancetothecontactsurface,h,providesthemomentarmthat translatestangentialforcetonormalforces.Thediagonaldottedlinesshowtherelationshipbetweentheforcecomponentsmeasuredbyeachforcetransducerbelowthe contactplatformwiththeirsumshownasahorizontalline.Thesolidlinesshowtheinfluenceoffriction,throughamomentarmthatchangesthenormalforcesmeasured byeachtransducerandreducestheoverallcontactforce.Forcesfromthetrailingtransducersstarttosensenormalloadwithalinearlyincreasingmagnitudeastheforce travelstowardit.Theleadingtransducersensesthefullbearingoftheforceatthestartofthecontactandlinearlydecreases.N=W/(1+cot).

(4)

Fig.4.Asamplemeasurementofnormalforcesbythetwoforcetransducersand theirsum.ArtificialskinisusedontheprobewithPDMSasthearmmaterialwitha lubricantoiltoreducefriction.Theoscillationsandthechangeinthesumthroughout thecontactdurationresultfromdynamiceffectsofthearm.

toavoidunnecessaryvibrations.Themotorbeltridesonapulley thatcanbeattachedtothemotor.Themotorthendrivestheshaft throughacoupling.

A203.2mmdiameterpulleyisusedtotransmitthedrivetorque tothearm.Placedunderneaththebearinghousing,thispulleyis concealedbyanenclosuretoreducesoundtransmissiontothetest area.Thedrive-belttransmitstorquefromtheintermediate pul-leystothearmpulley.Aswiththemotorbelt,thethreadsofthis 12.7mmwidetimingbeltalsofaceawayfromthepulleysurface. 3.4. Floatingcontactplatform

A floating contact platform carries the test sample on the arm and permits direct normal force measurements resulting fromfingercontactonthetestsample.Theplatformconsistsof two50.8mm×101.6mmaluminumplatesmatedtogetherwith

Fig.5.MeasurementswiththesamematerialsasinFig.4butwithoutoil,resulting inhighfrictionandmuchlowercontactforce.Theadhesionbetweenthesurfaces hasaliftingeffect.

Fig.6. Ademonstrationoffrictioneffectisachievedbycoveringone-halfofthe contactsurfacewithscotchtape,thenon-adhesivesidefacingcontact.This mea-surementdelineatesthedynamiceffectscausedbyfriction.Astheprobeslidesover thelow-frictionsurfacetoamoreadhesiveone,itliftsoffthesurfaceandstartsto reboundasindicatedbytheoscillatorybehavioroftheforcesignals.

machine screws at their corners. The bottom plateis attached directlytotwoforcetransducersatitsends,illustrated schemati-callyinFig.1.Thetopplateservesasthesmootharmsurfaceon whichthetestsampleismounted,coveringthemountingholeson thebottomplate.Thesamplematerials,25.4mmwideand100mm longstrips,areadhesively mountedonthetopplate.Withthis arrangement,theplatesandthesamplearesupportedonlybythe twoforcetransducersattachedtothebottomwallofthehollow boxbeamandareotherwiseisolatedfromthearm.

Thefloatingplatformisplacedacrossthewidthandnearthefree endofthecantileverarm,nominally508mmfromitsaxisof rota-tion,subtendinganangleof10◦,andcanaccommodatedifferent materialsandsurfacetreatments.

Fig.7. NormalforcemeasurementsonaPDMSwithdrysmoothlandingsbetween parallelgrooves.Thismeasurementshowstherubbingofthewaferwiththedry surface.Becauseofthesmoothnessofthewafer,thetangentialdissipativeforceis large.

(5)

A.Akayetal./Wear276–277 (2012) 61–69 65

Fig.8.NormalforcemeasurementsonaPDMSwithmicro-roughnessinducedon thesurfacesbetweenparallelgroovesthatreducesadhesionandincreasesnormal contactforce.Theaddedmicro-roughnessreducesdissipativeforces.

