• Sonuç bulunamadı

Search for Invisible decays of a higgs boson produced in association with a z boson in ATLAS

N/A
N/A
Protected

Academic year: 2021

Share "Search for Invisible decays of a higgs boson produced in association with a z boson in ATLAS"

Copied!
19
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Search for Invisible Decays of a Higgs Boson Produced

in Association with a

Z Boson in ATLAS

G. Aad et al.* (ATLAS Collaboration)

(Received 13 February 2014; revised manuscript received 11 April 2014; published 20 May 2014) A search for evidence of invisible-particle decay modes of a Higgs boson produced in association with a Z boson at the Large Hadron Collider is presented. No deviation from the standard model expectation is observed in4.5 fb−1 (20.3 fb−1) of 7 (8) TeV pp collision data collected by the ATLAS experiment. Assuming the standard model rate forZH production, an upper limit of 75%, at the 95% confidence level is set on the branching ratio to invisible-particle decay modes of the Higgs boson at a mass of 125.5 GeV. The limit on the branching ratio is also interpreted in terms of an upper limit on the allowed dark matter-nucleon scattering cross section within a Higgs-portal dark matter scenario. Within the constraints of such a scenario, the results presented in this Letter provide the strongest available limits for low-mass dark matter candidates. Limits are also set on an additional neutral Higgs boson, in the mass range 110 < mH< 400 GeV, produced in association with a Z boson and decaying to invisible particles.

DOI:10.1103/PhysRevLett.112.201802 PACS numbers: 14.80.Bn, 12.60.Fr, 14.80.Ec, 95.35.+d

Some extensions of the standard model (SM) allow a Higgs boson[1–3]to decay to a pair of stable or long-lived particles [4–18] that are not observed by the ATLAS detector. For instance the Higgs boson can decay into two particles with very small interaction cross sections with SM particles, such as dark matter (DM) candidates. Collider data can be used to directly constrain the branch-ing ratio of the Higgs boson to invisible particles. Similarly, limits can be placed on the cross section times branching ratio of any additional Higgs bosons decaying predomi-nantly to invisible particles. LEP results[19]put limits on an invisibly decaying Higgs boson, produced in association with a Z boson, for Higgs masses below 120 GeV.

This Letter presents a search for invisible decays of a Higgs boson produced in association with a Z boson. A Higgs boson in the mass range 110 < mH < 400 GeV is considered. The distribution of the missing transverse momentum (Emiss

T ) in events with an electron or a muon

pair consistent with aZ boson decay is used to constrain the ZH production cross section times the branching ratio of the Higgs boson decaying to invisible particles, over the full mass range. For the newly discovered Higgs boson, a constraint could be placed on the branching ratio to invisible particles. In this case the mass of the Higgs boson is taken to bemH ¼ 125.5 GeV, the best-fit value from the ATLAS experiment [20], and the ZH production cross section is assumed to be that predicted for the SM Higgs boson. This assumption implies that the hypothesized

unobserved particles that couple to the Higgs boson have sufficiently weak couplings to other SM particles to not affect the Higgs boson production cross sections. The total cross section for the associated production of a SM Higgs boson, withmH ¼ 125.5 GeV, and a Z boson, calculated to next-to-next-to-leading order in QCD [21] and including next-to-leading-order (NLO) electroweak corrections

[22,23], is 331 fb at pffiffiffis¼ 7 TeV and 410 fb at pffiffiffis¼

8 TeV[24]. The SM branching ratio of the Higgs boson decaying to invisible particles is1.2 × 10−3, arising from the H → ZZðÞ→ 4ν decay. The present search is not sensitive to the low branching ratio for this decay, but instead searches for enhancements in the decay fraction to invisible particles due to physics beyond the standard model (BSM).

The search uses 4.5 fb−1 of data recorded with the ATLAS detector in 2011 at pffiffiffis¼ 7 TeV and 20.3 fb−1 of data recorded in 2012 at pffiffiffis¼ 8 TeV. The ATLAS detector has been described elsewhere [25]. Simulated signal and background event samples are produced with Monte Carlo (MC) event generators, passed through a full GEANT4[26]simulation of the ATLAS detector[27]and reconstructed with the same software as the data.

The signal samples are generated with HERWIG++[28]

and its internal POWHEG method[29,30]. The SMZZ and WZ backgrounds are taken from simulation, since they have limited statistics in the control regions that would allow us to estimate these backgrounds with data. All the other background processes to this search are determined from data. In these cases, simulated samples are only used as cross-checks for the obtained background estimates. POWHEG[29–31]interfaced with PYTHIA8[32]is used to model SMZZ and WZ production[33]. The production ofWW is modeled using HERWIG[34]and SHERPA[35] * Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

for the 7 and 8 TeV data, respectively. A separate sample simulated with gg2VV [36] interfaced with JIMMY [37] accounts for WW=ZZ production through quark-box dia-grams, which are not included in the above mentioned samples. The MC@NLO [38] generator interfaced with JIMMY is used to modelt¯t, Wt, and s-channel single top-quark production. ACERMC[39]interfaced with PYTHIA [40] models t-channel single top-quark production. Inclusive Z=γ production is simulated with ALPGEN [41]interfaced with JIMMY or PYTHIA for the 7 or 8 TeV data, respectively. InclusiveW production is simulated with ALPGEN interfaced with JIMMY. Contributions to this search from the H → WWðÞ→ lνlν and H → ZZðÞ→ llνν decays of a 125.5 GeV SM Higgs boson are studied using POWHEG[29–31,42,43]interfaced with PYTHIA8 and found to be negligible.

Electron candidates are reconstructed from isolated energy deposits in the electromagnetic calorimeter with a shower shape consistent with electrons or photons, matched to inner detector tracks[44]. The electrons used to form aZ boson candidate are required to have transverse momentum pT> 20 GeV and pseudorapidity jηj < 2.47 [45].

Electrons with pT> 7 GeV that satisfy less stringent

identification criteria on the calorimeter cluster shape, track quality, and track-cluster matching [44] are used to veto events with more than two charged leptons.

Muon candidates are reconstructed combining tracks independently found in the muon spectrometer and inner tracking detector[46]. Muons forming aZ boson candidate are required to have pT> 20 GeV and jηj < 2.4. Muons withpT> 7 GeV are used to veto events with more than

two charged leptons.

Jets are reconstructed using the anti-kt algorithm [47] with a radius parameter R ¼ 0.4. They must have pT > 20 GeV and jηj < 4.5. To discriminate against jets from additional minimum bias interactions, selection criteria are applied to ensure that most of the jet momentum, for jets with jηj < 2.5, is associated with tracks originating from the primary vertex, which is taken to be the vertex with the highest summed p2T of associated tracks.

To ensure good separation between electrons, muons, and jets, electrons are removed if they are withinΔR ≤ 0.2 of an identified muon, and jets are removed if they are within ΔR ≤ 0.2 of an identified electron. Remaining electrons and muons are removed if they are within ΔR ≤ 0.4 of a remaining jet or if the scalar sum of track momenta, not associated with the lepton, in a cone of ΔR < 0.2 around the lepton direction is greater than 10% of the leptonpT.

TheEmiss

T is the magnitude of the negative vectorial sum

of the transverse momenta from calibrated objects, such as identified electrons, muons, photons, hadronic decays of tau leptons, and jets[48]. Clusters of calorimeter cells not matched to any object are also included. The analysis also uses a track-based missing transverse momentum (pmiss

T ) computed from all inner detector tracks with

pT > 500 MeV and jηj < 2.5, that satisfy stringent quality

criteria[49] and are consistent with originating from the primary vertex. For thepmiss

T calculation, tracks matched to

electrons are discarded and replaced by the transverse energy ET of the matched cluster measured in the calo-rimeter to include any photon radiation in the calculation. Event selection criteria are determined in an optimization procedure, using simulated samples, to maximize the signal significance of the search. Events are required to pass a single-lepton or lepton-pair trigger, with small variations in the applied pT threshold in different data-taking periods. Events must also have at least one reconstructed vertex with at least three associated tracks withpT > 500 MeV. Data quality criteria are applied to reject events from non-collision backgrounds or events with degraded detector performance[48].

The invariant mass of the selected dilepton system,mll, is required to satisfy76 < mll< 106 GeV to be consistent with leptons originating from aZ boson decay.

Figure1shows theEmissT distribution in the 8 TeV data sample after the dilepton mass requirement. In this figure the data are consistent with the expected background based on simulated samples for all but the multijet background. The uncertainty band of the expected background is widest in the region dominated by the steeply falling Z boson background. To reject the majority of this background, Emiss

T is required to be greater than 90 GeV. In events where

a significantEmiss

T arises from misreconstructed energy in

the calorimeter, the vectors ofEmiss

T andpmissT are likely to

have different azimuthal angles. Thus the azimuthal differ-ence of these two vectors,ΔϕðEmissT ; pmissT Þ, is required to be less than 0.2.

FIG. 1 (color online). Distribution ofEmiss

T for events with the

invariant mass of the two leptons76 < mll< 106 GeV in the 8 TeV data (dots). The stacked histograms represent the back-ground predictions from simulation. The signal hypothesis is shown by a dotted line and assumes the SMZH production rate for amH¼ 125.5 GeV Higgs boson with BRðH → inv:Þ ¼ 1. The inset at the bottom of the figure shows the ratio of the data to the combined background expectations as well as a band corresponding to the combined systematic uncertainties.

(3)

For the signal, the momentum of the reconstructed Z boson is expected to be balanced by the momentum of the invisibly decaying Higgs boson. Therefore the azimuthal separation between the dilepton system, where the magni-tude of its transverse momentum is defined aspllT , and the Emiss

T ,ΔϕðpllT ; EmissT Þ, is required to be greater than 2.6. The

boost of theZ boson causes the decay leptons to be produced with a small opening angle. The azimuthal opening angle of the two leptons, Δϕðl; lÞ, is thus required to be less than 1.7. Furthermore pllT andEmiss

T are expected to be similar.

Therefore the fractional pT difference, defined as jEmiss

T − pllT j=pllT , is required to be less than 0.2. Finally,

for the majority of the signal no additional high-pT jets are expected to be observed in the events, while for the back-ground from boostedZ bosons and from t¯t pairs one or more jets are expected. Thus, events are required to have no reconstructed jets withpT > 25 GeV and jηj < 2.5.

After the selection requirements, the dominant

back-ground is SM ZZ production followed by SM WZ

production, as shown in Table I. These backgrounds are simulated using MC samples normalized to NLO cross sections. The simulation of WZ events is validated by comparing them to data events in which the third-lepton veto is replaced by an explicit third-lepton requirement. The theoretical prediction of the ZZ production is in agreement with the ATLAS cross-section measurement at pffiffiffis¼ 7 TeV [50].

Background contributions from events with a genuine isolated lepton pair, not originating from aZ → ee or Z → μμ decay (WW, t¯t, Wt, and Z → ττ), are estimated by exploiting the flavor symmetry in the dilepton final state of these processes. Distributions for events with an eμ pair, appropriately scaled to account for differences in electron and muon reconstruction efficiencies, can be used to estimate this background in the electron and muon chan-nels. The difference between the efficiencies for electrons and muons is estimated using the square root of the ratio of the numbers of dimuon and dielectron events in data within the mll window. Events in the eμ control region not originating fromWW, t¯t, Wt, or Z → ττ backgrounds are subtracted using simulated samples. Important sources of

systematic uncertainty are variations in the correction factor for the efficiencies for electrons and muons and uncertain-ties in the simulated samples used for the subtraction. The combined systematic uncertainty is 23% for both the 7 and 8 TeV data. The estimated background from these sources is consistent with the expectation from the simulation.

The background from inclusive Z → ee and Z → μμ production in the signal region is estimated from the back-ground in three sideband regions[51]. These sideband regions are formed by considering events failing one or both of the nominal selection requirements applied toΔϕðEmiss

T ; pmissT Þ

and the fractionalpT difference. Contributions from non-Z backgrounds in the sideband regions are subtracted. The impact from a correlation between the above two variables is determined from the simulation and a correction, of at most 7%, is applied to account for it. The main uncertainties are due to variations in this correction and differences in the shape of the Emiss

T distribution in the control regions. The overall

systematic uncertainty is 52% in the 7 TeV data and 59% in the 8 TeV data.

The small background from events with only one genuine isolated lepton (inclusive W, single-lepton top pairs and single top production) or from multijet events is estimated from data using control samples, selected by requiring two lepton candidates of which at least one fails the full lepton selection criteria. These samples are scaled with a measured pT-dependent factor, determined from data as described in

Ref.[52]. Systematic uncertainties are determined following

the procedures used in Ref.[52], yielding an uncertainty of 40% in the 7 TeV data and 21% in the 8 TeV data.

