• Sonuç bulunamadı

Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: enhanced water solubility and slow release of curcumin

N/A
N/A
Protected

Academic year: 2021

Share "Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: enhanced water solubility and slow release of curcumin"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Core-shell

nano

fibers

of

curcumin/cyclodextrin

inclusion

complex

and

polylactic

acid:

Enhanced

water

solubility

and

slow

release

of

curcumin

Zeynep

Aytac

a,b

,

Tamer

Uyar

a,b,

*

a

InstituteofMaterialsScience&Nanotechnology,BilkentUniversity,Ankara06800,Turkey

b

UNAM-NationalNanotechnologyResearchCenter,BilkentUniversity,Ankara06800,Turkey

ARTICLE INFO Articlehistory:

Received30November2016

Receivedinrevisedform24December2016 Accepted31December2016

Availableonline3January2017 Keywords: Electrospinning Core-shell Curcumin Hydroxypropyl-b-cyclodextrin Slowrelease Antioxidantactivity ABSTRACT

Core-shell nanofibers were designed via electrospinning using inclusion complex (IC) of model hydrophobicdrug(curcumin,CUR)withcyclodextrin(CD)inthecoreandpolymer(polylacticacid,PLA) intheshell(cCUR/HPbCD-IC-sPLA-NF).CD-ICofCURandHPbCDwasformedat1:2molarratio.The successfulformationofcore-shellnanofiberswasrevealedbyTEMandCLSMimages.cCUR/HPb CD-IC-sPLA-NFreleasedCURslowlybutmuchmoreintotalthanPLA-CUR-NFatpH1andpH7.4duetothe restrictionofCURinthecore ofnanofibers andsolubilityimprovement showninphase solubility diagram, respectively.ImprovedantioxidantactivityofcCUR/HPbCD-IC-sPLA-NFin methanol:water (1:1)isrelatedwiththesolubilityenhancementachievedinwaterbasedsystem.Theslowreactionof cCUR/HPbCD-IC-sPLA-NFinmethanolisassociatedwiththeshellinhibitingthequickreleaseofCUR.On theotherhand,cCUR/HPbCD-IC-sPLA-NFexhibitedslightlyhigherrateofantioxidantactivitythan PLA-CUR-NFinmethanol:water(1:1)owingtotheenhancedsolubility.Toconclude,slowreleaseofCURwas achievedbycore-shellnanofiberstructureandinclusioncomplexationofCURwithHPbCDprovideshigh solubility.Briefly,electrospinningofcore-shellnanofiberswithCD-ICcorecouldofferslowreleaseof drugsaswellassolubilityenhancementforhydrophobicdrugs.

©2017ElsevierB.V.Allrightsreserved.

1.Introduction

Curcumin(CUR) (Fig.1a) isa polyphenoland apartfromits usageasatherapeuticagent,itiswidelyemployedasaspice,food preservative,flavoringandcoloringagent(Aggarwaletal.,2003). Its common application for various diseases including cancer, cardiovascularandAlzheimer’sdisease,inflammatoryand neuro-logicaldisordersisowingtotheoutstandingbiologicalfunctions suchasantioxidant,anti-tumor,andanti-inflammatoryactivities ofCUR(Yallapuetal.,2015).But,italsoexhibitsdrawbackslikelow bioavailability,instabilitydependingonpH,insolubilityinwater, slow uptake by the cells and rapid metabolism inside thecell (Sivieroetal.,2015).Severalstrategiesweredevelopedpreviously toimprovepharmacokinetics,systemicbioavailability,and biolog-icalactivityofCUR(Sivieroetal.,2015).Amongthesestrategies, cyclodextrin(CD)inclusioncomplexes(ICs)isacommonlyapplied methodtoovercomethelimitationsofCUR.CDsarenontoxicand biodegradable cyclic oligosaccharides which are capable of

forming ICswith avariety ofmolecules toenhance solubility, bioavailability, andthermal stabilityof hydrophobicguest com-pounds; reduce the volatility of molecules with low thermal stability,mask off malodors/bittertastes,and controlrelease of activeagents (DelValle,2004;Hedges 1998;Szejtli,1998).The most commonCDsare

a

-CD,

b

-CD and

g

-CDwith6, 7, and 8 glucoseunits,respectively.Inaddition,chemicallymodifiedCDs including hydroxypropyl-beta-cyclodextrin(HP

b

CD) (Fig.1b) in which someof thehydroxyl groups in the

b

-CD structure are substituted with hydroxypropyl groups were also synthesized. HP

b

CDismoresuitableforthesolubilizationofhydrophobicdrugs duetoitsbetteraqueoussolubilitycomparedtonative

b

-CD(Del Valle,2004;Hedges1998;Szejtli, 1998).ICofCURandHP

b

CDwere studiedbeforeforseveralaimssuchasenhancingthesolubility andfluorescence(Bagloleetal.,2005),oralbioavailability(Bansal et al., 2011)of CUR; treating melanoma(Sunet al.,2014), and inflammatoryboweldisease(Yadavetal.,2009).

Nanofibers are quite appropriate to carry active agents including drugs, antioxidant, and antibacterial agents owingto highsurfacetovolumeratioandporousstructure(Agarwaletal., 2008).Furthermore,owing tothemorphological similarities of nanofibers with extracellular matrix, biomaterials for wound healingandscaffoldsfortissueengineeringcouldbedevelopedby

* Correspondingauthorat:InstituteofMaterialsScience&Nanotechnology, BilkentUniversity,Ankara06800,Turkey.

E-mailaddresses:tamer@unam.bilkent.edu.tr,tameruyar@gmail.com(T.Uyar).

http://dx.doi.org/10.1016/j.ijpharm.2016.12.061

0378-5173/©2017ElsevierB.V.Allrightsreserved.