3.5. Fingerprobeassembly

Likeapendulum,thefingerprobeisdesignedtorotatefreely aboutastationaryhorizontalpinjointwithanultra-lowfriction bearing.Therelativeheightofthepinjointisadjustedsuchthat theaxisofthefingerprobemakesa45◦anglewiththearmduring contact.Toassureasmoothand continuousmotion,thesliding contacttakesplaceonlywhenthearmmovesinthesamedirection astheanglethependulummakeswiththenormaltothearm,thus resultingintensionintheaxisofthefingerprobeandpreventing developmentofacompressiveforceinitsaxisthatwouldleadto ratchetingofthefingerprobe.Toaccomplishthis,anembedded electromagneticactuatoratthepinjointofthefingerliftsthefinger probeduringthearmretractionswingtoavoidacollisionwhenthe directionofthearmmotionisreversed.Inthisconfiguration,the fingerprobeisabletofollowsurfacecontourswithradiilargerthan thatofprobetiptoassurecontinuouscontactduringtherubbing event.

Theelectromagneticactuatoratthepinjointisalsousedto pro-videatorquetothefingerprobeinitsplaneofmotioninorderto applyadesiredforceonthearmsurface,ontheorderof0.2–0.8N, similartothatexertedduringactualhumantouch.Therelative slid-ingspeedbetweenthefingerprobeand thesampleonthearm isnominally125mm/s,representativeoftheprobingspeedofa humanfingeronasurface.

Thetippartofthefingerprobecanbecoveredwithasleeve madeofanysofttestmaterial.Boththefingermaterialandthearm materialcanbechangedtotestdifferentmaterialcombinations andsurfacetreatments.Useofsoftmaterialatthetipofthefinger probeprovidesbothradialandtangentialcompliance.Soft mate-rialonthearmsurfacehascomplianceonnormalandtangential directions.

Thefingerassemblyismountedonarigidpostthatalsohasa combinationofcoarseandfineadjustmentmechanismstoposition itsheight.Thefineadjustmentisusedtobringthefingertothe desiredheightforcontactwiththearmmaterialundertestsuch thattheflatmountforthenormalaccelerometerisparalleltothe armsurface.Thisalsoassuresthatthefingerisata45◦angleduring slidingcontact.ThefineadjustmentstageismadeusingaDel-Tron lineartranslationstagewithanattachedmicrometer.

3.6. Motioncontroller

Acustomelectronicspackageisusedtocontrolthemotionofthe apparatus.Theoperatingparameters,includingthecontactforce and rubbingspeed, are enteredinto themotioncontroller.The apparatuscanthenruncontinuously.Themotioncontrollerlifts thefingerprobefromthepathofthearmonthereturnstroke. 3.7. Systemdynamics

Acriticalaspectofsuchanapparatusistoavoidancillary vibra-tionsandnoiseduringtheoperation.Particularlyforsoftmaterials andlightcontactloads,anynoisefromthemotorandthepower transmissionmechanismoftheapparatusmustbemuchlessthan thesoundgeneratedbyslidingthefingeroverthearm.

In thecase ofthe design described here,thetest apparatus produces negligible mechanical noisecompared tothe acoustic emission fromthe contact area. For testsusing very light con-tactforces,tofurthermitigateexternalnoiseproblems,anacoustic enclosurewasdesignedandconstructedtoenclosethetestsection ofthearmandthefingerkeepingthedrivemechanismoutsidethe measurementspace.Notwithstandingthelowinterferencebythe drivetrain,armoscillationsduringmeasurementalsoneedtobe reduced.Reductionofvibrationamplitudeofthefirstcantilever modeofthearmwasaccomplishedbyusinga25.4mmdiameter stainlesssteelrodforthemainrotationalshaftofthearmaswell asstiffeningofboththearmandthebearinghousing.Withthese adjustments,thefirstbendingandtorsionalnaturalfrequenciesof thearmweremeasuredas57Hzand560Hz,respectively.

Thefollowingdynamiceventscanbesensedbytheforce trans-ducers,accelerometers,and microphones:(i)Impactforcesthat developduringtheinitialcontactofthefingerprobewiththe sam-pleonthearm,(ii)normalforceexertedbytheprobeasittravels acrossthesampleonthearm,(iii)impactforcesthatresultfrom thereboundofprobetipfollowingliftoffthesamplesurfacedue toadhesive forces,(iv)stick-slipeventsastheprobeslidesover anadhesivesurface,(v)accelerationsignalsrepresentingsurface roughness,and(vi)torsionaloscillationsofthearmexcitedbythe stopandstartasitchangesdirectionofmotion.Amongthesethe impactforcethatcandevelopasthearmmakesaninitialcontact withthestationaryprobe,case(i),ispreventedbyattachingasmall flexiblemembranewithwhichtheprobemakesitsinitialcontact andslidesoverittothesamplesurface.Followingthislanding,the probetipalignswiththearmsurfacethusavoidingimpact exci-tationoftheprobetipaswellasadditionalexcitationofthearm vibrations.