Systematic uncertainties on the signal and the SM ZZ and WZ backgrounds are derived from the luminosity uncertainty, the propagation of reconstructed object uncer-tainties, and from theoretical uncertainties on the produc-tion cross secproduc-tions. The luminosity uncertainty is 1.8% for the 7 TeV taking period and 2.8% for the 8 TeV data-taking period[53].

Lepton trigger and identification efficiencies as well as the energy scale and resolution are determined from data using large samples ofZ events. After appropriate correc-tions to the simulation, uncertainties are propagated to the TABLE I. Number of events observed in data and expected from the signal and from each background source for

the 7 and 8 TeV data-taking periods. Uncertainties on the signal and background expectations are presented with statistical uncertainties first and systematic uncertainties second.

Data period 2011 (7 TeV) 2012 (8 TeV)

ZZ → llνν 20.0  0.7  1.6 91  1  7

WZ → lνll 4.8  0.3  0.5 26  1  3

Dileptonict¯t, Wt, WW, Z → ττ 0.5  0.4  0.1 20  3  5

Z → ee, Z → μμ 0.13  0.12  0.07 0.9  0.3  0.5

W þ jets, multijet, semileptonic top 0.020  0.005  0.008 0.29  0.02  0.06

Total background 25.4  0.8  1.7 138  4  9

Signal (mH¼ 125.5 GeV, σZH;SM, BRðH → inv:Þ ¼ 1) 8.9  0.1  0.5 44  1  3

(4)

event selection. These uncertainties contribute typically 1.0%–1.5% to the overall selection uncertainty. Jet energy scale and resolution uncertainties are derived using a combination of techniques that use dijet, photonþ jet, andZ þ jet events[54,55]. These contribute an uncertainty of between 3% and 6% on the final event selection. The uncertainties on the energy scale and resolution of leptons and jets are also propagated to theEmissT calculation, and the resulting uncertainty in the latter is included in uncertain-ties given above. Uncertainuncertain-ties in the pile-up simulation, affecting in particular Emiss

T , contribute a further 1%–2%

uncertainty.

Theoretical uncertainties on the ZH production cross section are derived from variations of the renormalization and factorization scale, αs, and the parton distribution functions (PDFs) [24]. These are combined to give an uncertainty of 3.6%–5.7% on the cross section. This analysis is sensitive to the distribution of the Higgs bosonpTthrough the EmissT , and uncertainties in the pT boost of the Higgs boson can affect the signal yield. An additional systematic uncertainty of 1.9% is applied to the normalization [22,23,56], and uncertainties as a function of the Higgs bosonpT are considered as a systematic shape uncertainty. The cross-section uncertainty on theZZ background is 5% from varying the PDFs,αs, and QCD scale. The uncertainty on the jet veto for theZZ backgrounddue to the parton showering is estimated to be 6.4% (5.5%) for the 7 (8) TeV data. Because theEmiss

T distribution of the final selected sample is used in the

limit-setting procedure, the impact of PDFs,αs, and QCD scale uncertainties on the shape of this distribution is also considered. The theoretical uncertainty of theWZ background is considered similarly. The total systematic uncertainty on the SMZZ background is 8% for both the 7 and 8 TeV data-taking periods, whereas for theWZ background it is 10% (13%) for the 7 (8) TeV data-taking periods.

Event reconstruction and theoretical uncertainties are considered as correlated between the 7 and 8 TeV data, and between the signals and backgrounds estimated from simulation. The systematic uncertainties in methods that determine backgrounds from data using control regions are also assumed to be correlated between the two data sets. The luminosity uncertainty is considered as uncorrelated between the 7 and 8 TeV data.

The numbers of observed and expected events for the 7 and 8 TeV data-taking periods are shown in Table I. Figure 2 shows the Emiss

T distribution after the full event

selection for the 8 TeV data and the expected backgrounds. The normalization of the backgrounds is extracted from a binned profile maximum likelihood fit in the signal region. Systematic uncertainties are considered as nuisance param-eters, and are assumed to be constrained by Gaussian distributions. The signal expectation shown corresponds to a Higgs boson withmH ¼ 125.5 GeV, a SM ZH produc-tion rate, and BRðH → inv:Þ ¼ 1. No significant excess is observed over the SM expectation.

Limits are set on the cross section times branching ratio for a Higgs boson decaying to invisible particles anywhere in the mass range110 < mH < 400 GeV. The limits are computed using a maximum likelihood fit to the Emiss

T

distribution following the CLs (signal confidence level) modified frequentist formalism [57] with a profile like-lihood test statistic [58]. Figure 3 shows the 95% C.L. upper limits on σZH× BRðH → inv:Þ in the mass range 110 < mH < 400 GeV for the combined 7 and 8 TeV data.

The expectation for a Higgs boson with a production cross section equal to that expected for a SM Higgs boson and BRðH → inv:Þ ¼ 1 is also shown.

FIG. 2 (color online). Distribution of Emiss

T after the full

selection in the 8 TeV data (dots). The filled stacked histograms represent the background expectations. The signal expectation for a Higgs boson withmH¼ 125.5 GeV, a SM ZH production rate and BRðH → inv:Þ ¼ 1 is stacked on top of the background expectations. The inset at the bottom of the figure shows the ratio of the data to the combined background expectations. The hashed area shows the systematic uncertainty on the combined back-ground expectation.

FIG. 3 (color online). Upper limits onσZH× BRðH → inv:Þ at 95% C.L. for a Higgs boson with110 < mH< 400 GeV, for the combined 7 and 8 TeV data. The full and dashed lines show the observed and expected limits, respectively.

(5)

For the discovered Higgs boson an upper limit of 75% at 95% C.L. (63% at 90% C.L.) is set on the branching ratio to invisible particles. For this the predicted SMZH produc-tion rate withmH ¼ 125.5 GeV, is assumed. The expected limit in the absence of BSM decays to invisible particles is 62% at 95% C.L. (52% at 90% C.L.).

Within the context of a Higgs-portal DM scenario[59], in which the Higgs boson acts as the mediator particle between DM and SM particles, the Higgs boson can decay to a pair of DM particles. In this case the limit on BRðH → inv:Þ for the 125.5 GeV Higgs boson can be interpreted in terms of an upper limit on the DM–nucleon scattering cross section

[60]. The formalism used to interpret the BRðH → inv:Þ

limit in terms of the spin-independent DM–nucleon scatter-ing cross sections is described in Refs. [61,62]. Figure 4 shows 90% C.L. upper limits on the DM–nucleon scattering cross section for three model variants in which a single DM candidate is considered and is either a scalar, a vector, or a Majorana fermion. The Higgs–nucleon coupling is taken as 0.33þ0.30

−0.07 [62], the uncertainty of which is expressed by the

bands in the figure. Spin-independent results from direct-search experiments are also shown[63–70]. These results do not depend on the assumptions of the Higgs-portal scenario. Within the constraints of such a scenario, however, the results presented in this Letter provide the strongest avail-able limits for low-mass DM candidates. There is no sensitivity to these models once the mass of the DM candidate exceeds mH=2. A search by the ATLAS experi-ment for DM in more generic models, also using the dileptonþ large Emiss

T final state, is presented in Ref.[71].

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF,

European Union; IN2P3-CNRS, CEA-DSM/IRFU,

France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowl-edged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[1] F. Englert and R. Brout,Phys. Rev. Lett. 13, 321 (1964). [2] P. W. Higgs,Phys. Rev. Lett. 13, 508 (1964).

[3] G. Guralnik, C. Hagen, and T. Kibble,Phys. Rev. Lett. 13, 585 (1964).

[4] K. Griest and H. E. Haber,Phys. Rev. D 37, 719 (1988). [5] A. Djouadi, P. Janot, J. Kalinowski, and P. M. Zerwas,Phys.

Lett. B 376, 220 (1996).

[6] I. Antoniadis, M. Tuckmantel, and F. Zwirner,Nucl. Phys. B707, 215 (2005).

[7] T. Binoth and J. J. van der Bij,Z. Phys. C 75, 17 (1997). [8] Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Phys.

Lett. 98B, 265 (1981).

[9] A. S. Joshipura and S. D. Rindani,Phys. Rev. Lett. 69, 3269 (1992).

[10] R. E. Shrock and M. Suzuki,Phys. Lett. 110B, 250 (1982). [11] R. N. Mohapatra and J. W. F. Valle,Phys. Rev. D 34, 1642

(1986).

[12] M. C. Gonzalez-Garcia and J. W. F. Valle,Phys. Lett. B 216, 360 (1989).

[13] E. D. Carlson and L. J. Hall,Phys. Rev. D 40, 3187 (1989). [14] L.-F. Li, Y. Liu, and L. Wolfenstein,Phys. Lett. 159B, 45

(1985).

[15] A. Zee,Phys. Lett. 93B, 389 (1980).

[16] F. de Campos, O. J. P. Éboli, J. Rosiek, and J. W. F. Valle,

Phys. Rev. D 55, 1316 (1997). FIG. 4 (color online). Limits on the DM-nucleon scattering

cross section at 90% C.L., extracted from the BRðH → inv:Þ limit in a Higgs-portal scenario, compared to results from direct-search experiments [63–70]. Cross-section limits and favored regions correspond to a 90% C.L., unless stated otherwise in the legend. Favored regions for DAMA and CoGeNT are based on Ref.[68]. The results from the direct-search experiments do not depend on the assumptions of the Higgs-portal scenario.

(6)

[17] S. P. Martin and J. D. Wells,Phys. Rev. D 60, 035006 (1999). [18] G. F. Giudice, R. Rattazzi, and J. D. Wells, Nucl. Phys.

B595, 250 (2001).

[19] LEP Higgs Working Group, Report No. LHWG Note 2001-06, 2001.

[20] ATLAS Collaboration,Phys. Lett. B 726, 88 (2013). [21] O. Brein, A. Djouadi, and R. Harlander,Phys. Lett. B 579,

149 (2004).

[22] M. L. Ciccolini, S. Dittmaier, and M. Krämer,Phys. Rev. D 68, 073003 (2003).

[23] A. Denner, S. Dittmaier, S. Kallweit, and A. Mück,J. High Energy Phys. 03 (2012) 075.

[24] LHC Higgs Cross Section Working Group, CERN Report No. CERN-2013-004, edited by S. Dittmaier, C. Mariotti, G. Passarino, and R. Tanaka, 2013.

[25] ATLAS Collaboration,JINST 3, S08003 (2008).

[26] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Ins-trum. Methods Phys. Res., Sect. A 506, 250 (2003). [27] ATLAS Collaboration,Eur. Phys. J. C 70, 823 (2010). [28] M. Bähr et al.,Eur. Phys. J. C 58, 639 (2008). [29] P. Nason,J. High Energy Phys. 11 (2004) 040.

[30] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[31] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 06 (2010) 043.

[32] T. Sjöstrand, S. Mrenna, and P. Skands, Comput. Phys. Commun. 178, 852 (2008).

[33] T. Melia, P. Nason, R. Röntsch, and G. Zanderighi,J. High Energy Phys. 11 (2011) 078.

[34] G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour, and B. R. Webber,

J. High Energy Phys. 01 (2001) 010.

[35] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, and J. Winter,J. High Energy Phys. 02 (2009) 007.

[36] T. Binoth, M. Ciccolini, N. Kauer, and M. Krämer,J. High Energy Phys. 12 (2006) 046.

[37] J. M. Butterworth, J. R. Forshaw, and M. H. Seymour, Z. Phys. C 72, 637 (1996).

[38] S. Frixione and B. R. Webber, J. High Energy Phys. 06 (2002) 029.

[39] B. P. Kersevan and E. Richter-Was, Comput. Phys. Com-mun. 184, 919 (2013).

[40] T. Sjöstrand, S. Mrenna and P. Skands,J. High Energy Phys. 05 (2006) 026.

[41] M. L. Mangano, F. Piccinini, A. D. Polosa, M. Moretti, and R. Pittau,J. High Energy Phys. 07 (2003) 001.

[42] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 04 (2009) 002.

[43] P. Nason and C. Oleari,J. High Energy Phys. 02 (2010) 037.

[44] ATLAS Collaboration,Eur. Phys. J. C 72, 1909 (2012). [45] ATLAS uses a right-handed coordinate system with its

origin at the nominal interaction point in the center of the detector and the z axis along the beam pipe. Polar coor-dinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidityη is defined in terms of the polar angleθ as η ¼ − ln tanðθ=2Þ, and ΔR ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΔηÞ2þ ðΔϕÞ2.