ContentslistsavailableatScienceDirect

International

Journal

of

Pharmaceutics

(2)

usingnanofibers(Greinerand Wendorff, 2007; Wendorffet al., 2012). Recently, there has been significant interest on electro-spinningwhichisasimpleandcommontechniqueforproducing nanofibers(GreinerandWendorff,2007; Wendorffetal.,2012). Designflexibilityofelectrospunnanofibersfacilitatesthe encap-sulationofactiveagentsforbiomedicalapplications(Greinerand Wendorff,2007;Wendorffetal.,2012).CURloadedelectrospun nanofiberswerereportedpreviouslyintheliterature(Guoetal., 2011; Sampath et al., 2014; Suwantong et al., 2007).However, ratherthanloadingfreeactiveagentsintoelectrospunnanofibers, incorporatingtheir CD-ICs is advantageousin many aspects as previously reported in the studies of our group. For instance, volatilemoleculeswerehighlypreserved(Aytacetal.,2014;Kayaci etal.,2013a,2014;KayaciandUyar,2012;Uyaretal.,2009a,2009b, 2011)andthesolubilityofhydrophobicmoleculeswereimproved (Aytacetal.,2015,2016a,2016b;AytacandUyar,2016;Kayacietal., 2013b) by CD-IC incorporated nanofibers. Sun et al. (2013) published a study concerning CUR/CD-IC loaded electrospun nanofibers(Sunetal.,2013).FasterreleasewasseenfromCUR/ HP

b

CD-ICincorporatedpolyvinylalcohol(PVA)nanofibersthan CUR incorporated PVA nanofibers owing to the solubility enhancementanditisexpectedforCUR/HP

b

CD-ICincorporated PVA nanofibers to exhibit higher systemic bioavailability and enhanced in vivo efficacy. On the other hand, it is of great importanceforsomecompoundstobeprotectedagainstorganic solvents,encapsulatedin largeamountand releasedin a more controlledmanner.Duetotheflexibilityoftheset-up,nanofibers withdifferentmorphologiessuchascore-shell,alignedandhollow nanofiberscanbeobtainedviaelectrospinning(Ramakrishnaetal., 2005).Particularly, electrospinning of core-shellnanofibers has severaladvantagessuchaspossibilitytoelectrospunnanofibers from non-spinnable solutions (Sun et al., 2003), protecting sensitive active agents against harsh environment of organic solvents(Jiangetal.,2014),controllingthereleaseofactiveagents inamoreefficientwayduetothepresenceofshellactingasan additionallayer(Jiangetal.,2005),encapsulatingmorethanone drugatthesametime(Llorensetal.,2015),designingactiveagent containingnanofibersfortargetedrelease(Wangetal.,2015).In thestudyofLlorensetal.(2015),triclosanloadedpoly(ethylene glycol)andCURloadedpoly(butylenesuccinate)solutions were used as core or shell solutions at different compositions. The releaseof triclosanandCURwereinvestigatedin PBSand PBS/ ethanol(30:70, v/v).CUR couldnotbereleasedinPBSfromall

compositionsbecauseofitshighhydrophobicityandinteraction withpoly(butylenesuccinate);whereasitwascompletelyreleased in PBS/ethanol (30:70,v/v) (Llorens et al., 2015). Kumar et al. (2014)producedcore-shellnanofibersbyencapsulatingCURand 5-fluorouracilinthecoreandthen,bothcoreandshellpolymers was crosslinked in type I nanofibers; whereas only shell was crosslinkedintypeIInanofibers.But,crosslinkingofcoreandshell oronlyshelldidnotaffectthereleaserateandamountofCURin contrast to 5-fluorouracil(Kumar et al., 2014).In the studyof SedghiandShaabani(2016)core-shellpolymer-freecorestructure nanofiberswasproducedbyusingCURsolutionin thecoreand PVAandchitosanintheshell.AlthoughtheburstreleaseofCUR was prevented by core-shell nanofibers compared to blend nanofibers, core-shell nanofibers released less amount of CUR thanblendnanofibersduetothelowsolubilityofCURinaqueous solutions(SedghiandShaabani,2016).

Inthisstudy,core-shellnanofibersofCUR/HP

b

CD-IC(asacore) (Fig.1c)andpolylacticacid(PLA)(asashell)whichisanaliphatic polyester and widely used in biological applications due to its biodegradabilityand biocompatibilitywasproducedvia electro-spinning(cCUR/HP

b

CD-IC-sPLA-NF)(Fig.1d).Asacontrolsample, CURblendedwithPLAwasalsoelectrospunintonanofibers (PLA-CUR-NF).Themolarratioof theCUR:HP

b

CDinclusion complex was1:2andthephasesolubilitytestconfirmedthewatersolubility increase of CUR with the inclusion complexation. Core-shell morphologyofcCUR/HP

b

CD-IC-sPLA-NFwasconfirmedbyTEM andCLSMimaging.InvitroreleaseofCURfromPLA-CUR-NFand cCUR/HP

b

CD-IC-sPLA-NFwastestedin0.1NHCl(pH1),PBS(pH 7.4),methanol,andmethanol:water(1:1).Theantioxidantactivity of nanofibers wasinvestigatedby 2,2-diphenyl-1-picrylhydrazyl (DPPH)radicalscavengingassaywithrespecttoconcentrationand time.

2.Experimental 2.1.Materials

Polylacticacid(PLA)(Natureworks,productcode6252D)and hydroxypropyl-beta-cyclodextrin (HP

b

CD) (Wacker Chemie AG, Germany) was donated to our research group for laboratory studies.Curcumin(CUR,95%,AlfaAesar),zincacetatedehydrate (SigmaAldrich),fluoresceinisothiocyanate(FITC,SigmaAldrich), potassium phosphate monobasic (Sigma Aldrich), sodium

Fig.1.(a)ChemicalstructureofCUR,(b)chemicalstructureandschematicrepresentationofHPbCD;schematicrepresentationof(c)formationofCUR/HPbCD-IC,and(d) electrospinningofcore-shellnanofibersfromcCUR/HPbCD-IC-sPLAsolution.

(3)

phosphatedibasicheptahydrate(SigmaAldrich),sodiumchloride (SigmaAldrich),methanol(extrapure,SigmaAldrich),chloroform (CHCl3,extrapure,SigmaAldrich),deuterateddimethylsulfoxide

(DMSO-d6,deuterationdegreemin99.8%forNMRspectroscopy, Merck), hydrochloric acid (HCl, 36.5–38%, Sigma-Riedel), 2,2-diphenyl-1-picrylhydrazyl(DPPH,SigmaAldrich)werepurchased andusedas-receivedwithoutanyfurtherpurification. Distilled-deionized water was supplied from Milliporemilli-Q ultrapure watersystem.