Instrumentationtodetecttheseeventsandthemeasurement examplesaregiveninthefollowingsections.

3.8. Instrumentation

Twominiatureaccelerometers(PCB352A24)withasensitivity of100mV/g[10.2mV/(m/s2)]andafrequencyrangeof1–8000Hz

and0.8gmwereusedtosensetheverysmallchangesinthe accel-erationofthefingerprobetipduetosurfacetextureandadhesion asittravelsoverthearmsample.Theyweremountedonthetwo respectiveflatsurfacesontheinteriorofthefingerprobetip,just abovethecontactarea,withaxesparallelandnormaltothearm surface,respectively,asindicatedinFig.1.Theseaccelerometers areACcoupledandeachconnectedtoeitheranIntegratedCircuit Piezoelectric(ICP)powersupply ortoadataacquisitionsystem thatcanactasanICPdevice.Duetotheirproximitytothe con-tactarea,theseaccelerometerscoulddetectvibrationsinducedby surfaceroughness.

Amicrophone(B&K4165)placedveryclosetothecontactarea, approximately25mmawayfromtheoutersurfaceofthefinger,

(6)

Fig.9.Theseriesofspectrogramsshowtheaccelerationsignalsrecordedbythesensormountedinthenormaldirection.Eachofthesevenspectrarepresentsdifferenttimes duringoneslidingperiodoftheprobeoverthearm.

togetherwiththenecessaryinstrumentation,recordedthesounds generatedinthecontactarea.Theaxisofthemicrophoneisdirected towardcontactarea.

Twopiezoelectricforcetransducers(PCB208C01)thatsupport thefloatingcontactplatformatthefree-endofthearmareused tomeasurethenormalforceexertedbythefingerprobe. Based ontheirconfiguration,thesamenormalforcemeasurementsalso yieldfrictionforceduringtherubbingeventsasdescribedinthe nextsection.Todescribetheoperationofthesystem,theleading transducerreferstothetransducerthatisfirstpassedoverasthe fingerandarmcomeintocontact.Thetrailingtransducerrefersto thetransducerthatispassedoverbeforethefingerterminates con-tactwiththearm.Thetransducersarelocatedinsidebox-channel, eachmountedonanaluminumblockatitsbottomandconnected

Fig.10.Thismeasurementshowsfrictionforcesthatdevelopduringslidingofthe probetipoversilkmadeofsyntheticsilkfiberswoveninacomplexpattern.

tothecontactplatformatthetop.Eachforcetransduceris con-nectedviaanICPpowersupplytoadataacquisitionsystem.Their signalsareDCcoupled,inordertobeabletomeasureDCloads.

Itis worthnotingthatsince theseareforcetransducers,the voltagefromthetransducerswilldecayovertime(dischargetime constant>50s)afteraDCloadisapplied.Theyprovideaccurate measurementsaslongastheeventisshortcomparedtothetime constantofthetransducer,asinthepresentcase.Useofloadcells presentanalternativesensorchoice,andmightbeusefulformuch slowerrubbingspeeds.Althoughloadcellsgreatlyenhancethe sta-bilityofthestaticloadmeasurement,theyhavealowerdynamic response.

3.9. Contactforcemeasurementmethod

Apairofidenticalforcetransducerswasusedtomeasurethe normalandtangential(friction)forcesduringrubbingevents.As thearm rotates and comesinto contact withthe fingerprobe, theforcetransducersmountedinthearmstarttosensetheforce appliedtothesampleapportionedaccordingtothecontactposition ofthetravelingforce.