[46] ATLAS Collaboration,J. High Energy Phys. 12 (2010) 060.

[47] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.

[48] ATLAS Collaboration,Eur. Phys. J. C 72, 1844 (2012). [49] ATLAS Collaboration, Report No.

ATLAS-CONF-2010-020, 2010.

[50] ATLAS Collaboration,J. High Energy Phys. 03 (2013) 128.

[51] ATLAS Collaboration,Eur. Phys. J. C 71, 1577 (2011). [52] ATLAS Collaboration, Phys. Rev. Lett. 107, 041802

(2011).

[53] ATLAS Collaboration,Eur. Phys. J. C 73, 2518 (2013). [54] ATLAS Collaboration,Eur. Phys. J. C 73, 2304 (2013). [55] ATLAS Collaboration,Eur. Phys. J. C 73, 2306 (2013). [56] ATLAS Collaboration,Phys. Lett. B 718, 369 (2012). [57] A. L. Read,J. Phys. G 28, 2693 (2002).

[58] G. Cowan, K. Cranmer, E. Gross, and O. Vitells,Eur. Phys. J. C 71, 1554 (2011).

[59] B. Patt and F. Wilczek,arXiv:hep-ph/0605188.

[60] P. J. Fox, R. Harnik, J. Kopp, and Y. Tsai,Phys. Rev. D 85, 056011 (2012).

[61] S. Kanemura, S. Matsumoto, T. Nabeshima, and N. Okada,

Phys. Rev. D 82, 055026 (2010).

[62] A. Djouadi, O. Lebedev, Y. Mambrini, and J. Quevillon,

Phys. Lett. B 709, 65 (2012).

[63] R. Bernabei et al.,Eur. Phys. J. C 56, 333 (2008). [64] J. Angle et al. (XENON10 Collaboration),Phys. Rev. Lett.

107, 051301 (2011).

[65] E. Aprile et al. (XENON100 Collaboration), Phys. Rev. Lett. 109, 181301 (2012).

[66] G. Angloher et al.,Eur. Phys. J. C 72, 1971 (2012). [67] C. E. Aalseth et al. (CoGeNT Collaboration),Phys. Rev.

Lett. 107, 141301 (2011).

[68] P. J. Fox, J. Kopp, M. Lisanti, and N. Weiner,Phys. Rev. D 85, 036008 (2012).

[69] R. Agnese et al. (CDMS Collaboration),Phys. Rev. Lett. 111, 251301 (2013).

[70] D. S. Akerib et al. (LUX Collaboration),Phys. Rev. Lett. 112, 091303 (2014).

[71] ATLAS Collaboration,arXiv:1404.0051 [Phys. Rev. D (to be published)].

G. Aad,48T. Abajyan,21B. Abbott,112 J. Abdallah,152 S. Abdel Khalek,116 O. Abdinov,11R. Aben,106 B. Abi,113 M. Abolins,89O. S. AbouZeid,159H. Abramowicz,154H. Abreu,137 Y. Abulaiti,147a,147bB. S. Acharya,165a,165b,b

L. Adamczyk,38a D. L. Adams,25T. N. Addy,56J. Adelman,177 S. Adomeit,99 T. Adye,130 S. Aefsky,23 T. Agatonovic-Jovin,13bJ. A. Aguilar-Saavedra,125f,125a M. Agustoni,17S. P. Ahlen,22A. Ahmad,149F. Ahmadov,64,c

G. Aielli,134a,134bT. P. A. Åkesson,80G. Akimoto,156 A. V. Akimov,95M. A. Alam,76J. Albert,170 S. Albrand,55 M. J. Alconada Verzini,70M. Aleksa,30I. N. Aleksandrov,64F. Alessandria,90aC. Alexa,26aG. Alexander,154G. Alexandre,49

(7)

T. Alexopoulos,10M. Alhroob,165a,165cG. Alimonti,90a L. Alio,84J. Alison,31 B. M. M. Allbrooke,18 L. J. Allison,71 P. P. Allport,73S. E. Allwood-Spiers,53J. Almond,83A. Aloisio,103a,103bR. Alon,173A. Alonso,36F. Alonso,70 A. Altheimer,35 B. Alvarez Gonzalez,89M. G. Alviggi,103a,103bK. Amako,65Y. Amaral Coutinho,24a C. Amelung,23 V. V. Ammosov,129,a S. P. Amor Dos Santos,125a,125cA. Amorim,125a,125bS. Amoroso,48N. Amram,154G. Amundsen,23

C. Anastopoulos,30 L. S. Ancu,17 N. Andari,30 T. Andeen,35C. F. Anders,58bG. Anders,58a K. J. Anderson,31 A. Andreazza,90a,90bV. Andrei,58a X. S. Anduaga,70S. Angelidakis,9 P. Anger,44 A. Angerami,35 F. Anghinolfi,30 A. V. Anisenkov,108 N. Anjos,125a A. Annovi,47A. Antonaki,9 M. Antonelli,47A. Antonov,97J. Antos,145b F. Anulli,133a

M. Aoki,65L. Aperio Bella,18R. Apolle,119,d G. Arabidze,89I. Aracena,144 Y. Arai,65A. T. H. Arce,45J-F. Arguin,94 S. Argyropoulos,42E. Arik,19a,a M. Arik,19a A. J. Armbruster,88O. Arnaez,82V. Arnal,81O. Arslan,21 A. Artamonov,96 G. Artoni,23S. Asai,156N. Asbah,94S. Ask,28B. Åsman,147a,147bL. Asquith,6K. Assamagan,25R. Astalos,145aA. Astbury,170 M. Atkinson,166N. B. Atlay,142B. Auerbach,6E. Auge,116K. Augsten,127M. Aurousseau,146bG. Avolio,30G. Azuelos,94,e Y. Azuma,156M. A. Baak,30C. Bacci,135a,135bA. M. Bach,15H. Bachacou,137K. Bachas,155M. Backes,30M. Backhaus,21

J. Backus Mayes,144E. Badescu,26a P. Bagiacchi,133a,133bP. Bagnaia,133a,133bY. Bai,33aD. C. Bailey,159 T. Bain,35 J. T. Baines,130O. K. Baker,177S. Baker,77P. Balek,128F. Balli,137E. Banas,39Sw. Banerjee,174D. Banfi,30A. Bangert,151 V. Bansal,170H. S. Bansil,18L. Barak,173S. P. Baranov,95T. Barber,48E. L. Barberio,87D. Barberis,50a,50bM. Barbero,84

T. Barillari,100M. Barisonzi,176T. Barklow,144 N. Barlow,28B. M. Barnett,130 R. M. Barnett,15A. Baroncelli,135a G. Barone,49A. J. Barr,119F. Barreiro,81J. Barreiro Guimarães da Costa,57R. Bartoldus,144A. E. Barton,71P. Bartos,145a

V. Bartsch,150 A. Bassalat,116A. Basye,166 R. L. Bates,53L. Batkova,145aJ. R. Batley,28 M. Battistin,30F. Bauer,137 H. S. Bawa,144,fT. Beau,79P. H. Beauchemin,162R. Beccherle,123a,123bP. Bechtle,21H. P. Beck,17K. Becker,176S. Becker,99

M. Beckingham,139A. J. Beddall,19c A. Beddall,19c S. Bedikian,177V. A. Bednyakov,64C. P. Bee,149L. J. Beemster,106 T. A. Beermann,176 M. Begel,25 K. Behr,119 C. Belanger-Champagne,86P. J. Bell,49W. H. Bell,49G. Bella,154 L. Bellagamba,20aA. Bellerive,29M. Bellomo,85A. Belloni,57O. L. Beloborodova,108,gK. Belotskiy,97O. Beltramello,30

O. Benary,154 D. Benchekroun,136aK. Bendtz,147a,147bN. Benekos,166 Y. Benhammou,154 E. Benhar Noccioli,49 J. A. Benitez Garcia,160b D. P. Benjamin,45 J. R. Bensinger,23K. Benslama,131S. Bentvelsen,106 D. Berge,106 E. Bergeaas Kuutmann,16N. Berger,5F. Berghaus,170E. Berglund,106J. Beringer,15C. Bernard,22P. Bernat,77C. Bernius,78

F. U. Bernlochner,170T. Berry,76P. Berta,128C. Bertella,84F. Bertolucci,123a,123bM. I. Besana,90aG. J. Besjes,105 O. Bessidskaia,147a,147bN. Besson,137S. Bethke,100W. Bhimji,46R. M. Bianchi,124L. Bianchini,23M. Bianco,30O. Biebel,99 S. P. Bieniek,77K. Bierwagen,54J. Biesiada,15M. Biglietti,135aJ. Bilbao De Mendizabal,49H. Bilokon,47M. Bindi,20a,20b S. Binet,116A. Bingul,19c C. Bini,133a,133bB. Bittner,100 C. W. Black,151J. E. Black,144K. M. Black,22D. Blackburn,139 R. E. Blair,6J.-B. Blanchard,137T. Blazek,145aI. Bloch,42C. Blocker,23W. Blum,82,aU. Blumenschein,54G. J. Bobbink,106

V. S. Bobrovnikov,108 S. S. Bocchetta,80A. Bocci,45C. R. Boddy,119M. Boehler,48 J. Boek,176 T. T. Boek,176 J. A. Bogaerts,30A. G. Bogdanchikov,108A. Bogouch,91,aC. Bohm,147aJ. Bohm,126V. Boisvert,76T. Bold,38aV. Boldea,26a A. S. Boldyrev,98N. M. Bolnet,137M. Bomben,79M. Bona,75M. Boonekamp,137C. Borer,17A. Borisov,129G. Borissov,71 M. Borri,83S. Borroni,42J. Bortfeldt,99V. Bortolotto,135a,135bK. Bos,106D. Boscherini,20aM. Bosman,12H. Boterenbrood,106

J. Bouchami,94 J. Boudreau,124E. V. Bouhova-Thacker,71D. Boumediene,34C. Bourdarios,116 N. Bousson,84 S. Boutouil,136dA. Boveia,31J. Boyd,30I. R. Boyko,64I. Bozovic-Jelisavcic,13bJ. Bracinik,18P. Branchini,135aA. Brandt,8 G. Brandt,15O. Brandt,58aU. Bratzler,157B. Brau,85J. E. Brau,115H. M. Braun,176,aS. F. Brazzale,165a,165cB. Brelier,159 K. Brendlinger,121A. J. Brennan,87R. Brenner,167S. Bressler,173T. M. Bristow,46D. Britton,53F. M. Brochu,28I. Brock,21 R. Brock,89F. Broggi,90a C. Bromberg,89J. Bronner,100 G. Brooijmans,35T. Brooks,76W. K. Brooks,32bJ. Brosamer,15

E. Brost,115G. Brown,83J. Brown,55P. A. Bruckman de Renstrom,39D. Bruncko,145b R. Bruneliere,48 S. Brunet,60 A. Bruni,20aG. Bruni,20aM. Bruschi,20a L. Bryngemark,80T. Buanes,14Q. Buat,55F. Bucci,49P. Buchholz,142 R. M. Buckingham,119A. G. Buckley,53S. I. Buda,26a I. A. Budagov,64B. Budick,109F. Buehrer,48L. Bugge,118 M. K. Bugge,118O. Bulekov,97A. C. Bundock,73M. Bunse,43H. Burckhart,30S. Burdin,73B. Burghgrave,107S. Burke,130

I. Burmeister,43E. Busato,34V. Büscher,82 P. Bussey,53C. P. Buszello,167B. Butler,57J. M. Butler,22A. I. Butt,3 C. M. Buttar,53J. M. Butterworth,77W. Buttinger,28A. Buzatu,53M. Byszewski,10S. Cabrera Urbán,168D. Caforio,20a,20b

O. Cakir,4aP. Calafiura,15G. Calderini,79P. Calfayan,99R. Calkins,107L. P. Caloba,24a R. Caloi,133a,133bD. Calvet,34 S. Calvet,34R. Camacho Toro,49P. Camarri,134a,134bD. Cameron,118L. M. Caminada,15R. Caminal Armadans,12 S. Campana,30M. Campanelli,77 V. Canale,103a,103b F. Canelli,31A. Canepa,160aJ. Cantero,81R. Cantrill,76T. Cao,40 M. D. M. Capeans Garrido,30I. Caprini,26a M. Caprini,26a M. Capua,37a,37b R. Caputo,82R. Cardarelli,134aT. Carli,30

(8)