2.2.Preparationofsolutionsforelectrospinning

Core-shellnanofibersofCUR/HP

b

CD-inclusioncomplex(CUR/ HP

b

CD-IC) as a core and PLA as a shell were produced via electrospinning (cCUR/HP

b

CD-IC-sPLA-NF). As control samples, pristinePLAnanofibers(PLA-NF)andCURblendedwithPLAwas also electrospun (PLA-CUR-NF). PLA solution was prepared by dissolvingPLA(15%,w/v)inCHCl3:Methanol(2:1)for3h.Inorder

to produce PLA-CUR-NF, PLA-CUR solution was prepared by dissolving3.33%CUR (w/w,withrespecttopolymer)in CHCl3:

Methanol(2:1),thenPLA(15%,w/v)wasaddedintothesolution. Thesolutionwasstirredatroomtemperature(RT)for3hpriorto electrospinning. For core-shell nanofibers, core solution was prepared by dissolving HP

b

CD in water and then adding CUR (CUR:HP

b

CD,1:2molarratio)and thecoresolutionwasstirred overnightatRT.Inaddition,PLA(15%,w/v)wasdissolvedinCHCl3:

Methanol (2:1) for 3hat RT to beused as shell solution.The compositions of the solutions used for the electrospinning of nanofibersaresummarizedinTableS1.

2.3.Electrospinning

PLA-NF and PLA-CUR-NF was produced by single-nozzle electrospinning. PLA and PLA-CURsolutions wereloaded sepa-ratelyinaplasticsyringe(innerdiameter:0.8mm)andmounted onasyringepump(WPI,SP101IZ).Then,thesolutionswerefedat arateof1mL/hand meanwhile15kVwas appliedfroma high voltage power supply (AU Series, Matsusada Precision Inc.). Nanofibers were deposited on a grounded cylindrical metal covered with aluminum foil at a distance of 10cm from the needle tip. In order to electrospun cCUR/HP

b

CD-IC-sPLA-NF, home-madecore-shellsetupwas used(Fig.1d).Core andshell solutionswereloadedinplasticsyringesmountedontwosyringe pumps.Thecoresolutionsentatarateof1mL/h,whereastheshell solutionwas sent at a rate of 3mL/h towardsto collector.The electrospinningofthenanofiberswas performedat25Cunder 18–20%relativehumidity.

2.4.Characterizationsandmeasurements

Phase solubility study was performed in aqueous solution according to the previously described method (Higuchi and Connors, 1965). Excess amount of CUR was added into the solutionscontainingvaryingamountofHP

b

CD(0–20mM).The suspensionswerestirredovernightatRTandspectrophotometric determinationwas doneat425nm(Varian,Cary100)after the filtrationofthesolutions.Themeasurementswerecarriedoutin triplicateandthephasediagramwasdrawnbyplottingthemolar concentrationofCURagainstthemolarconcentrationofHP

b

CD accordingtothecalibrationcurve.

CUR/HP

b

CD-ICwas formedaccordingtotheco-precipitation methodat1:2molarratio(CUR:HP

b

CD)andthefinalmolarratio of CUR/HP

b

CD-IC was confirmed by proton nuclear magnetic resonance (1H NMR) measurement. First of all, HP

b

CD was

dissolved in aqueous solution; then CUR was added and the solutionwasstirredfor12hatRT.Finally,thesolutionwasfiltrated

afterkeepingitinrefrigeratorfor6handdriedinhoodfor2days.

1

HNMRspectraofCUR,HP

b

CD,andCUR/HP

b

CD-ICdissolvedin DMSO-d6 were taken on Bruker DPX-400. The assignment of protonsofCURandHP

b

CDaredepictedinFig.S1.Then,themolar ratioofCURandHP

b

CDinCUR/HP

b

CD-ICwascalculatedbyusing theintegrationofthechemicalshifts(

d

)giveninpartspermillion (ppm)calculatedviaMestrenovasoftware.

Themorphological characterizationofcCUR/HP

b

CD-IC-sPLA-NF was performed by transmission electron microscopy (TEM, TecnaiG2F30),confocallaserscanningmicroscopy(CLSM,Zeiss LSM510),andscanningelectronmicroscopy(SEM,FEI–Quanta 200FEG).TheSEMimagingofPLA-CUR-NFasacontrolsamplewas alsoperformed.Thenanofibersamplesweresputteredwith5nm of Au/Pd (PECS-682) to avoid charging problem during SEM imaging. Thecalculationof averagefiberdiameter(AFD)ofthe nanofiberswasmadeonSEMimages(n100)andtheresultsare givenasaveragestandarddeviation.Fortheproofofcore-shell morphologyof cCUR/HP

b

CD-IC-sPLA-NF,zinc acetatedehydrate was added tothecoresolution(CUR/HP

b

CD-IC) and core-shell nanofiberswerecollectedonTEMgrids.ForCLSMimaging,FITC was addedtothecoresolution(CUR/HP

b

CD-IC) andnanofibers werecollectedonglassslides.

X-ray diffraction (XRD) was employed to investigate the crystallinestructureofCUR(powder),HP

b

CD(powder),PLA-NF, and cCUR/HP

b

CD-IC-sPLA-NF. XRD datawere recordedusing a PANalyticalX’PertpowderdiffractometerapplyingCuKradiation inthe2thetarangeof5–30.

ThermalpropertiesofCUR(powder),HP

b

CD(powder),PLA-NF, PLA-CUR-NF, and cCUR/HP

b

CD-IC-sPLA-NF were examined by thermal gravimetricanalysis(TGA,TAQ500,USA).Thesamples wereheatedupto500Cataconstantheatingrateof20C/min undernitrogenatmosphereforTGAmeasurement.