ReferringtoFig.2a,thereisakinematicrelationshipbetween thenormalcontactforce,N,andtheweight,orappliedforce,Wto thetipofthefingerprobe:

N=1 W +cot

whereistheanglethefingerprobemakeswiththenormalto thearm,inthiscase45◦,andreferstothecoefficientoffriction duringcontact.Wenotetheliftforcecausedbyfrictionas: W−N=Fcot=Ncot

Thecontactforcesappliedtothesurface,thenetnormalforce, andthemomentduetofrictionforceareapportionedtothetwo

(7)

A.Akayetal./Wear276–277 (2012) 61–69 67

Fig.11.Changeoffrequencieswithspeedofarmduringcontactasdemonstratedbytheslopesofthespectraandtheirharmonics.

supportsneareitherendoftheplatformwheretheforce transduc-ersareplacedtomeasurethenormalforcesas

NL= (1+W cot)



Ld L − h L



NT=(1+W cot)



d L+ h L



wherethesubscriptsLandTrefertotheleadingandtrailing posi-tionsoftheforcetransducers.Aspreviously stated,theleading transduceristheonethatisclosertotheinitialcontactlocation. Sincecontactismadeinonlyonedirectionofmotionofthearm, thesedesignationsremainthesame.Theamplitudesofthetwo normalreactionforceschangewithdistance,d,ofthecontact loca-tionfromtheleadtransducerlocation.Presenceoffrictionmodifies themeasurednormalreactionforcesbymeansofamoment pro-ducedbythefrictionforceandthemomentarmh,thedistance fromthetransducersurfacetothesurfaceofthesamplematerial wherecontacttakesplace,asshowninFig.2b.

Fig.3schematicallydemonstrateshowthenormalforcesatthe twotransducerpositionsvarylinearlyastheappliedcontactforce movesacrossthesamplesurface,withandwithoutthepresenceof frictiononthesurface.AsshowninFig.3a,withoutfriction,as con-tactisinitiatedatd=0,theleadingtransducercarriesthefullweight ofthecontactload,whichlinearlydecreasesandvanishesasthe contactpointtravelstowardandreachesthetrailingtransducer, d=L.Simultaneously,thetrailingtransducerstartstosensea nor-malloadasthecontactpointstartstotraveltowardit,andincreases linearlytofullmagnitudewhenitreachesthetrailingtransducer. Theirsum,shownbythehorizontaldottedline,remainsconstant andequaltothecontactloadwhich,intheabsenceoffriction,is equaltotheappliedforce,W.

Inthepresenceoffriction,however,theslopesandtheinitial andfinalmagnitudesofthediagonallineschange,asindicatedby thesolidlinesinFig.3b.Theliftforceresultingfromthemoment introducedbythepresenceoffrictionreducestheinitial magni-tudeofNL andincreasesNT,respectively,byanamountequalto

Nh/L.Theirsumatanytimeduring thesliding processequals thetotalnormalcontactforce,N.Thus,thechangeinthenormal contactforceNdirectlyrelatestothetangential,orfriction,force

inaccordancewiththeinverserelationshipbetweenfrictionand normalforce,expressedbythekinematicrelationgivenabove.In summary,frictionandadhesionforcescanbemeasureddirectlyby measuringthenormalcontactforcesusingtwoforcetransducers asthecontactforcetraversesoverthesample.

3.10. Measurementexamples

Typical contact force measurements, using the method describedabovearedisplayedinFigs.4and5forlow-and high-friction contacts, respectively. The low-friction sample used in Fig.4waspreparedbyapplyinglight lubricanttothenormally adhesivePDMSthatwasusedforFig.5.Theforcesmeasuredby theleadingandtrailingtransducersandtheirsum,which repre-sentsthenormalcontactforcethatdirectlyrelatestothefriction (tangentialcontact)force,illustratethemeasurementtechnique describedabove.Thesemeasurementsweremadeusingafinger probecoveredwithBioskinproducedbyBeaulax,askin-like poly-mer,sometimesreferredasartificialskin.Thefingerrubsoverthe flatsurfaceontherotatingarmasdescribedabove,whichiscovered bypolydimethylsiloxane(PDMS).ThePDMSsamplesweremolded fromflatsiliconwafers.Themoldedsampleshadasmooth,sticky andsoftfeeltothetouch.Inthesemeasurements,thetransducers arepositioned60mmapartandthenormalload,10.6g,remained thesame.

Astheprobetraversesacrossthesampleonthearm,themeanof themeasurednormalforcebyeachtransducerchangelinearlywith distanceofthecontactpointfromforcetransducers,asillustrated inFig.3.Theoscillationsaboutthemeanrepresentthetorsional oscillationsof thecantilever arm aboutits axis,excitedby the motor-beltsystem,andarealsoobservedbeforeandaftertheprobe travelsoverthesample.Becausethesenearlyharmonicoscillations areoutofphase,theycanceleachotherwhentheyaresummed anddonotappearinthesumofthereactionforcesasshownin Figs.4and5.