G. Carlino,103aL. Carminati,90a,90bS. Caron,105E. Carquin,32aG. D. Carrillo-Montoya,146cA. A. Carter,75J. R. Carter,28 J. Carvalho,125a,125cD. Casadei,77M. P. Casado,12C. Caso,50a,50b,a E. Castaneda-Miranda,146b A. Castelli,106 V. Castillo Gimenez,168N. F. Castro,125aP. Catastini,57A. Catinaccio,30J. R. Catmore,71A. Cattai,30G. Cattani,134a,134b

S. Caughron,89V. Cavaliere,166 D. Cavalli,90a M. Cavalli-Sforza,12V. Cavasinni,123a,123bF. Ceradini,135a,135bB. Cerio,45 K. Cerny,128A. S. Cerqueira,24bA. Cerri,150L. Cerrito,75F. Cerutti,15M. Cerv,30A. Cervelli,17S. A. Cetin,19bA. Chafaq,136a

D. Chakraborty,107I. Chalupkova,128K. Chan,3 P. Chang,166B. Chapleau,86J. D. Chapman,28 D. Charfeddine,116 D. G. Charlton,18V. Chavda,83C. A. Chavez Barajas,30S. Cheatham,86S. Chekanov,6S. V. Chekulaev,160aG. A. Chelkov,64 M. A. Chelstowska,88C. Chen,63H. Chen,25K. Chen,149L. Chen,33d,h S. Chen,33c X. Chen,146cY. Chen,35Y. Cheng,31

A. Cheplakov,64R. Cherkaoui El Moursli,136eV. Chernyatin,25,a E. Cheu,7L. Chevalier,137V. Chiarella,47 G. Chiefari,103a,103bJ. T. Childers,30A. Chilingarov,71G. Chiodini,72aA. S. Chisholm,18R. T. Chislett,77A. Chitan,26a M. V. Chizhov,64S. Chouridou,9B. K. B. Chow,99I. A. Christidi,77D. Chromek-Burckhart,30M. L. Chu,152J. Chudoba,126

G. Ciapetti,133a,133bA. K. Ciftci,4aR. Ciftci,4a D. Cinca,62V. Cindro,74A. Ciocio,15M. Cirilli,88P. Cirkovic,13b Z. H. Citron,173M. Citterio,90aM. Ciubancan,26aA. Clark,49P. J. Clark,46R. N. Clarke,15W. Cleland,124J. C. Clemens,84 B. Clement,55C. Clement,147a,147bY. Coadou,84M. Cobal,165a,165cA. Coccaro,139J. Cochran,63L. Coffey,23J. G. Cogan,144 J. Coggeshall,166J. Colas,5B. Cole,35S. Cole,107A. P. Colijn,106C. Collins-Tooth,53J. Collot,55T. Colombo,58cG. Colon,85 G. Compostella,100 P. Conde Muiño,125a,125bE. Coniavitis,167M. C. Conidi,12I. A. Connelly,76S. M. Consonni,90a,90b

V. Consorti,48S. Constantinescu,26a C. Conta,120a,120bG. Conti,57 F. Conventi,103a,iM. Cooke,15B. D. Cooper,77 A. M. Cooper-Sarkar,119N. J. Cooper-Smith,76K. Copic,15T. Cornelissen,176 M. Corradi,20a F. Corriveau,86,j A. Corso-Radu,164A. Cortes-Gonzalez,12G. Cortiana,100G. Costa,90aM. J. Costa,168D. Costanzo,140D. Côté,8G. Cottin,32a

G. Cowan,76B. E. Cox,83 K. Cranmer,109 G. Cree,29S. Crépé-Renaudin,55F. Crescioli,79M. Crispin Ortuzar,119 M. Cristinziani,21G. Crosetti,37a,37bC.-M. Cuciuc,26aC. Cuenca Almenar,177T. Cuhadar Donszelmann,140J. Cummings,177

M. Curatolo,47C. Cuthbert,151H. Czirr,142 P. Czodrowski,3 Z. Czyczula,177S. D’Auria,53M. D’Onofrio,73 A. D’Orazio,133a,133b

M. J. Da Cunha Sargedas De Sousa,125a,125bC. Da Via,83W. Dabrowski,38a A. Dafinca,119T. Dai,88 F. Dallaire,94C. Dallapiccola,85M. Dam,36A. C. Daniells,18M. Dano Hoffmann,36V. Dao,105G. Darbo,50aG. L. Darlea,26c S. Darmora,8 J. A. Dassoulas,42W. Davey,21C. David,170T. Davidek,128E. Davies,119,d M. Davies,94O. Davignon,79 A. R. Davison,77Y. Davygora,58aE. Dawe,143I. Dawson,140R. K. Daya-Ishmukhametova,23K. De,8R. de Asmundis,103a

S. De Castro,20a,20bS. De Cecco,79J. de Graat,99N. De Groot,105P. de Jong,106C. De La Taille,116 H. De la Torre,81 F. De Lorenzi,63 L. De Nooij,106D. De Pedis,133aA. De Salvo,133aU. De Sanctis,165a,165c A. De Santo,150 J. B. De Vivie De Regie,116 G. De Zorzi,133a,133bW. J. Dearnaley,71R. Debbe,25C. Debenedetti,46B. Dechenaux,55 D. V. Dedovich,64J. Degenhardt,121I. Deigaard,106J. Del Peso,81T. Del Prete,123a,123bT. Delemontex,55 F. Deliot,137 M. Deliyergiyev,74A. Dell’Acqua,30L. Dell’Asta,22M. Della Pietra,103a,iD. della Volpe,49M. Delmastro,5P. A. Delsart,55

C. Deluca,106 S. Demers,177 M. Demichev,64A. Demilly,79 B. Demirkoz,12,k S. P. Denisov,129 D. Derendarz,39 J. E. Derkaoui,136dF. Derue,79P. Dervan,73 K. Desch,21P. O. Deviveiros,106A. Dewhurst,130 S. Dhaliwal,106 A. Di Ciaccio,134a,134bL. Di Ciaccio,5A. Di Domenico,133a,133bC. Di Donato,103a,103bA. Di Girolamo,30B. Di Girolamo,30 A. Di Mattia,153B. Di Micco,135a,135bR. Di Nardo,47A. Di Simone,48R. Di Sipio,20a,20bD. Di Valentino,29M. A. Diaz,32a

E. B. Diehl,88J. Dietrich,42T. A. Dietzsch,58a S. Diglio,87 A. Dimitrievska,13a K. Dindar Yagci,40J. Dingfelder,21 C. Dionisi,133a,133bP. Dita,26aS. Dita,26a F. Dittus,30F. Djama,84 T. Djobava,51bM. A. B. do Vale,24c A. Do Valle Wemans,125a,125gT. K. O. Doan,5 D. Dobos,30E. Dobson,77J. Dodd,35C. Doglioni,49 T. Doherty,53 T. Dohmae,156 J. Dolejsi,128Z. Dolezal,128B. A. Dolgoshein,97,a M. Donadelli,24dS. Donati,123a,123bP. Dondero,120a,120b J. Donini,34J. Dopke,30A. Doria,103aA. Dos Anjos,174A. Dotti,123a,123bM. T. Dova,70A. T. Doyle,53M. Dris,10J. Dubbert,88

S. Dube,15E. Dubreuil,34E. Duchovni,173G. Duckeck,99O. A. Ducu,26a D. Duda,176 A. Dudarev,30F. Dudziak,63 L. Duflot,116 L. Duguid,76 M. Dührssen,30M. Dunford,58a H. Duran Yildiz,4a M. Düren,52M. Dwuznik,38aJ. Ebke,99 W. Edson,2 C. A. Edwards,76N. C. Edwards,46W. Ehrenfeld,21T. Eifert,144G. Eigen,14 K. Einsweiler,15T. Ekelof,167

M. El Kacimi,136cM. Ellert,167S. Elles,5 F. Ellinghaus,82K. Ellis,75N. Ellis,30J. Elmsheuser,99 M. Elsing,30 D. Emeliyanov,130Y. Enari,156O. C. Endner,82M. Endo,117R. Engelmann,149J. Erdmann,177A. Ereditato,17D. Eriksson,147a

G. Ernis,176 J. Ernst,2 M. Ernst,25J. Ernwein,137 D. Errede,166 S. Errede,166 E. Ertel,82 M. Escalier,116 H. Esch,43 C. Escobar,124X. Espinal Curull,12B. Esposito,47F. Etienne,84A. I. Etienvre,137E. Etzion,154D. Evangelakou,54H. Evans,60 L. Fabbri,20a,20bG. Facini,30R. M. Fakhrutdinov,129S. Falciano,133aY. Fang,33a M. Fanti,90a,90bA. Farbin,8A. Farilla,135a

(9)

B. Fatholahzadeh,159A. Favareto,50a,50bL. Fayard,116P. Federic,145aO. L. Fedin,122W. Fedorko,169M. Fehling-Kaschek,48 S. Feigl,30L. Feligioni,84C. Feng,33dE. J. Feng,6H. Feng,88A. B. Fenyuk,129W. Fernando,6S. Ferrag,53J. Ferrando,53 V. Ferrara,42A. Ferrari,167P. Ferrari,106R. Ferrari,120aD. E. Ferreira de Lima,53A. Ferrer,168D. Ferrere,49C. Ferretti,88 A. Ferretto Parodi,50a,50b M. Fiascaris,31F. Fiedler,82A. Filipčič,74M. Filipuzzi,42F. Filthaut,105M. Fincke-Keeler,170

K. D. Finelli,45 M. C. N. Fiolhais,125a,125c,lL. Fiorini,168A. Firan,40J. Fischer,176 M. J. Fisher,110E. A. Fitzgerald,23 M. Flechl,48I. Fleck,142P. Fleischmann,175S. Fleischmann,176G. T. Fletcher,140G. Fletcher,75T. Flick,176A. Floderus,80 L. R. Flores Castillo,174A. C. Florez Bustos,160bM. J. Flowerdew,100A. Formica,137A. Forti,83D. Fortin,160aD. Fournier,116 H. Fox,71P. Francavilla,12M. Franchini,20a,20bS. Franchino,30D. Francis,30M. Franklin,57S. Franz,61M. Fraternali,120a,120b

S. Fratina,121S. T. French,28C. Friedrich,42F. Friedrich,44D. Froidevaux,30J. A. Frost,28 C. Fukunaga,157 E. Fullana Torregrosa,128B. G. Fulsom,144 J. Fuster,168C. Gabaldon,55O. Gabizon,173 A. Gabrielli,20a,20b A. Gabrielli,133a,133bS. Gadatsch,106 T. Gadfort,25S. Gadomski,49G. Gagliardi,50a,50b P. Gagnon,60C. Galea,99 B. Galhardo,125a,125cE. J. Gallas,119V. Gallo,17B. J. Gallop,130P. Gallus,127G. Galster,36K. K. Gan,110R. P. Gandrajula,62 J. Gao,33b,hY. S. Gao,144,fF. M. Garay Walls,46F. Garberson,177C. García,168J. E. García Navarro,168M. Garcia-Sciveres,15 R. W. Gardner,31N. Garelli,144V. Garonne,30C. Gatti,47 G. Gaudio,120aB. Gaur,142L. Gauthier,94P. Gauzzi,133a,133b I. L. Gavrilenko,95C. Gay,169G. Gaycken,21E. N. Gazis,10P. Ge,33d,mZ. Gecse,169C. N. P. Gee,130D. A. A. Geerts,106 Ch. Geich-Gimbel,21K. Gellerstedt,147a,147bC. Gemme,50aA. Gemmell,53M. H. Genest,55S. Gentile,133a,133bM. George,54

S. George,76D. Gerbaudo,164A. Gershon,154H. Ghazlane,136b N. Ghodbane,34B. Giacobbe,20a S. Giagu,133a,133b V. Giangiobbe,12P. Giannetti,123a,123b F. Gianotti,30 B. Gibbard,25 S. M. Gibson,76M. Gilchriese,15T. P. S. Gillam,28 D. Gillberg,30A. R. Gillman,130D. M. Gingrich,3,eN. Giokaris,9M. P. Giordani,165a,165cR. Giordano,103a,103bF. M. Giorgi,16 P. Giovannini,100P. F. Giraud,137D. Giugni,90aC. Giuliani,48M. Giunta,94B. K. Gjelsten,118I. Gkialas,155,nL. K. Gladilin,98

C. Glasman,81J. Glatzer,21A. Glazov,42G. L. Glonti,64M. Goblirsch-Kolb,100 J. R. Goddard,75J. Godfrey,143 J. Godlewski,30C. Goeringer,82S. Goldfarb,88T. Golling,177D. Golubkov,129A. Gomes,125a,125b,125dL. S. Gomez Fajardo,42