NanofibershavingequivalentamountofCURwasimmersedin 25mLof0.1MHCl(pH1),PBS(pH7.4),methanolandmethanol: water(1:1)atRTfor120,480,60,and600min,respectively.The cumulativeamountofCURreleasedfromPLA-CUR-NFandcCUR/ HP

b

CD-IC-sPLA-NFwasinvestigatedviaUVspectroscopyfor0.1M HCl (pH 1) and PBS (pH 7.4) and high performance liquid chromatography (HPLC, Agilient, 1200 series) equipped with VWD UV detector (425nm) for methanol and methanol:water (1:1).0.5mLofsolutionwaswithdrawn atpredeterminedtime intervalsandanequalamountoffreshmediumwasrefilledfor HPLC measurement. The separation was accomplished by C18 column(Inertisil,columndimension:4.6mm50mm,particlesize: 5

m

m)operatingat 1mL/min usingmethanolas aneluent. The calibrationcurveswereobtainedtoconvertabsorbanceandarea valuesobtainedfromUVspectroscopyandHPLCtoconcentration (ppm). The experiments were performed in triplicate and the results were reported as averagestandard deviation. The morphologyofnanofiberswasalsoevaluatedafterimmersionof nanofibersinto0.1MHCl(pH1)andPBS(pH7.4).

According to 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavengingassay,antioxidantactivityofPLA-CUR-NFandcCUR/ HP

b

CD-IC-sPLA-NFweretesteddependingonconcentrationand time. Concentration dependent antioxidant activity tests were donebyimmersingnanofibershavingequivalentamountofCURin methanol(for60min)andmethanol:water(1:1)(for600min)as decidedfromreleasetests.Thedilutionofthesolutionsweredone inmethanolandmethanol:water(1:1),respectively.Then,1mLof thosesolutionsweremixedwith2mLof10 4DPPHpreparedin methanol.AfterincubationofthesolutionsindarkatRTfor60min, absorbanceofthesolutionswasdeterminedbyUVspectroscopy (Varian, Cary 100) at 517nm. In order tocalculate antioxidant activity(%),theabsorbanceofDPPHwasdefinedas100%andthe antioxidant activity (%) was calculated based on the following equation:

(4)

Antioxidantactivity(%)=(Acontrol Asample)/Acontrol100 (1)

where Acontrol and Asample represent the absorbance values of

control DPPH solution and DPPH solution with nanofibers, respectively. Efficient concentration (EC50) was defined as the amount of antioxidant molecule necessary to decrease DPPH concentration by 50% (Brand-Williams et al., 1995). For time dependenttests,nanofiberswithequivalentamountofCURwere immersedinmethanol(for60min)andmethanol:water(1:1)(for 600min)and1mLofthosesolutionsweremixedwith2mLof10 4 DPPHpreparedinmethanol.Then,themixtureswereincubatedin dark at RT for 60min. The absorbance of the solutions was measuredbyUVspectroscopyat517nm.

3.Resultsanddiscussion 3.1.Phasesolubilitystudies

PhasesolubilitydiagramforCUR:HP

b

CDsystem isshownin Fig.2.TheinsetphotographsgiveninFig.2presentedthechangeof transparentcolorofthesolutiontoyellowastheconcentrationof dissolved CUR increased. Solubility study was performed with increasingamountofCDinaqueoussolutionatRT.Thesolubilityof CURenhancedlinearlyupto16mMofHP

b

CD,beyondthatpoint thecurvedeviates ina positivedirectionfromlinearity.So,the solubilitycurve of CUR:HP

b

CD system is classified as Ap type

(BrewsterandLoftsson,2007;Takahashietal.,2012).Aptypephase

solubility diagram suggests the formation of higher order complexeswithrespecttoCDathigherconcentrationofHP

b

CD (CUR:HP

b

CD, 1:>1) as well (Brewster and Loftsson, 2007; Takahashietal.,2012).Therefore,thisresultisinagreementwith theinitiallyusedmolarratiowhichis1:2(CUR:HP

b

CD)andthisis alsoconfirmedwiththeproton nuclearmagneticresonance(1H NMR)resultasdiscussedindetailbelow.

3.2.Themolarratioofinclusioncomplex

The molar ratio of 1:2 (CUR:HP

b

CD) was used for the preparation of inclusion complex between the guest molecule (CUR)andthehostmolecule(HP

b

CD).OncetheCUR/HP

b

CD-ICis formed,wecheckedthetruemolarratio ofCUR:HP

b

CD inthe sampleby1HNMR(Fig.S1inSupplementarymaterial).Forthe

analyses, CUR, HP

b

CD, and CUR/HP

b

CD-IC was dissolved in DMSO-d6andthen1HNMR spectrawererecorded.The

assign-mentof protons of CUR and HP

b

CD aredepicted in Fig.S1 in Supplementarymaterial.ThemolarratioofCURtoHP

b

CD was calculatedas1:2bytakingtheintegrationofCURpeakat6ppm andHP

b

CDpeakat1ppm.Therefore,itwasconcludedthatthe

initialamountofCURandHP

b

CD(1:2)waspreservedperfectly aftertheinclusioncomplexationprocess.

3.3.Morphologyanalysesofnanofibers

Transmission electron microscopy (TEM) and confocal laser scanningmicroscopy(CLSM)imagesofcCUR/HP

b

CD-IC-sPLA-NF areshowninFig.3aand3b.Bothoftheimagesconfirmedthe core-shellstructureofnanofibers.ThemorphologyofPLA-CUR-NFand cCUR/HP

b

CD-IC-sPLA-NF was further examined by scanning electron microscopy (SEM) Fig. 4a-b. AFD of nanofibers were determinedas 780375nm and 695280nm,respectively. As seen from the photographs given in Fig. 4c–d, both of the nanofibershaveyellowcolorbuttheshadeof thenanofibersis obviouslydifferentfromeachother.Thereasonofthepaleyellow colorofcCUR/HP

b

CD-IC-sPLA-NFisbecausetheCUR/HP

b

CD-ICis coveredwiththePLAlayerasashellinthissample.

3.4.Crystallinestructureofthenanofibers

Thecrystallinestructure ofCUR, HP

b

CD, PLA-NF, andcCUR/ HP

b

CD-IC-sPLA-NFwereinvestigatedviaX-raydiffraction(XRD) (Fig. S2). CUR is a crystalline molecule, whereas HP

b

CD is amorphous moleculeas seen from the diffraction patterns. As seenfromthediffractionpattern,cCUR/HP

b

CD-IC-sPLA-NFdidnot showcrystallinepeaksofCUR.TheCUR/HP

b

CD-ICisloadedinthe fibermatrixasacoreanditisexpectedthatCURwouldpreserveits crystallinephaseifthereisnotrueinclusioncomplexationwith theHP

b

CD.Itiswellknownthatonceinclusioncomplexisformed, guestmoleculesareseparatedfromeachotherbythecavityofthe CDmoleculeandthereforecannotformcrystals(Giordanoetal., 2001).Here, theabsence ofcrystalline peaksof CUR forcCUR/ HP

b

CD-IC-sPLA-NF sample suggested that the true inclusion complexationbetweenCURandHP

b

CDwaspreservedevenafter theelectrospinningprocess.