Adhesionbetweentheprobe andthe samplesurface onthe armgivesrisetoadditionaldynamicphenomena.Whenthefinger

(8)

probecomesintocontactwithorasitslidesoveranadhesive sur-face,undercertainconditions,thetangentialadhesiveforcelifts theprobe-tipoffthearmsurface.Followingabrieffree-flight,the probebouncesbackonthesurface,followedbyrebounds.An exam-pleofsuchareboundisobservedintheforcemeasurementsshown inFig.6,whichalsogivesacleardemonstrationofthisflutter-like phenomenon.Thetestsampleonthearmmeasuredtogenerate Fig.6hastworegionswithdifferentsurfaceadhesion.Theleading partofthesampleiscoveredwithasmoothmembranewithvery lowfrictionand thesecondhalfofthesurfacehashighly adhe-sivedryPDMS.Asthefingerprobemovesoverthefirsthalfofthe sample,theresponseisthesameasthatinFig.4,showinga rela-tivelyhighnormalcontactforce,representativeoflowfriction.The responseofthetwoindividualtransducerssumsuptoasmooth totalnormalcontactforcedevoidofoscillations.

Astheprobetipcomesintocontactwiththeadhesivepartof thesurface,thependulum-likeprobeliftsoff,itstipmakinganarc aboutitshinge,andreboundsleadingtoadditionaloscillatory sig-nals.Themeanamplitudeofthetotalnormalforceisloweronthis partofthesampleduetotheliftforcecausedbyadhesion.The oscillationsrepresentthependulumreboundsoftheprobe.Both themagnitudeoftheliftandthereboundarerelatedto,andthus containinformationabout,theadhesiveandelasticpropertiesof thesurfacesmaterials.

Thehigherfrequencyoscillationsobservedinthesecondhalfof thesampleinFig.6,aswellasinFig.5,representthelocal stick-slipbetweentheadhesivesurfaceandtheprobe,andareabsent inthemeasurementsthatinvolvelow-frictionsurfaces.Similarly, thereboundsareabsentintheforcemeasurementsshowninFig.4 whereasthemeasurementsfor thecase witha strongadhesion (Fig.5)containstrongoscillationsofthenormalcontactforces.

In cases where the contact forces that develop due to sur-face roughness have much smaller amplitudes compared with thenormalforces,theireffectsarenotaseasilydetectedbythe forcetransducers.Instead,thetwoaccelerometersmountedonthe insideof thefingerprobe-tip areused toobtainspectral infor-mationaboutthesurfacecharacteristics.Todemonstratesurface roughnesseffects,threesiliconwaferswithdifferentsurface prop-ertieswereusedassamplesonthearm.Twoofthewafers had periodicgroovescutintothesurfaceandthethirdwasaperfectly flat(standard)wafer.Thegrooveshadthesametrapezoidalcross sectionandwereperiodicallyspaced250␮mapart.Eachgroove was80␮mwideatthetopand58␮mdeep.Thetwowaferswith thegrooveswereidenticalexceptforthesurfaceroughness.One ofthegroovedwafershadbeenchemicallyetchedsothattheland (surfacebetweenthegrooves)hadamicro-roughness.Theother waferwasperfectlyflatonthelands.Eachwafercouldberubbed indifferentdirections.

Normalforcemeasurementsoftheetchedwafersaregivenin Figs.7and8forthecasewhenthelandingbetweenthegrooves issmoothandhasmicro-roughness,respectively.Neithercasehas discernableforceresponseduetothegrooves.Thesmoothcase, Fig.7,hashighadhesionandthereforelownormalcontactforce, similartoFig.5.Thesurfacemicro-roughnessbetweenthegrooves, however,reducesadhesionand,asaresult,hashighernormal con-tactforce.Inbothofthesemeasurements,thedecayingoscillations shownintheleftsideoftheplotsresultfromtheimpactofthe pen-dulumtipwiththesampleonthearmatinitialcontact,whichdo notappearinFig.4or5sincethependulumwasaffordedasoft landingasdiscussedabove.

Roughnesseffectsfromtheperiodicallyspacedgroovescanbe seenintheaccelerationresponseofthependulumtip.Fig.9,for example,showsaseriesofnormalaccelerationspectrograms rep-resentingnormalaccelerationofthefingerprobetip.