R. Gonçalo,76J. Goncalves Pinto Firmino Da Costa,42L. Gonella,21S. González de la Hoz,168G. Gonzalez Parra,12 M. L. Gonzalez Silva,27S. Gonzalez-Sevilla,49L. Goossens,30P. A. Gorbounov,96H. A. Gordon,25I. Gorelov,104 G. Gorfine,176B. Gorini,30E. Gorini,72a,72bA. Gorišek,74E. Gornicki,39A. T. Goshaw,6 C. Gössling,43M. I. Gostkin,64

M. Gouighri,136aD. Goujdami,136cM. P. Goulette,49A. G. Goussiou,139 C. Goy,5 S. Gozpinar,23H. M. X. Grabas,137 L. Graber,54 I. Grabowska-Bold,38a P. Grafström,20a,20b K-J. Grahn,42J. Gramling,49 E. Gramstad,118F. Grancagnolo,72a

S. Grancagnolo,16V. Grassi,149 V. Gratchev,122 H. M. Gray,30J. A. Gray,149 E. Graziani,135aO. G. Grebenyuk,122 Z. D. Greenwood,78,oK. Gregersen,36I. M. Gregor,42P. Grenier,144J. Griffiths,8 N. Grigalashvili,64A. A. Grillo,138 K. Grimm,71S. Grinstein,12,pPh. Gris,34Y. V. Grishkevich,98J.-F. Grivaz,116J. P. Grohs,44A. Grohsjean,42E. Gross,173

J. Grosse-Knetter,54G. C. Grossi,134a,134bJ. Groth-Jensen,173Z. J. Grout,150K. Grybel,142 L. Guan,33bF. Guescini,49 D. Guest,177 O. Gueta,154C. Guicheney,34E. Guido,50a,50b T. Guillemin,116S. Guindon,2 U. Gul,53C. Gumpert,44 J. Gunther,127J. Guo,35S. Gupta,119P. Gutierrez,112N. G. Gutierrez Ortiz,53C. Gutschow,77N. Guttman,154C. Guyot,137 C. Gwenlan,119C. B. Gwilliam,73A. Haas,109C. Haber,15H. K. Hadavand,8 P. Haefner,21S. Hageboeck,21Z. Hajduk,39 H. Hakobyan,178M. Haleem,42D. Hall,119 G. Halladjian,89K. Hamacher,176 P. Hamal,114K. Hamano,87M. Hamer,54 A. Hamilton,146a,qS. Hamilton,162L. Han,33b K. Hanagaki,117 K. Hanawa,156 M. Hance,15P. Hanke,58a J. R. Hansen,36 J. B. Hansen,36J. D. Hansen,36P. H. Hansen,36P. Hansson,144K. Hara,161A. S. Hard,174T. Harenberg,176S. Harkusha,91

D. Harper,88 R. D. Harrington,46 O. M. Harris,139 P. F. Harrison,171 F. Hartjes,106 A. Harvey,56S. Hasegawa,102 Y. Hasegawa,141S. Hassani,137S. Haug,17M. Hauschild,30R. Hauser,89M. Havranek,21C. M. Hawkes,18R. J. Hawkings,30 A. D. Hawkins,80T. Hayashi,161D. Hayden,89C. P. Hays,119H. S. Hayward,73S. J. Haywood,130S. J. Head,18T. Heck,82 V. Hedberg,80L. Heelan,8S. Heim,121T. Heim,176B. Heinemann,15S. Heisterkamp,36J. Hejbal,126L. Helary,22C. Heller,99 M. Heller,30S. Hellman,147a,147bD. Hellmich,21C. Helsens,30J. Henderson,119R. C. W. Henderson,71 A. Henrichs,177

A. M. Henriques Correia,30S. Henrot-Versille,116C. Hensel,54 G. H. Herbert,16Y. Hernández Jiménez,168 R. Herrberg-Schubert,16 G. Herten,48 R. Hertenberger,99L. Hervas,30 G. G. Hesketh,77N. P. Hessey,106 R. Hickling,75 E. Higón-Rodriguez,168J. C. Hill,28K. H. Hiller,42S. Hillert,21S. J. Hillier,18I. Hinchliffe,15E. Hines,121 M. Hirose,117

D. Hirschbuehl,176 J. Hobbs,149 N. Hod,106 M. C. Hodgkinson,140P. Hodgson,140 A. Hoecker,30 M. R. Hoeferkamp,104 J. Hoffman,40D. Hoffmann,84J. I. Hofmann,58aM. Hohlfeld,82T. R. Holmes,15T. M. Hong,121L. Hooft van Huysduynen,109 J-Y. Hostachy,55S. Hou,152A. Hoummada,136aJ. Howard,119J. Howarth,83M. Hrabovsky,114I. Hristova,16J. Hrivnac,116 T. Hryn’ova,5 P. J. Hsu,82S.-C. Hsu,139D. Hu,35X. Hu,25Y. Huang,146c Z. Hubacek,30F. Hubaut,84F. Huegging,21

(10)

A. Huettmann,42T. B. Huffman,119E. W. Hughes,35G. Hughes,71 M. Huhtinen,30T. A. Hülsing,82M. Hurwitz,15 N. Huseynov,64,c J. Huston,89J. Huth,57G. Iacobucci,49G. Iakovidis,10I. Ibragimov,142L. Iconomidou-Fayard,116 J. Idarraga,116E. Ideal,177P. Iengo,103aO. Igonkina,106T. Iizawa,172Y. Ikegami,65K. Ikematsu,142M. Ikeno,65D. Iliadis,155

N. Ilic,159 Y. Inamaru,66T. Ince,100P. Ioannou,9 M. Iodice,135aK. Iordanidou,9 V. Ippolito,133a,133bA. Irles Quiles,168 C. Isaksson,167M. Ishino,67M. Ishitsuka,158R. Ishmukhametov,110C. Issever,119S. Istin,19aA. V. Ivashin,129W. Iwanski,39 H. Iwasaki,65J. M. Izen,41V. Izzo,103aB. Jackson,121J. N. Jackson,73M. Jackson,73P. Jackson,1M. R. Jaekel,30V. Jain,2

K. Jakobs,48S. Jakobsen,36T. Jakoubek,126J. Jakubek,127D. O. Jamin,152D. K. Jana,78 E. Jansen,77H. Jansen,30 J. Janssen,21M. Janus,171 R. C. Jared,174 G. Jarlskog,80L. Jeanty,15G.-Y. Jeng,151I. Jen-La Plante,31D. Jennens,87

P. Jenni,48,rJ. Jentzsch,43C. Jeske,171 S. Jézéquel,5 M. K. Jha,20a H. Ji,174W. Ji,82 J. Jia,149 Y. Jiang,33b M. Jimenez Belenguer,42S. Jin,33aA. Jinaru,26a O. Jinnouchi,158 M. D. Joergensen,36D. Joffe,40K. E. Johansson,147a

P. Johansson,140K. A. Johns,7 K. Jon-And,147a,147bG. Jones,171 R. W. L. Jones,71T. J. Jones,73P. M. Jorge,125a,125b K. D. Joshi,83J. Jovicevic,148 X. Ju,174 C. A. Jung,43R. M. Jungst,30P. Jussel,61A. Juste Rozas,12,p M. Kaci,168 A. Kaczmarska,39M. Kado,116 H. Kagan,110 M. Kagan,144E. Kajomovitz,45 S. Kalinin,176 S. Kama,40N. Kanaya,156

M. Kaneda,30S. Kaneti,28 T. Kanno,158 V. A. Kantserov,97J. Kanzaki,65B. Kaplan,109 A. Kapliy,31D. Kar,53 K. Karakostas,10N. Karastathis,10M. Karnevskiy,82S. N. Karpov,64K. Karthik,109V. Kartvelishvili,71A. N. Karyukhin,129

L. Kashif,174 G. Kasieczka,58b R. D. Kass,110A. Kastanas,14Y. Kataoka,156A. Katre,49J. Katzy,42V. Kaushik,7 K. Kawagoe,69T. Kawamoto,156G. Kawamura,54S. Kazama,156 V. F. Kazanin,108 M. Y. Kazarinov,64 R. Keeler,170 P. T. Keener,121 R. Kehoe,40M. Keil,54J. S. Keller,139H. Keoshkerian,5 O. Kepka,126 B. P. Kerševan,74S. Kersten,176 K. Kessoku,156 J. Keung,159F. Khalil-zada,11H. Khandanyan,147a,147bA. Khanov,113 D. Kharchenko,64A. Khodinov,97

A. Khomich,58a T. J. Khoo,28G. Khoriauli,21A. Khoroshilov,176V. Khovanskiy,96E. Khramov,64J. Khubua,51b H. Kim,147a,147bS. H. Kim,161N. Kimura,172O. Kind,16B. T. King,73M. King,168R. S. B. King,119S. B. King,169J. Kirk,130

A. E. Kiryunin,100 T. Kishimoto,66 D. Kisielewska,38a T. Kitamura,66T. Kittelmann,124K. Kiuchi,161 E. Kladiva,145b M. Klein,73U. Klein,73K. Kleinknecht,82P. Klimek,147a,147bA. Klimentov,25R. Klingenberg,43J. A. Klinger,83

E. B. Klinkby,36T. Klioutchnikova,30P. F. Klok,105E.-E. Kluge,58a P. Kluit,106S. Kluth,100E. Kneringer,61 E.B.F.G. Knoops,84A. Knue,53T. Kobayashi,156 M. Kobel,44M. Kocian,144P. Kodys,128 S. Koenig,82P. Koevesarki,21

T. Koffas,29E. Koffeman,106L. A. Kogan,119 S. Kohlmann,176 Z. Kohout,127 T. Kohriki,65T. Koi,144 H. Kolanoski,16 I. Koletsou,5J. Koll,89A. A. Komar,95,aY. Komori,156T. Kondo,65 K. Köneke,48A. C. König,105T. Kono,65,s R. Konoplich,109,tN. Konstantinidis,77R. Kopeliansky,153 S. Koperny,38a L. Köpke,82 A. K. Kopp,48K. Korcyl,39 K. Kordas,155A. Korn,46A. A. Korol,108I. Korolkov,12E. V. Korolkova,140V. A. Korotkov,129O. Kortner,100S. Kortner,100

V. V. Kostyukhin,21S. Kotov,100V. M. Kotov,64A. Kotwal,45C. Kourkoumelis,9 V. Kouskoura,155 A. Koutsman,160a R. Kowalewski,170T. Z. Kowalski,38aW. Kozanecki,137A. S. Kozhin,129V. Kral,127V. A. Kramarenko,98G. Kramberger,74 D. Krasnopevtsev,97M. W. Krasny,79A. Krasznahorkay,30J. K. Kraus,21A. Kravchenko,25S. Kreiss,109J. Kretzschmar,73

K. Kreutzfeldt,52N. Krieger,54P. Krieger,159K. Kroeninger,54 H. Kroha,100 J. Kroll,121J. Kroseberg,21 J. Krstic,13a U. Kruchonak,64H. Krüger,21T. Kruker,17N. Krumnack,63Z. V. Krumshteyn,64A. Kruse,174M. C. Kruse,45M. Kruskal,22 T. Kubota,87S. Kuday,4aS. Kuehn,48A. Kugel,58cT. Kuhl,42V. Kukhtin,64Y. Kulchitsky,91S. Kuleshov,32bM. Kuna,133a,133b J. Kunkle,121A. Kupco,126H. Kurashige,66Y. A. Kurochkin,91R. Kurumida,66V. Kus,126E. S. Kuwertz,148 M. Kuze,158 J. Kvita,143A. La Rosa,49L. La Rotonda,37a,37bL. Labarga,81S. Lablak,136aC. Lacasta,168F. Lacava,133a,133bJ. Lacey,29 H. Lacker,16D. Lacour,79V. R. Lacuesta,168E. Ladygin,64R. Lafaye,5B. Laforge,79T. Lagouri,177S. Lai,48H. Laier,58a E. Laisne,55L. Lambourne,77C. L. Lampen,7W. Lampl,7E. Lançon,137U. Landgraf,48M. P. J. Landon,75V. S. Lang,58a C. Lange,42A. J. Lankford,164F. Lanni,25K. Lantzsch,30A. Lanza,120aS. Laplace,79C. Lapoire,21J. F. Laporte,137T. Lari,90a A. Larner,119 M. Lassnig,30P. Laurelli,47V. Lavorini,37a,37b W. Lavrijsen,15P. Laycock,73B. T. Le,55 O. Le Dortz,79 E. Le Guirriec,84E. Le Menedeu,12T. LeCompte,6F. Ledroit-Guillon,55C. A. Lee,152H. Lee,106J. S. H. Lee,117S. C. Lee,152 L. Lee,177G. Lefebvre,79M. Lefebvre,170F. Legger,99C. Leggett,15A. Lehan,73M. Lehmacher,21G. Lehmann Miotto,30 X. Lei,7A. G. Leister,177 M. A. L. Leite,24d R. Leitner,128D. Lellouch,173 B. Lemmer,54K. J. C. Leney,146cT. Lenz,106