3.5.Thermalanalysesofnanofibers

Thermalgravimetric analysis(TGA) ofCUR, HP

b

CD, PLA-NF, PLA-CUR-NF,andcCUR/HP

b

CD-IC-sPLA-NFaregiveninFig.S3.The thermal degradation of CUR started at around 200C. Native HP

b

CDexhibiteditsmaindegradationwithaweightlossinthe temperaturerangefrom290Cto425C.Theweightlossof PLA-NFisobservedbetween200Cand375Candcorrespondstothe degradationofPLA.TheweightlossinTGAthermogramsof PLA-CUR-NFandcCUR/HP

b

CD-IC-sPLA-NFisseenbetween215–375C and 215–425C, respectively. So, the thermal stability of CUR slightly improved in PLA-CUR-NFand cCUR/HP

b

CD-IC-sPLA-NF. BecauseoftheoverlappinginthethermaldegradationofCUR,PLA, and HP

b

CD, the amount of CUR in nanofibers could not be determinedfromTGAdata.

Fig.2.PhasesolubilitydiagramofCUR/HPbCDsysteminwater.Insetphotographs showthechangeofthesolutioncolorwithincreasingHPbCDconcentration(0–

(5)

3.6.invitroreleasestudy

ThepHdependentreleaseofCURfromPLA-CUR-NFandcCUR/ HP

b

CD-IC-sPLA-NF were investigated in 0.1M HCl (pH 1, simulated gastric fluid) and PBS (pH 7.4, simulated intestinal fluid)atRT(Fig.5a–b).HigheramountofCURreleasedfrombothof thenanofibersatpH1comparedtopH7.4.SinceCURisknownto existincationic,neutraloranionicformsdependingonpHand theseformsinfluencethesolubilityof CUR.Hence,whenpHis acidic,CURreleasesreadilyfromthenanofibersduetoincreased solubility when it is in cationic form (Massaro et al., 2016). Moreover,therateofreleasefromcCUR/HP

b

CD-IC-sPLA-NFwas slowercomparedtoPLA-CUR-NFattheinitialstepatbothpH1and pH7.4owingtoshellstructureincCUR/HP

b

CD-IC-sPLA-NF.Onthe other hand, CUR released from cCUR/HP

b

CD-IC-sPLA-NF was muchmore intotalthan PLA-CUR-NFat pH1 andpH7.4 most probablydue to thesolubilityenhancement of CUR byHP

b

CD inclusioncomplexationasshowninFig.2.Afterinvitrorelease test,possibilityoffibermatrixdegradationwasinvestigatedbythe morphology change in SEM images (Fig. S4 in Supplementary material).If nanofiber matrix undergoes degradation overtime, erosionbasedrelease mechanism is anticipated. However,SEM images clearly showed that PLA-CUR-NF and cCUR/HP

b

CD-IC-sPLA-NF samples preserved their fibrous structure during the releaseperiod,andtherefore,inourcasethereleasemechanismis diffusionbased.

ThereleaseofCURwasevaluatedinmethanolandmethanol: water(1:1)aswell(Fig.6a–b).PLA-CUR-NFreleasedmuchmore CUR in methanol; whereas cCUR/HP

b

CD-IC-sPLA-NF released slightlymoreamountofCURinmethanol:water(1:1)comparative toitscounterpart.ThisislikelyduetothehighsolubilityofCURin methanolwhenitisinfreeformandenhancedwatersolubilityof CURinmethanol:water(1:1)whenitisformedanICwithHP

b

CD.

Fig.4.SEMimageofelectrospunnanofibersobtainedfromthesolutionsof(a)PLA-CURand(b)cCUR/HPbCD-IC-sPLA;thephotographsof(c)PLA-CUR-NFand(d)cCUR/ HPbCD-IC-sPLA-NF.

Fig.5. ThecumulativereleaseofCURfromPLA-CUR-NFandcCUR/HPb CD-IC-sPLA-NFinto(a)pH1and(b)pH7.4(n=3).Theerrorbarsinthefigurerepresentthe standarddeviation(SD).

(6)

3.7.Antioxidantactivity

Thereductionofchronicdiseases,DNAdamage,mutagenesis, carcinogenesis, and inhibition pathogenic bacterial growth is mostly related with the free radical scavenging ability of antioxidant compounds (Ak and Gulcin, 2008). Antioxidant activityofmoleculesisoftenduetothepresenceofthephenolic hydrogenin theirstructure, butsince CUR’s phenolic hydrogen atoms are intramolecularly hydrogen-bonded to the methoxy groups,hydrogenabstractionfromphenolicringofCURisdifficult (Gulcin,2012).However,abstractionofhydrogenfromthecarbon atom which is in the heptadienone linkage between the two methoxyphenolringsisrelativelyeasierandthisabstractionisthe mainreasonofantioxidantactivityofCUR(Gulcin,2012).

AntioxidantactivityofPLA-CUR-NFandcCUR/HP

b

CD-IC-sPLA-NF was tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) with respecttoconcentrationandtimefirstlybyextractingCURfrom nanofibersinmethanolormethanol:water(1:1)(Figs.7and8).For methanol,PLA-CUR-NFandcCUR/HP

b

CD-IC-sPLA-NFhas442– 950%and341–943%antioxidantactivityinthe concentra-tion range of 5–160ppm, respectively (Fig. 7a). According to concentrationdependenttestmadeinmethanol,efficient concen-tration50(EC50)wasdeterminedbetween5and10ppmand20– 40ppmforPLA-CUR-NFandcCUR/HP

b

CD-IC-sPLA-NF, respective-ly.LowerEC50showshigherfreeradicalscavengingcapabilityof PLA-CUR-NF.Thisresultisalsoconsistentwiththereleasestudy madeinmethanolinwhichPLA-CUR-NFreleasedhigheramountof CURcomparedtocCUR/HP

b

CD-IC-sPLA-NF.Thevisual investiga-tionoftheresultingsolutionsalsoshowsthecoherencewiththe calculated antioxidant activities (Fig. 7b). For instance, cCUR/ HP

b

CD-IC-sPLA-NFexhibited341%ofantioxidantactivityand thecolorofthesolutionwaspurple;when943%ofantioxidant activitywasseen,thecolorofthesolutionbecameyellow.