Thesemeasurementsdirectlyrepresentthetextureofthe sur-faces.EachspectrograminFig.9representsthefrequencycontent

ofaccelerationsignalsatdifferenttimes,correspondingtodifferent partsofthearmmaterial,duringasinglesweep.Forthis partic-ularmeasurementthefingerprobe surfacewascovered witha softmaterial andthearmsurfacewasPDMS(10:1)with paral-lelgrooves.Thefrequencypeakscorrespondtothespacingofthe grooveswithafundamentalofapproximately670Hzandits har-monics.Theadditionoftheaccelerometerstotheapparatusallows foradditionalsurfacecharacteristicstobemeasuredthatcannotbe discernedwiththeforcetransducersalone.

Inthosecaseswherethesurfacehaspronouncedtopography, asexpected,thependulum-likefingerprobewillexertsufficient pulsesonthesamplesurfacetobesensedbytheforcetransducers. OnesuchexampleisgiveninFig.10wherethesampleconsistsof asilkmadeofsyntheticsilkfiberswoveninacomplexpattern.

Themicrophoneinthesystemcanalsomeasureperiodicevents duringthe rubbingmotion. It shouldalsobe notedthat asthe armcomesintocontactwiththefingerprobe,dependingonthe appliedforcebytheprobe,thearmmayinitiallyslowdownand thenspeedupagain.Theincreasingslopesofthespectrallinesin Fig.11demonstratethisspeedchange,whichbecomesmoreacute athigherharmonics.Theharmonicsinthespectrapointto non-linearnatureoftheinteractionduringslidingaswellastheslight aperiodicityoftheridgesonthesurface.Asexpected,thesound pressuremeasurementsmadeverynearthecontactareashowthe sametrendsastheaccelerationsignals.

4. Discussionandconcludingremarks

Theconnectionbetweentextureandmaterialofasurfaceand thesubjective dimensionsthat describeperception of itis first madethroughthemechanoreceptorsinthedermisoffingertips. Objective evaluationsof the surfaces bymeasuring parameters that influencethe correspondingsubjective dimensionsrequire accuratephysicalcharacterizationofmaterialsandsurfaces.Such measurementscanultimatelyleadtoestimationofsubjective char-acterizationofsurfacesbasedonobjectivemeasurableparameters. Theapparatusandthemeasurementmethoddescribedinthis paperaredesignedtoemulatethecontactconditionsbetweena fingerandasoftmaterial.Thedevicehasthecapabilitytomake simultaneousmeasurementsofdifferentdynamicsignals gener-atedasthefingerprobelightlyslidesover thesurfaceofa soft material. These include acceleration signals measured in close proximityof thecontact point within theprobe tip,which are causedbyandthusprovideinformationabout,thesurfacetexture. Boththeaccelerometersignalsandthesoundpressurerecorded nearthecontactareacontainfrequenciesfarabovethosethatcan bedetectedbythemechanoreceptorsandprovideadditionaluseful information.

Theapparatusdescribed herealsohasa uniquecapabilityto measureadhesionbetweensurfaces,whichdirectlyrelatestothe “stickiness” ofa surface. Themethoddeveloped herecan mea-sureanddistinguishadhesionbetweensurfacesandovercomes thedifficultiesassociatedwithmeasuringfrictionforcebetween softsurfaces.Useofapairofforcetransducersallowsthe measure-mentofboththenormalcontactforceandthetangentialdissipative force,withoutinterfering withthesliding process.Themethod reliesontheliftforcethatdevelopsthrough amoment-arm,h, whichisthedistancetothesamplesurfaceabovetheforce trans-ducers.Thedesiredmeasurementsensitivitycanbeachievedby adjustingh.

The sensitivity of the present apparatus in making air- and structure-borne acoustic measurements under light loads is enhancedinpart,duetothesmoothandquietmotionthearm. The systemdynamics have negligiblecontribution tothe mea-surements,save forthetorsionaloscillationsthat appearinthe

(9)

A.Akayetal./Wear276–277 (2012) 61–69 69

individualreactionforcemeasurementsbutnotontheirsum,as describedearlier.Samplemeasurementsshowhowtheordinary definitionofcoefficientoffrictiongiveswaytoconsiderationof frictionforceasapureadhesion,withnormalaswellastangential componentsasillustratedinFig.6,clearlydistinguishingthetwo regimesthathadtwosurfaceproperties.