G. Lenzen,176B. Lenzi,30R. Leone,7K. Leonhardt,44S. Leontsinis,10C. Leroy,94C. G. Lester,28C. M. Lester,121 J. Levêque,5 D. Levin,88L. J. Levinson,173A. Lewis,119G. H. Lewis,109A. M. Leyko,21M. Leyton,16B. Li,33b,uB. Li,84 H. Li,149H. L. Li,31S. Li,45X. Li,88Z. Liang,119,vH. Liao,34B. Liberti,134aP. Lichard,30K. Lie,166J. Liebal,21W. Liebig,14 C. Limbach,21A. Limosani,87M. Limper,62S. C. Lin,152,wF. Linde,106B. E. Lindquist,149J. T. Linnemann,89E. Lipeles,121 A. Lipniacka,14M. Lisovyi,42T. M. Liss,166D. Lissauer,25A. Lister,169A. M. Litke,138B. Liu,152D. Liu,152J. B. Liu,33b

(11)

K. Liu,33b,x L. Liu,88M. Liu,45 M. Liu,33b Y. Liu,33b M. Livan,120a,120bS. S. A. Livermore,119A. Lleres,55 J. Llorente Merino,81S. L. Lloyd,75F. Lo Sterzo,152E. Lobodzinska,42P. Loch,7 W. S. Lockman,138T. Loddenkoetter,21 F. K. Loebinger,83A. E. Loevschall-Jensen,36A. Loginov,177C. W. Loh,169T. Lohse,16K. Lohwasser,48M. Lokajicek,126

V. P. Lombardo,5 J. D. Long,88R. E. Long,71L. Lopes,125aD. Lopez Mateos,57B. Lopez Paredes,140J. Lorenz,99 N. Lorenzo Martinez,116 M. Losada,163P. Loscutoff,15M. J. Losty,160a,a X. Lou,41A. Lounis,116J. Love,6P. A. Love,71 A. J. Lowe,144,fF. Lu,33aH. J. Lubatti,139C. Luci,133a,133bA. Lucotte,55D. Ludwig,42I. Ludwig,48F. Luehring,60W. Lukas,61 L. Luminari,133aJ. Lundberg,147a,147bO. Lundberg,147a,147bB. Lund-Jensen,148 M. Lungwitz,82D. Lynn,25R. Lysak,126

E. Lytken,80H. Ma,25L. L. Ma,33d G. Maccarrone,47A. Macchiolo,100 B. Maček,74J. Machado Miguens,125a,125b D. Macina,30R. Mackeprang,36R. Madar,48R. J. Madaras,15H. J. Maddocks,71W. F. Mader,44A. Madsen,167M. Maeno,8 T. Maeno,25L. Magnoni,164E. Magradze,54K. Mahboubi,48J. Mahlstedt,106S. Mahmoud,73G. Mahout,18C. Maiani,137

C. Maidantchik,24a A. Maio,125a,125b,125d S. Majewski,115Y. Makida,65 N. Makovec,116 P. Mal,137,yB. Malaescu,79 Pa. Malecki,39V. P. Maleev,122F. Malek,55U. Mallik,62D. Malon,6C. Malone,144S. Maltezos,10 V. M. Malyshev,108

S. Malyukov,30J. Mamuzic,13b B. Mandelli,30L. Mandelli,90aI. Mandić,74R. Mandrysch,62J. Maneira,125a,125b A. Manfredini,100L. Manhaes de Andrade Filho,24b J. A. Manjarres Ramos,137A. Mann,99 P. M. Manning,138

A. Manousakis-Katsikakis,9B. Mansoulie,137 R. Mantifel,86L. Mapelli,30L. March,168J. F. Marchand,29 F. Marchese,134a,134bG. Marchiori,79M. Marcisovsky,126C. P. Marino,170C. N. Marques,125aF. Marroquim,24aZ. Marshall,15

L. F. Marti,17S. Marti-Garcia,168B. Martin,30 B. Martin,89J. P. Martin,94T. A. Martin,171V. J. Martin,46 B. Martin dit Latour,49H. Martinez,137M. Martinez,12,pS. Martin-Haugh,130A. C. Martyniuk,77M. Marx,139F. Marzano,133a A. Marzin,112L. Masetti,82T. Mashimo,156R. Mashinistov,95J. Masik,83A. L. Maslennikov,108I. Massa,20a,20bN. Massol,5 P. Mastrandrea,149A. Mastroberardino,37a,37bT. Masubuchi,156H. Matsunaga,156T. Matsushita,66P. Mättig,176S. Mättig,42 J. Mattmann,82C. Mattravers,119,dJ. Maurer,84S. J. Maxfield,73D. A. Maximov,108,gR. Mazini,152L. Mazzaferro,134a,134b M. Mazzanti,90aG. Mc Goldrick,159S. P. Mc Kee,88A. McCarn,88R. L. McCarthy,149T. G. McCarthy,29N. A. McCubbin,130 K. W. McFarlane,56,a J. A. Mcfayden,140 G. Mchedlidze,54T. Mclaughlan,18S. J. McMahon,130R. A. McPherson,170,j A. Meade,85J. Mechnich,106M. Mechtel,176M. Medinnis,42S. Meehan,31R. Meera-Lebbai,112S. Mehlhase,36A. Mehta,73

K. Meier,58a C. Meineck,99B. Meirose,80C. Melachrinos,31B. R. Mellado Garcia,146cF. Meloni,90a,90b

L. Mendoza Navas,163A. Mengarelli,20a,20bS. Menke,100E. Meoni,162K. M. Mercurio,57S. Mergelmeyer,21N. Meric,137 P. Mermod,49L. Merola,103a,103bC. Meroni,90aF. S. Merritt,31H. Merritt,110A. Messina,30,zJ. Metcalfe,25A. S. Mete,164 C. Meyer,82C. Meyer,31J-P. Meyer,137J. Meyer,30J. Meyer,54S. Michal,30R. P. Middleton,130S. Migas,73L. Mijović,137

G. Mikenberg,173M. Mikestikova,126M. Mikuž,74D. W. Miller,31C. Mills,57A. Milov,173D. A. Milstead,147a,147b D. Milstein,173A. A. Minaenko,129M. Miñano Moya,168I. A. Minashvili,64A. I. Mincer,109B. Mindur,38aM. Mineev,64

Y. Ming,174 L. M. Mir,12G. Mirabelli,133aT. Mitani,172 J. Mitrevski,99V. A. Mitsou,168 S. Mitsui,65A. Miucci,49 P. S. Miyagawa,140 J. U. Mjörnmark,80T. Moa,147a,147b V. Moeller,28S. Mohapatra,149W. Mohr,48S. Molander,147a,147b

R. Moles-Valls,168A. Molfetas,30K. Mönig,42C. Monini,55J. Monk,36E. Monnier,84J. Montejo Berlingen,12 F. Monticelli,70S. Monzani,20a,20bR. W. Moore,3C. Mora Herrera,49A. Moraes,53N. Morange,62J. Morel,54D. Moreno,82

M. Moreno Llácer,168P. Morettini,50a M. Morgenstern,44M. Morii,57S. Moritz,82A. K. Morley,148 G. Mornacchi,30 J. D. Morris,75L. Morvaj,102H. G. Moser,100M. Mosidze,51bJ. Moss,110R. Mount,144E. Mountricha,25S. V. Mouraviev,95,a E. J. W. Moyse,85R. D. Mudd,18F. Mueller,58aJ. Mueller,124K. Mueller,21T. Mueller,28T. Mueller,82D. Muenstermann,49 Y. Munwes,154J. A. Murillo Quijada,18W. J. Murray,171,130I. Mussche,106E. Musto,153A. G. Myagkov,129,aaM. Myska,126 O. Nackenhorst,54J. Nadal,54K. Nagai,61R. Nagai,158Y. Nagai,84K. Nagano,65A. Nagarkar,110Y. Nagasaka,59M. Nagel,100

A. M. Nairz,30 Y. Nakahama,30K. Nakamura,65T. Nakamura,156 I. Nakano,111H. Namasivayam,41 G. Nanava,21 A. Napier,162R. Narayan,58bM. Nash,77,dT. Nattermann,21T. Naumann,42G. Navarro,163H. A. Neal,88P. Yu. Nechaeva,95 T. J. Neep,83A. Negri,120a,120bG. Negri,30M. Negrini,20aS. Nektarijevic,49A. Nelson,164T. K. Nelson,144S. Nemecek,126 P. Nemethy,109A. A. Nepomuceno,24aM. Nessi,30,bbM. S. Neubauer,166M. Neumann,176A. Neusiedl,82R. M. Neves,109

P. Nevski,25F. M. Newcomer,121P. R. Newman,18 D. H. Nguyen,6 V. Nguyen Thi Hong,137 R. B. Nickerson,119 R. Nicolaidou,137 B. Nicquevert,30J. Nielsen,138 N. Nikiforou,35A. Nikiforov,16V. Nikolaenko,129,aa I. Nikolic-Audit,79

K. Nikolics,49K. Nikolopoulos,18P. Nilsson,8 Y. Ninomiya,156A. Nisati,133aR. Nisius,100T. Nobe,158L. Nodulman,6 M. Nomachi,117 I. Nomidis,155S. Norberg,112 M. Nordberg,30J. Novakova,128M. Nozaki,65L. Nozka,114 K. Ntekas,10

A.-E. Nuncio-Quiroz,21G. Nunes Hanninger,87T. Nunnemann,99 E. Nurse,77F. Nuti,87B. J. O’Brien,46F. O’grady,7 D. C. O’Neil,143 V. O’Shea,53L. B. Oakes,99F. G. Oakham,29,e H. Oberlack,100J. Ocariz,79A. Ochi,66M. I. Ochoa,77

(12)

S. Oda,69 S. Odaka,65 H. Ogren,60A. Oh,83S. H. Oh,45C. C. Ohm,30 T. Ohshima,102W. Okamura,117H. Okawa,25 Y. Okumura,31T. Okuyama,156A. Olariu,26a A. G. Olchevski,64S. A. Olivares Pino,46M. Oliveira,125a,125c,l D. Oliveira Damazio,25 E. Oliver Garcia,168 D. Olivito,121 A. Olszewski,39J. Olszowska,39A. Onofre,125a,125e P. U. E. Onyisi,31,ccC. J. Oram,160aM. J. Oreglia,31Y. Oren,154D. Orestano,135a,135bN. Orlando,72a,72bC. Oropeza Barrera,53

R. S. Orr,159B. Osculati,50a,50bR. Ospanov,121 G. Otero y Garzon,27H. Otono,69M. Ouchrif,136d E. A. Ouellette,170 F. Ould-Saada,118A. Ouraou,137K. P. Oussoren,106Q. Ouyang,33aA. Ovcharova,15M. Owen,83S. Owen,140V. E. Ozcan,19a N. Ozturk,8K. Pachal,119A. Pacheco Pages,12C. Padilla Aranda,12S. Pagan Griso,15E. Paganis,140C. Pahl,100F. Paige,25

P. Pais,85K. Pajchel,118G. Palacino,160b S. Palestini,30D. Pallin,34A. Palma,125a,125b J. D. Palmer,18Y. B. Pan,174 E. Panagiotopoulou,10J. G. Panduro Vazquez,76 P. Pani,106N. Panikashvili,88S. Panitkin,25 D. Pantea,26a Th. D. Papadopoulou,10K. Papageorgiou,155,nA. Paramonov,6D. Paredes Hernandez,34M. A. Parker,28F. Parodi,50a,50b

J. A. Parsons,35U. Parzefall,48 E. Pasqualucci,133aS. Passaggio,50a A. Passeri,135aF. Pastore,135a,135b,a Fr. Pastore,76 G. Pásztor,49,dd S. Pataraia,176N. D. Patel,151J. R. Pater,83S. Patricelli,103a,103bT. Pauly,30 J. Pearce,170 M. Pedersen,118