Timedependentantioxidantactivityofnanofibersfromwhich methanol was used to extract CUR was evaluated for 60min (Fig. 7c). PLA-CUR-NF has reached its maximum antioxidant activity in 2min (931%); whereas cCUR/HP

b

CD-IC-sPLA-NF showsitsmaximumantioxidantactivity(843%)in15min.The slowantioxidantactivityofcCUR/HP

b

CD-IC-sPLA-NFascompared

toPLA-CUR-NFisduetothepresenceofanadditionalhydrophobic barrier(shell)delayingtheaccessofwateranddissolutionofCUR. TheantioxidantactivityofPLA-CUR-NFandcCUR/HP

b

CD-IC-sPLA-NFextractedusingmethanol:water(1:1)wascalculatedas 443–891% and 391–923% in the range of 5–160ppm,

Fig.6. ThecumulativereleaseofCURfromPLA-CUR-NFandcCUR/HPbCD-IC-sPLA-NFinto(a)methanoland(b)methanol:water(1:1)(n=3).Theerrorbarsinthefigure representthestandarddeviation(SD).

Fig.7.(a)ConcentrationdependentantioxidantactivityofPLA-CUR-NFandcCUR/ HPbCD-IC-sPLA-NF(methanol),(b)thephotographsofthesolutionswithrespectto concentration;(c)timedependentantioxidantactivityofPLA-CUR-NFandcCUR/ HPbCD-IC-sPLA-NF(methanol).

(7)

respectively (Fig. 8a). EC50 for both PLA-CUR-NF and cCUR/ HP

b

CD-IC-sPLA-NFwasdecidedtobeslightlyhigherthan20ppm. So, cCUR/HP

b

CD-IC-sPLA-NFexhibitedquite similarantioxidant capability withPLA-CUR-NF. Thisresult is compatiblewith the releasestudy;thus,whenthesolubilityofCURwasenhancedby complexation, cCUR/HP

b

CD-IC-sPLA-NF exhibited antioxidant activityquite well.Thephotographs of each solutionshow the changeofpurpletoyellowcolorwiththeincreasingconcentration ofCUR(Fig.8b).

TimedependentantioxidantactivityofPLA-CUR-NFandcCUR/ HP

b

CD-IC-sPLA-NF was measured for 60min and antioxidant activitiesweredecidedas782%and872%forPLA-CUR-NFand whereas cCUR/HP

b

CD-IC-sPLA-NF, respectively (Fig. 8c). The maximumantioxidantactivityofPLA-CUR-NFandcCUR/HP

b

CD-IC-sPLA-NFwereobtainedin15min(742%)and8min(814%), respectively. This result indicated relatively quick antioxidant activityof cCUR/HP

b

CD-IC-sPLA-NFin methanol:water (1:1) in comparisonwithmethanolowingtothegreatersolubilityofCUR inwaterbasedsystem.

4.Conclusions

Core-shell nanofibers were produced using cyclodextrin-inclusioncomplex(CD-IC)ofamodelhydrophobicdrug(curcumin, CUR)in the coreand polylactic acid(PLA) in the shell (cCUR/ HP

b

CD-IC-sPLA-NF)byelectrospinning.CURreleasedfromcCUR/ HP

b

CD-IC-sPLA-NFwasmuchmorethanPLA-CUR-NFatpH1and pH7.4mostprobablyduetothesolubilityenhancementasshown inphasesolubilitydiagram.Inaddition,duetothepresenceofa shelllayerCURreleasedslowerfromcCUR/HP

b

CD-IC-sPLA-NFas comparedtoPLA-CUR-NF.Efficientconcentration50(EC50)was

lower for cCUR/HP

b

CD-IC-sPLA-NF in methanol:water than in methanol since inclusion complexation of CUR and HP

b

CD improvesthesolubilityofCURinaqueoussolution.Therelatively slowantioxidantactivityofcCUR/HP

b

CD-IC-sPLA-NFinmethanol islikelyduetotheadditionalpolymericbarrier(shell)delayingthe access of water; whereas slightly quick antioxidant activity is associatedwiththehighsolubilityofCUR/HP

b

CD-ICinmethanol: water(1:1).In short,drugdeliverysystemsbased oncore-shell nanofiberstructureinwhichhydrophobicdrugsareplacedinthe corestructureintheformofinclusioncomplexwithcyclodextrins couldprovideslowreleaseaswellashighwatersolubilityforsuch hydrophobicdrugs.

Acknowledgements

ThisworkwassupportedbyTheScientificandTechnological ResearchCouncilofTurkey(TUBITAK)-Turkey(Project#111M459). Dr. Uyar also acknowledgesThe Turkish Academy of Sciences-Outstanding Young Scientists Award Program (TUBA-GEBIP)-Turkeyforthepartialsupport.Z.AytacthankstoTUBITAK-BIDEB (2211-C)andTUBITAK(project#111M459)forthePhD scholar-ship.WeexpressourspecialthankstoDr.AnithaSenthamizhanfor herhelpintheconfocallaserscanningmicroscopyimaging. AppendixA.Supplementarydata

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j. ijpharm.2016.12.061.

References

Agarwal,S.,Wendorff,J.H.,Greiner,A.,2008.Useofelectrospinningtechniquefor biomedicalapplications.Polymer49(26),5603–5621.

Aggarwal,B.B.,Kumar,A.,Bharti,A.C.,2003.Anticancerpotentialofcurcumin: preclinicalandclinicalstudies.AnticancerRes.23(1A),363–398.

Ak,T.,Gulcin,I.,2008.Antioxidantandradicalscavengingpropertiesofcurcumin. Chem.Biol.Interact.174(1),27–37.

Aytac,Z.,Uyar,T.,2016.Antioxidantactivityandphotostabilityofa-tocopherol/

b-cyclodextrininclusioncomplexencapsulatedelectrospunpolycaprolactone nanofibers.Eur.Polym.J.79,140–149.