Thedevicedescribedherecanbeusedtodetermineand corre-latetribologicalparameterstodynamiceventsandeventuallyto subjectiveevaluations.

Acknowledgments

AuthorsacknowledgegeneroussupportofUnileverR&D(USA). Oneoftheauthors(AA)gratefullyacknowledgessupportbythe NationalScienceFoundationwheretheauthorAAwasemployed during part of the period when this research was conducted andgeneroussupportofEUMarieCurieprogramforsubsequent research.

References

[1]S.J.Lederman,Auditorytextureperception,Perception8(1979)93–103. [2]G.Lundborg,B.Rosén,S.Lindberg,Hearingassubstitutionforsensation:anew

principleforartificialsensibility,J.HandSurgery24A(1999)219–224. [3]C.Kayser,C.I.Petkov,M.Augath,N.K.Lohothetis,Integrationoftouchandsound

inauditorycortex,Neuron48(2005)373–384.

[4]S.Guest,C.Spence,Whatroledoesmultisensoryintegrationplayinthe visuo-tactileperceptionoftexture?Int.J.Psychophysiol.50(2003)63–80. [5]R.Newport,J.V.Hindle,S.R.Jackson,Linksbetweenvisionand

somatosensa-tion:visioncanimprovethefeltpositionoftheunseenhand,Curr.Biol.11 (2001)975–980.

[6] A.Akay,Acousticsoffriction,J.Acoust.Soc.Am.111(2002)1525–1548. [7]T.Yoshioka,S.J.Bensamaïa,J.C.Craig,S.S.Hsiao,Textureperceptionthrough

directandindirecttouch:ananalysisofperceptualspacefortactiletexturesin twomodesofexploration,Somatosens.Mot.Res.24(1–2)(2007)53–70. [8] MarkHollins,AdamSeeger,GabrielePelli,RussellTaylor,Hapticperception

ofvirtualsurfaces:scalingsubjectivequalitiesandinterstimulusdifferences, Perception33(2004)1001–1019.

[9] MichelParé,HeatherCarnahan,M.Allan,Smith,Magnitudeestimationof tan-gentialforceappliedtothefingerpad,Exp.BrainRes.142(2002)342–348. [10] M.J.Adams,B.J.Briscoe,S.A.Johnson,Frictionandlubricationofhumanskin,

Şekil

Fig. 1. Schematic description of apparatus to measure tribological and acoustic signals from friction between soft materials with the cross sectional view of contact between finger probe and arm during contact indicating the positions of accelerometers insi
Fig. 2. (a) Contact force components between the probe and arm. (b) Schematic description of the contact force as it travels on the sample and the moment arm h.
Fig. 7. Normal force measurements on a PDMS with dry smooth landings between parallel grooves
Fig. 8. Normal force measurements on a PDMS with micro-roughness induced on the surfaces between parallel grooves that reduces adhesion and increases normal contact force
+3

Referanslar

Benzer Belgeler

In this essay, I consider how the major-market cin­ ematic reproduction of The English Patient transforms, elides and partially effaces important aspects of the cul­

Moreover, by using an ionic gating scheme, we are able to induce high electric fields near graphene to efficiently tune graphene’s Fermi level and control its carrier

Alt tabaka sıcaklığı değişimine bağlı olarak büyütülen alüminyum nitrür ince filmlerinin mikroyapılarının araştırılması neticesinde elde edilen genel

Rapid Miner ve Python ile karşılaştırılan bu tez, Naive Bayes, Destek Vektör Makinesi, Decision Tree ve Lojistik Regresyon sınıflandırıcıları gibi denetimli makine

Hemisfer ayrımı yapılmaksızın hesaplanan corpus callosum sagittal kesit alanlarının ortalamalarının karşılaştırılmasında erkek olgulardan elde edilen değerler

Tablo 4.8.’e göre ortaokul öğretmenlerinin öğretmenlik mesleğine yönelik tutumlarının medeni durum değişkenine göre farklılaşıp farklılaşmadığını

Sonuç olarak, çalışma alanında yatay kömür örnekleri ile düşey kömür örneklerinin iz element bakımından zenginleşmiş olmasının sebebinin, kömürlerin olgunlaşma

SPK’nın bağımsız denetim tebliğindeki düzenlemelere paralel olarak, BDDK Yönetmeliğinde de denetim kuruluşları, denetim kuruluşu ile hukuki bağlantısı olan