S. Pedraza Lopez,168 R. Pedro,125a,125bS. V. Peleganchuk,108 D. Pelikan,167 H. Peng,33bB. Penning,31J. Penwell,60 D. V. Perepelitsa,35 E. Perez Codina,160a M. T. Pérez García-Estañ,168 V. Perez Reale,35L. Perini,90a,90bH. Pernegger,30

R. Perrino,72a R. Peschke,42V. D. Peshekhonov,64K. Peters,30R. F. Y. Peters,54,ee B. A. Petersen,30J. Petersen,30 T. C. Petersen,36E. Petit,42A. Petridis,147a,147bC. Petridou,155E. Petrolo,133aF. Petrucci,135a,135bM. Petteni,143R. Pezoa,32b P. W. Phillips,130G. Piacquadio,144E. Pianori,171A. Picazio,49E. Piccaro,75M. Piccinini,20a,20bS. M. Piec,42R. Piegaia,27 D. T. Pignotti,110J. E. Pilcher,31A. D. Pilkington,77J. Pina,125a,125b,125dM. Pinamonti,165a,165c,ffA. Pinder,119J. L. Pinfold,3 A. Pingel,36B. Pinto,125aC. Pizio,90a,90bM.-A. Pleier,25V. Pleskot,128E. Plotnikova,64P. Plucinski,147a,147bS. Poddar,58a F. Podlyski,34R. Poettgen,82 L. Poggioli,116 D. Pohl,21M. Pohl,49G. Polesello,120aA. Policicchio,37a,37bR. Polifka,159

A. Polini,20a C. S. Pollard,45 V. Polychronakos,25D. Pomeroy,23K. Pommès,30L. Pontecorvo,133aB. G. Pope,89 G. A. Popeneciu,26bD. S. Popovic,13aA. Poppleton,30X. Portell Bueso,12G. E. Pospelov,100S. Pospisil,127K. Potamianos,15

I. N. Potrap,64C. J. Potter,150C. T. Potter,115 G. Poulard,30J. Poveda,60V. Pozdnyakov,64R. Prabhu,77 P. Pralavorio,84 A. Pranko,15S. Prasad,30R. Pravahan,8 S. Prell,63D. Price,83J. Price,73L. E. Price,6 D. Prieur,124M. Primavera,72a

M. Proissl,46K. Prokofiev,109F. Prokoshin,32b E. Protopapadaki,137S. Protopopescu,25J. Proudfoot,6 X. Prudent,44 M. Przybycien,38aH. Przysiezniak,5S. Psoroulas,21E. Ptacek,115E. Pueschel,85D. Puldon,149M. Purohit,25,ggP. Puzo,116

Y. Pylypchenko,62J. Qian,88A. Quadt,54D. R. Quarrie,15W. B. Quayle,146cD. Quilty,53 V. Radeka,25V. Radescu,42 S. K. Radhakrishnan,149P. Radloff,115F. Ragusa,90a,90bG. Rahal,179S. Rajagopalan,25M. Rammensee,48M. Rammes,142

A. S. Randle-Conde,40C. Rangel-Smith,79K. Rao,164 F. Rauscher,99T. C. Rave,48T. Ravenscroft,53 M. Raymond,30 A. L. Read,118D. M. Rebuzzi,120a,120bA. Redelbach,175G. Redlinger,25R. Reece,138K. Reeves,41 L. Rehnisch,16 A. Reinsch,115H. Reisin,27 M. Relich,164C. Rembser,30Z. L. Ren,152A. Renaud,116M. Rescigno,133aS. Resconi,90a B. Resende,137P. Reznicek,99R. Rezvani,94R. Richter,100M. Ridel,79P. Rieck,16M. Rijssenbeek,149A. Rimoldi,120a,120b

L. Rinaldi,20a E. Ritsch,61I. Riu,12G. Rivoltella,90a,90b F. Rizatdinova,113 E. Rizvi,75 S. H. Robertson,86,j A. Robichaud-Veronneau,119D. Robinson,28J. E. M. Robinson,83A. Robson,53J. G. Rocha de Lima,107C. Roda,123a,123b D. Roda Dos Santos,126L. Rodrigues,30S. Roe,30O. Røhne,118S. Rolli,162A. Romaniouk,97M. Romano,20a,20bG. Romeo,27

E. Romero Adam,168N. Rompotis,139L. Roos,79E. Ros,168S. Rosati,133aK. Rosbach,49 A. Rose,150M. Rose,76 P. L. Rosendahl,14O. Rosenthal,142V. Rossetti,147a,147bE. Rossi,103a,103bL. P. Rossi,50aR. Rosten,139M. Rotaru,26aI. Roth,173

J. Rothberg,139 D. Rousseau,116 C. R. Royon,137 A. Rozanov,84Y. Rozen,153X. Ruan,146cF. Rubbo,12I. Rubinskiy,42 V. I. Rud,98C. Rudolph,44M. S. Rudolph,159F. Rühr,7 A. Ruiz-Martinez,63Z. Rurikova,48N. A. Rusakovich,64 A. Ruschke,99J. P. Rutherfoord,7N. Ruthmann,48P. Ruzicka,126Y. F. Ryabov,122M. Rybar,128G. Rybkin,116N. C. Ryder,119

A. F. Saavedra,151S. Sacerdoti,27A. Saddique,3 I. Sadeh,154 H.F-W. Sadrozinski,138 R. Sadykov,64F. Safai Tehrani,133a H. Sakamoto,156Y. Sakurai,172G. Salamanna,75A. Salamon,134aM. Saleem,112 D. Salek,106 P. H. Sales De Bruin,139 D. Salihagic,100A. Salnikov,144J. Salt,168B. M. Salvachua Ferrando,6 D. Salvatore,37a,37bF. Salvatore,150A. Salvucci,105

A. Salzburger,30D. Sampsonidis,155 A. Sanchez,103a,103bJ. Sánchez,168V. Sanchez Martinez,168 H. Sandaker,14 H. G. Sander,82M. P. Sanders,99M. Sandhoff,176 T. Sandoval,28 C. Sandoval,163R. Sandstroem,100D. P. C. Sankey,130

A. Sansoni,47C. Santoni,34R. Santonico,134a,134bH. Santos,125aI. Santoyo Castillo,150K. Sapp,124A. Sapronov,64 J. G. Saraiva,125a,125dE. Sarkisyan-Grinbaum,8B. Sarrazin,21G. Sartisohn,176O. Sasaki,65Y. Sasaki,156I. Satsounkevitch,91

G. Sauvage,5,a E. Sauvan,5 J. B. Sauvan,116 P. Savard,159,e D. O. Savu,30C. Sawyer,119L. Sawyer,78,o D. H. Saxon,53 J. Saxon,121C. Sbarra,20aA. Sbrizzi,3T. Scanlon,30D. A. Scannicchio,164M. Scarcella,151J. Schaarschmidt,173P. Schacht,100

(13)

D. Schaefer,121A. Schaelicke,46S. Schaepe,21S. Schaetzel,58bU. Schäfer,82A. C. Schaffer,116 D. Schaile,99 R. D. Schamberger,149V. Scharf,58aV. A. Schegelsky,122D. Scheirich,128M. Schernau,164M. I. Scherzer,35C. Schiavi,50a,50b J. Schieck,99C. Schillo,48M. Schioppa,37a,37bS. Schlenker,30E. Schmidt,48K. Schmieden,30C. Schmitt,82C. Schmitt,99 S. Schmitt,58bB. Schneider,17Y. J. Schnellbach,73U. Schnoor,44L. Schoeffel,137A. Schoening,58b B. D. Schoenrock,89 A. L. S. Schorlemmer,54M. Schott,82D. Schouten,160aJ. Schovancova,25 M. Schram,86S. Schramm,159M. Schreyer,175 C. Schroeder,82N. Schroer,58c N. Schuh,82M. J. Schultens,21H.-C. Schultz-Coulon,58a H. Schulz,16M. Schumacher,48

B. A. Schumm,138Ph. Schune,137 A. Schwartzman,144Ph. Schwegler,100 Ph. Schwemling,137R. Schwienhorst,89 J. Schwindling,137T. Schwindt,21M. Schwoerer,5F. G. Sciacca,17E. Scifo,116G. Sciolla,23W. G. Scott,130F. Scuri,123a,123b

F. Scutti,21J. Searcy,88G. Sedov,42E. Sedykh,122 S. C. Seidel,104 A. Seiden,138F. Seifert,127 J. M. Seixas,24a G. Sekhniaidze,103aS. J. Sekula,40K. E. Selbach,46D. M. Seliverstov,122G. Sellers,73M. Seman,145b N. Semprini-Cesari,20a,20b C. Serfon,30L. Serin,116L. Serkin,54T. Serre,84R. Seuster,160aH. Severini,112 F. Sforza,100 A. Sfyrla,30E. Shabalina,54M. Shamim,115 L. Y. Shan,33aJ. T. Shank,22Q. T. Shao,87M. Shapiro,15P. B. Shatalov,96

K. Shaw,165a,165c P. Sherwood,77S. Shimizu,66C. O. Shimmin,164M. Shimojima,101T. Shin,56 M. Shiyakova,64 A. Shmeleva,95M. J. Shochet,31 D. Short,119S. Shrestha,63E. Shulga,97 M. A. Shupe,7 S. Shushkevich,42P. Sicho,126

D. Sidorov,113 A. Sidoti,133a F. Siegert,48Dj. Sijacki,13a O. Silbert,173 J. Silva,125a,125dY. Silver,154D. Silverstein,144 S. B. Silverstein,147aV. Simak,127O. Simard,5Lj. Simic,13aS. Simion,116E. Simioni,82B. Simmons,77R. Simoniello,90a,90b

M. Simonyan,36P. Sinervo,159 N. B. Sinev,115 V. Sipica,142 G. Siragusa,175 A. Sircar,78A. N. Sisakyan,64,a S. Yu. Sivoklokov,98J. Sjölin,147a,147bT. B. Sjursen,14L. A. Skinnari,15H. P. Skottowe,57K. Yu. Skovpen,108P. Skubic,112 M. Slater,18T. Slavicek,127 K. Sliwa,162V. Smakhtin,173B. H. Smart,46L. Smestad,118S. Yu. Smirnov,97Y. Smirnov,97 L. N. Smirnova,98,hh O. Smirnova,80K. M. Smith,53M. Smizanska,71K. Smolek,127A. A. Snesarev,95G. Snidero,75 J. Snow,112S. Snyder,25R. Sobie,170,jF. Socher,44J. Sodomka,127A. Soffer,154D. A. Soh,152,vC. A. Solans,30M. Solar,127

J. Solc,127E. Yu. Soldatov,97U. Soldevila,168E. Solfaroli Camillocci,133a,133bA. A. Solodkov,129 O. V. Solovyanov,129 V. Solovyev,122 N. Soni,1 A. Sood,15V. Sopko,127B. Sopko,127 M. Sosebee,8 R. Soualah,165a,165c P. Soueid,94 A. M. Soukharev,108D. South,42S. Spagnolo,72a,72bF. Spanò,76W. R. Spearman,57R. Spighi,20aG. Spigo,30M. Spousta,128 T. Spreitzer,159B. Spurlock,8R. D. St. Denis,53J. Stahlman,121R. Stamen,58aE. Stanecka,39R. W. Stanek,6C. Stanescu,135a M. Stanescu-Bellu,42M. M. Stanitzki,42S. Stapnes,118E. A. Starchenko,129J. Stark,55P. Staroba,126P. Starovoitov,42

R. Staszewski,39 P. Stavina,145a,a G. Steele,53 P. Steinbach,44P. Steinberg,25 I. Stekl,127B. Stelzer,143H. J. Stelzer,89 O. Stelzer-Chilton,160a H. Stenzel,52S. Stern,100G. A. Stewart,30J. A. Stillings,21M. C. Stockton,86M. Stoebe,86 K. Stoerig,48G. Stoicea,26a S. Stonjek,100A. R. Stradling,8A. Straessner,44J. Strandberg,148S. Strandberg,147a,147b

A. Strandlie,118 E. Strauss,144 M. Strauss,112 P. Strizenec,145bR. Ströhmer,175D. M. Strom,115R. Stroynowski,40 S. A. Stucci,17B. Stugu,14I. Stumer,25,aJ. Stupak,149N. A. Styles,42D. Su,144J. Su,124HS. Subramania,3R. Subramaniam,78 A. Succurro,12Y. Sugaya,117C. Suhr,107M. Suk,127V. V. Sulin,95S. Sultansoy,4cT. Sumida,67X. Sun,55J. E. Sundermann,48 K. Suruliz,140G. Susinno,37a,37bM. R. Sutton,150Y. Suzuki,65M. Svatos,126S. Swedish,169M. Swiatlowski,144I. Sykora,145a