Aytac,Z.,Dogan,S.Y.,Tekinay,T.,Uyar,T.,2014.Releaseandantibacterialactivityof allylisothiocyanate/b-cyclodextrincomplexencapsulatedinelectrospun nanofibers.ColloidsSurf.B:Biointerfaces120,125–131.

Aytac,Z.,Sen,H.S.,Durgun,E.,Uyar,T.,2015.Sulfisoxazole/cyclodextrininclusion complexincorporatedinelectrospunhydroxypropylcellulosenanofibersas drugdeliverysystem.ColloidsSurf.B:Biointerfaces128,331–338.

Aytac,Z.,Kusku,S.I.,Durgun,E.,Uyar,T.,2016a.Encapsulationofgallicacid/ cyclodextrininclusioncomplexinelectrospunpolylacticacidnanofibers: releasebehaviorandantioxidantactivityofgallicacid.Mater.Sci.Eng.C63, 231–239.

Aytac,Z.,Kusku,S.I.,Durgun,E.,Uyar,T.,2016b.Quercetin/b-cyclodextrininclusion complexembeddednanofibres:slowreleaseandhighsolubility.FoodChem. 197,864–871.

Baglole,K.N.,Boland,P.G.,Wagner,B.D.,2005.Fluorescenceenhancementof curcuminuponinclusionintoparentandmodifiedcyclodextrins.J.Photochem. Photobiol.A:Chem.173(3),230–237.

Bansal,S.S.,Kausar,H.,Aqil,F.,Jeyabalan,J.,Vadhanam,M.V.,Gupta,R.C.,Ravoori,S., 2011.Curcuminimplantsforcontinuoussystemicdelivery:safetyand biocompatibility.DrugDeliv.Transl.Res.1(4),332–341.

Brand-Williams,W.,Cuvelier,M.E.,Berset,C.L.W.T.,1995.Useofafreeradical methodtoevaluateantioxidantactivity.LWT-FoodSci.Technol.28(1),25–30.

Brewster,M.E.,Loftsson,T.,2007.Cyclodextrinsaspharmaceuticalsolubilizers.Adv. DrugDeliv.Rev.59(7),645–666.

DelValle,E.M.,2004.Cyclodextrinsandtheiruses:areview.ProcessBiochem.39 (9),1033–1046.

Giordano,F.,Novak,C.,Moyano,J.R.,2001.Thermalanalysisofcyclodextrinsand theirinclusioncompounds.Thermochim.Acta380(2),123–151.

Greiner,A.,Wendorff,J.H.,2007.Electrospinning:afascinatingmethodforthe preparationofultrathinfibers.Angew.Chem.Int.Ed.46(30),5670–5703.

Gulcin,I.,2012.Antioxidantactivityoffoodconstituents:anoverview.Arch.Toxicol. 86(3),345–391.

Guo,G.,Fu,S.,Zhou,L.,Liang,H.,Fan,M.,Luo,F.,Qian,Z.,Wei,Y.,2011.Preparationof curcuminloadedpoly(e-caprolactone)-poly(ethyleneglycol)-poly (e-caprolactone)nanofibersandtheirinvitroantitumoractivityagainstGlioma 9Lcells.Nanoscale3(9),3825–3832.

Fig.8. (a)ConcentrationdependentantioxidantactivityofPLA-CUR-NFandcCUR/ HPbCD-IC-sPLA-NF(methanol:water,1:1),(b)thephotographsofthesolutions withrespecttoconcentration;(c)timedependentantioxidantactivityof PLA-CUR-NFandcCUR/HPbCD-IC-sPLA-NF(methanol:water,1:1).

(8)

Hedges,A.R., 1998.Industrialapplicationsofcyclodextrins.Chem.Rev.98(5),2035– 2044.

Higuchi,T.K.,Connors,A.,1965.Phase-solubilitytechniques.Adv.Anal.Chem. Instrum.4,117–212.

Jiang,H.,Hu,Y.,Li,Y.,Zhao,P.,Zhu,K.,Chen,W.,2005.Afaciletechniquetoprepare biodegradablecoaxialelectrospunnanofibersforcontrolledreleaseofbioactive agents.J.Control.Release108(2),237–243.

Jiang,H.,Wang,L.,Zhu,K.,2014.Coaxialelectrospinningforencapsulationand controlledreleaseoffragilewater-solublebioactiveagents.J.Control.Release 193,296–303.

Kayaci,F.,Uyar,T.,2012.Encapsulationofvanillin/cyclodextrininclusioncomplexin electrospunpolyvinylalcohol(PVA)nanowebs:prolongedshelf-lifeandhigh temperaturestabilityofvanillin.FoodChem.133(3),641–649.

Kayaci,F.,Ertas,Y.,Uyar,T.,2013a.Enhancedthermalstabilityofeugenolby cyclodextrininclusioncomplexencapsulatedinelectrospunpolymeric nanofibers.J.Agric.FoodChem.61(34),8156–8165.

Kayaci,F.,Umu,O.C.,Tekinay,T.,Uyar,T.,2013b.Antibacterialelectrospunpoly (lacticacid)(PLA)nanofibrouswebsincorporatingtriclosan/cyclodextrin inclusioncomplexes.J.Agric.FoodChem.61(16),3901–3908.

Kayaci,F.,Sen,H.S.,Durgun,E.,Uyar,T.,2014.Functionalelectrospunpolymeric nanofibersincorporatinggeraniol-cyclodextrininclusioncomplexes:high thermalstabilityandenhanceddurabilityofgeraniol.FoodRes.Int.62,424–431.

Kumar,S.U.,Matai,I.,Dubey,P.,Bhushan,B.,Sachdev,A.,Gopinath,P.,2014. Differentiallycross-linkablecore-shellnanofibersfortunabledeliveryof anticancerdrugs:synthesis,characterizationandtheiranticancerefficacy.RSC Adv.4(72),38263–38272.

Llorens,E.,Ibañez,H.,DelValle,L.J.,Puiggalí,J.,2015.Biocompatibilityanddrug releasebehaviorofscaffoldspreparedbycoaxialelectrospinningofpoly (butylenesuccinate)andpolyethyleneglycol.Mater.Sci.Eng.C49,472–484.