T. Sykora,128 D. Ta,89 K. Tackmann,42J. Taenzer,159A. Taffard,164R. Tafirout,160aN. Taiblum,154Y. Takahashi,102 H. Takai,25R. Takashima,68H. Takeda,66T. Takeshita,141Y. Takubo,65M. Talby,84A. A. Talyshev,108,gJ. Y. C. Tam,175

M. C. Tamsett,78,ii K. G. Tan,87J. Tanaka,156 R. Tanaka,116 S. Tanaka,132 S. Tanaka,65A. J. Tanasijczuk,143K. Tani,66 N. Tannoury,84S. Tapprogge,82S. Tarem,153 F. Tarrade,29G. F. Tartarelli,90aP. Tas,128M. Tasevsky,126 T. Tashiro,67 E. Tassi,37a,37b A. Tavares Delgado,125a,125bY. Tayalati,136dC. Taylor,77F. E. Taylor,93G. N. Taylor,87W. Taylor,160b F. A. Teischinger,30M. Teixeira Dias Castanheira,75P. Teixeira-Dias,76K. K. Temming,48H. Ten Kate,30P. K. Teng,152 S. Terada,65K. Terashi,156J. Terron,81S. Terzo,100M. Testa,47R. J. Teuscher,159,jJ. Therhaag,21T. Theveneaux-Pelzer,34

S. Thoma,48J. P. Thomas,18J. Thomas-Wilsker,76E. N. Thompson,35P. D. Thompson,18P. D. Thompson,159 A. S. Thompson,53L. A. Thomsen,36E. Thomson,121 M. Thomson,28W. M. Thong,87R. P. Thun,88,a F. Tian,35 M. J. Tibbetts,15T. Tic,126V. O. Tikhomirov,95,jj Yu. A. Tikhonov,108,gS. Timoshenko,97E. Tiouchichine,84P. Tipton,177 S. Tisserant,84T. Todorov,5S. Todorova-Nova,128B. Toggerson,164J. Tojo,69S. Tokár,145aK. Tokushuku,65K. Tollefson,89 L. Tomlinson,83M. Tomoto,102L. Tompkins,31K. Toms,104N. D. Topilin,64E. Torrence,115H. Torres,143E. Torró Pastor,168 J. Toth,84,dd F. Touchard,84D. R. Tovey,140 H. L. Tran,116 T. Trefzger,175 L. Tremblet,30A. Tricoli,30I. M. Trigger,160a S. Trincaz-Duvoid,79M. F. Tripiana,70N. Triplett,25W. Trischuk,159B. Trocmé,55C. Troncon,90aM. Trottier-McDonald,143

M. Trovatelli,135a,135bP. True,89 M. Trzebinski,39A. Trzupek,39C. Tsarouchas,30J.C-L. Tseng,119P. V. Tsiareshka,91 D. Tsionou,137G. Tsipolitis,10N. Tsirintanis,9S. Tsiskaridze,12V. Tsiskaridze,48E. G. Tskhadadze,51a I. I. Tsukerman,96

(14)

V. Tsulaia,15 J.-W. Tsung,21S. Tsuno,65D. Tsybychev,149 A. Tua,140A. Tudorache,26a V. Tudorache,26a A. N. Tuna,121 S. A. Tupputi,20a,20b S. Turchikhin,98,hh D. Turecek,127I. Turk Cakir,4dR. Turra,90a,90bP. M. Tuts,35A. Tykhonov,74 M. Tylmad,147a,147bM. Tyndel,130 K. Uchida,21I. Ueda,156R. Ueno,29M. Ughetto,84M. Ugland,14M. Uhlenbrock,21 F. Ukegawa,161 G. Unal,30A. Undrus,25G. Unel,164F. C. Ungaro,48Y. Unno,65D. Urbaniec,35 P. Urquijo,21G. Usai,8 A. Usanova,61L. Vacavant,84V. Vacek,127 B. Vachon,86N. Valencic,106S. Valentinetti,20a,20bA. Valero,168L. Valery,34 S. Valkar,128 E. Valladolid Gallego,168 S. Vallecorsa,49J. A. Valls Ferrer,168 R. Van Berg,121P. C. Van Der Deijl,106 R. van der Geer,106 H. van der Graaf,106R. Van Der Leeuw,106D. van der Ster,30 N. van Eldik,30P. van Gemmeren,6

J. Van Nieuwkoop,143I. van Vulpen,106 M. C. van Woerden,30M. Vanadia,133a,133bW. Vandelli,30A. Vaniachine,6 P. Vankov,42F. Vannucci,79G. Vardanyan,178R. Vari,133aE. W. Varnes,7 T. Varol,85 D. Varouchas,15A. Vartapetian,8

K. E. Varvell,151 V. I. Vassilakopoulos,56F. Vazeille,34T. Vazquez Schroeder,54J. Veatch,7 F. Veloso,125a,125c S. Veneziano,133aA. Ventura,72a,72bD. Ventura,85M. Venturi,48N. Venturi,159A. Venturini,23V. Vercesi,120aM. Verducci,139

W. Verkerke,106 J. C. Vermeulen,106A. Vest,44M. C. Vetterli,143,eO. Viazlo,80I. Vichou,166 T. Vickey,146c,kk O. E. Vickey Boeriu,146cG. H. A. Viehhauser,119S. Viel,169R. Vigne,30M. Villa,20a,20bM. Villaplana Perez,168E. Vilucchi,47 M. G. Vincter,29V. B. Vinogradov,64J. Virzi,15O. Vitells,173I. Vivarelli,150F. Vives Vaque,3S. Vlachos,10D. Vladoiu,99 M. Vlasak,127A. Vogel,21P. Vokac,127G. Volpi,47M. Volpi,87G. Volpini,90aH. von der Schmitt,100H. von Radziewski,48 E. von Toerne,21V. Vorobel,128 M. Vos,168 R. Voss,30J. H. Vossebeld,73N. Vranjes,137 M. Vranjes Milosavljevic,106

V. Vrba,126M. Vreeswijk,106 T. Vu Anh,48R. Vuillermet,30I. Vukotic,31Z. Vykydal,127 W. Wagner,176 P. Wagner,21 S. Wahrmund,44J. Wakabayashi,102 J. Walder,71R. Walker,99W. Walkowiak,142 R. Wall,177P. Waller,73B. Walsh,177 C. Wang,45H. Wang,15H. Wang,40J. Wang,42J. Wang,33aK. Wang,86R. Wang,104S. M. Wang,152T. Wang,21X. Wang,177

A. Warburton,86C. P. Ward,28D. R. Wardrope,77 M. Warsinsky,48A. Washbrook,46C. Wasicki,42I. Watanabe,66 P. M. Watkins,18A. T. Watson,18I. J. Watson,151M. F. Watson,18G. Watts,139S. Watts,83A. T. Waugh,151B. M. Waugh,77 S. Webb,83M. S. Weber,17S. W. Weber,175J. S. Webster,31A. R. Weidberg,119P. Weigell,100J. Weingarten,54C. Weiser,48 H. Weits,106P. S. Wells,30T. Wenaus,25D. Wendland,16Z. Weng,152,vT. Wengler,30S. Wenig,30N. Wermes,21M. Werner,48

P. Werner,30M. Wessels,58a J. Wetter,162K. Whalen,29 A. White,8 M. J. White,1 R. White,32b S. White,123a,123b D. Whiteson,164 D. Whittington,60D. Wicke,176F. J. Wickens,130W. Wiedenmann,174M. Wielers,80,dP. Wienemann,21 C. Wiglesworth,36L. A. M. Wiik-Fuchs,21P. A. Wijeratne,77A. Wildauer,100M. A. Wildt,42,llH. G. Wilkens,30J. Z. Will,99

H. H. Williams,121S. Williams,28W. Willis,35,aS. Willocq,85J. A. Wilson,18A. Wilson,88I. Wingerter-Seez,5 S. Winkelmann,48F. Winklmeier,115 M. Wittgen,144T. Wittig,43J. Wittkowski,99S. J. Wollstadt,82M. W. Wolter,39 H. Wolters,125a,125c W. C. Wong,41B. K. Wosiek,39J. Wotschack,30M. J. Woudstra,83K. W. Wozniak,39K. Wraight,53 M. Wright,53S. L. Wu,174X. Wu,49Y. Wu,88E. Wulf,35T. R. Wyatt,83B. M. Wynne,46S. Xella,36M. Xiao,137D. Xu,33a

L. Xu,33b,mm B. Yabsley,151 S. Yacoob,146b,nn M. Yamada,65H. Yamaguchi,156Y. Yamaguchi,156 A. Yamamoto,65 K. Yamamoto,63S. Yamamoto,156T. Yamamura,156T. Yamanaka,156K. Yamauchi,102Y. Yamazaki,66Z. Yan,22H. Yang,33e H. Yang,174U. K. Yang,83Y. Yang,110S. Yanush,92L. Yao,33aY. Yasu,65E. Yatsenko,42K. H. Yau Wong,21J. Ye,40S. Ye,25 A. L. Yen,57 E. Yildirim,42M. Yilmaz,4bR. Yoosoofmiya,124K. Yorita,172R. Yoshida,6K. Yoshihara,156 C. Young,144

C. J. S. Young,30S. Youssef,22D. R. Yu,15J. Yu,8J. M. Yu,88J. Yu,113L. Yuan,66 A. Yurkewicz,107B. Zabinski,39 R. Zaidan,62A. M. Zaitsev,129,aaA. Zaman,149S. Zambito,23L. Zanello,133a,133bD. Zanzi,100A. Zaytsev,25C. Zeitnitz,176

M. Zeman,127A. Zemla,38a K. Zengel,23O. Zenin,129 T.Ženiš,145aD. Zerwas,116 G. Zevi della Porta,57D. Zhang,88 H. Zhang,89J. Zhang,6 L. Zhang,152X. Zhang,33d Z. Zhang,116 Z. Zhao,33bA. Zhemchugov,64J. Zhong,119B. Zhou,88

L. Zhou,35N. Zhou,164 C. G. Zhu,33d H. Zhu,33a J. Zhu,88Y. Zhu,33b X. Zhuang,33a A. Zibell,99D. Zieminska,60 N. I. Zimine,64C. Zimmermann,82R. Zimmermann,21 S. Zimmermann,21S. Zimmermann,48Z. Zinonos,54

M. Ziolkowski,142R. Zitoun,5 G. Zobernig,174 A. Zoccoli,20a,20bM. zur Nedden,16G. Zurzolo,103a,103b V. Zutshi107 and L. Zwalinski30

(ATLAS Collaboration)

1School of Chemistry and Physics, University of Adelaide, Adelaide, Australia 2

Physics Department, SUNY Albany, Albany, New York, USA

3Department of Physics, University of Alberta, Edmonton, Alberta, Canada 4a

Department of Physics, Ankara University, Ankara, Turkey

Şekil

Figure 1 shows the E miss T distribution in the 8 TeV data sample after the dilepton mass requirement
FIG. 2 (color online). Distribution of E miss

Referanslar

Benzer Belgeler

Hiç kuşkusuz dünyamızın hızlı ilerleyişi içinde, in- sanı insan yapan birçok değer sürekli darbe alıp durmak- tadır. Bu, esasında insanın yaratılmış tabiatı ile kendi

Therefore, the present study aimed to investigate the response of common bean (Phaseolus vulgaris L. Volare) roots and leaves to salinity in different growth mediums (soil

On the leaf and stem taken from individual having the pine sac beetle, pigment (chlorophyll a, b and carotenoids) amounts obtained from the sections where the sacs of the

This study was conducted during 2007 and 2008 in the Eber Lake area (Afyon), which is a large wetland, and in a small reedbed in Behiçbey (Ankara).. The distance between the 2

Hemşirelerin sıklıkla karşılaştıkları tıbbi hatalar genel olarak; ilaç uygulama hataları, bakım standartlarını uygulamada ve izlemde yetersizlik, iletişimde

The Methods to be Used in Determination of Available Iron Status in Peach Grown Soils at the Bursa Plain.. Abstract: This research was performed to determine the methods to be used

Additionally, the importance of the planning Kı zı lcahamam - Sey Spa's as a contemporary cure center and it's application to answer thermal tourism expectations of Ankara citizen

Kuru ot verimi: Ara ştı rmadan elde edilen bu ğ daygil yembitkisi türlerinin kuru ot verimlerine ait ortalama de ğerler Çizelge 3'de verilmi ştir. Türlerin ortalamas ı na