Massaro,M.,Amorati,R.,Cavallaro,G.,Guernelli,S.,Lazzara,G.,Milioto,S.,Noto,R., Poma,P.,Riela,S.,2016.Directchemicalgraftedcurcuminonhalloysite nanotubesasdual-responsiveprodrugforpharmacologicalapplications. ColloidsSurf.B:Biointerfaces140,505–513.

Ramakrishna,S.,Fujihara,K.,Teo,W.E.,Lim,T.C.,Ma,Z.,2005.AnIntroductionto ElectrospinningandNanofibers,vol.90.WorldScientific,Singapore.

Sampath,M.,Lakra,R.,Korrapati,P.,Sengottuvelan,B.,2014.Curcuminloadedpoly (lactic-co-glycolic)acidnanofiberforthetreatmentofcarcinoma.ColloidsSurf. B:Biointerfaces117,128–134.

Sedghi,R.,Shaabani,A.,2016.Electrospunbiocompatiblecore/shellpolymer-free corestructurenanofiberswithsuperiorantimicrobialpotencyagainstmulti drugresistanceorganisms.Polymer101,151–157.

Siviero,A.,Gallo,E.,Maggini,V.,Gori,L.,Mugelli,A.,Firenzuoli,F.,Vannacci,A.,2015. Curcumin,agoldenspicewithalowbioavailability.J.Herb.Med.5(2),57–70.

Sun,Z.,Zussman,E.,Yarin,A.L.,Wendorff,J.H.,Greiner,A.,2003.Compound core-shellpolymernanofibersbyco-electrospinning.Adv.Mater.15(22),1929–1932.

Sun,X.Z.,Williams,G.R.,Hou,X.X.,Zhu,L.M.,2013.Electrospuncurcumin-loaded fiberswithpotentialbiomedicalapplications.Carbohydr.Polym.94(1),147– 153.

Sun,Y.,Du,L.,Liu,Y.,Li,X.,Li,M.,Jin,Y.,Qian,X.,2014.Transdermaldeliveryofthein situhydrogelsofcurcuminanditsinclusioncomplexesof

hydroxypropyl-b-cyclodextrinformelanomatreatment.Int.J.Pharm.469(1),31–39.

Suwantong,O.,Opanasopit,P.,Ruktanonchai,U.,Supaphol,P.,2007.Electrospun celluloseacetatefibermatscontainingcurcuminandreleasecharacteristicof theherbalsubstance.Polymer48(26),7546–7557.

Szejtli,J.,1998.Introductionandgeneraloverviewofcyclodextrinchemistry.Chem. Rev.98(5),1743–1754.

Takahashi,A.I.,Veiga,F.J.B.,Ferraz,H.G.,2012.Literaturereviewofcyclodextrins inclusioncomplexescharacterization–PartI:Phasesolubilitydiagram, dissolutionandscanningelectronmicroscopy.Int.J.Pharm.Sci.Rev.Res.12(1), 1–6.

Uyar,T.,Hacaloglu,J.,Besenbacher,F.,2009a.Electrospunpolystyrenefibers containinghightemperaturestablevolatilefragrance/flavorfacilitatedby cyclodextrininclusioncomplexes.React.Funct.Polym.69(3),145–150.

Uyar,T.,Nur,Y.,Hacaloglu,J.,Besenbacher,F.,2009b.Electrospinningoffunctional poly(methylmethacrylate)nanofiberscontainingcyclodextrin-menthol inclusioncomplexes.Nanotechnology20(12),125703.

Uyar,T.,Hacaloglu,J.,Besenbacher,F.,2011.Electrospunpolyethyleneoxide(PEO) nanofiberscontainingcyclodextrininclusioncomplex.J.Nanosci.Nanotechnol. 11(5),3949–3958.

Wang,X.,Yu,D.G.,Li,X.Y.,Bligh,S.A.,Williams,G.R.,2015.Electrospunmedicated shellacnanofibersforcolon-targeteddrugdelivery.Int.J.Pharm.490(1),384– 390.

Wendorff,J.H.,Agarwal,S.,Greiner,A.,2012.Electrospinning:Materials,Processing, andApplications.JohnWiley&Sons,Weinheim.

Yadav,V.R.,Suresh,S.,Devi,K.,Yadav,S.,2009.Effectofcyclodextrincomplexationof curcuminonitssolubilityandantiangiogenicandanti-inflammatoryactivityin ratcolitismodel.AAPSPharmSciTech.10(3),752–762.

Yallapu,M.M.,Nagesh,P.K.B.,Jaggi,M.,Chauhan,S.C.,2015.Therapeuticapplications ofcurcuminnanoformulations.AAPSJ.17(6),1341–1356.

Şekil

Fig. 2. Phase solubility diagram of CUR/HP b CD system in water. Inset photographs show the change of the solution color with increasing HP b CD concentration (0–
Fig. 4. SEM image of electrospun nanofibers obtained from the solutions of (a) PLA-CUR and (b) cCUR/HP b CD-IC-sPLA; the photographs of (c) PLA-CUR-NF and (d) cCUR/
Fig. 7. (a) Concentration dependent antioxidant activity of PLA-CUR-NF and cCUR/
Fig. 8. (a) Concentration dependent antioxidant activity of PLA-CUR-NF and cCUR/

Referanslar

Benzer Belgeler

No Arcobacter was isolated when the de Boer method was used for minced meat samples but the same five meat samples were found positive for arcobacters when CAT-supplemented media

Bingöl ekolojik koĢullarında bir yıllık olarak yürütülen ve 8 adet nohut çeĢidinin verim ve verim komponentleri yönünden denendiği çalıĢmada ele alınan

In this study, our population (F 1001) samples should be classified as a separate and new species called Veronica edremitense.. We believe that this work will

Recently, Gurler (1996) studied a non- parametric estimator for the bivariate distribution function when a component is subject to left truncation; this study..

Given a directed graph G(V, E) with vertex set V and directed edge set E representing the users and the connections, respectively, of the social network, and the number of

First, a generic Cramer- Rao lower bound (CRLB) expression is obtained in the case of unknown channel coefficients and carrier-frequency offsets (CFOs) for cognitive radio systems

We propose GOOWE-ML (Geometrically Optimum Online Weighted Ensemble for Multi-Label Classification): a batch-incremental (chunk-based) and dynamically-weighted online ensemble that

in the field of vapor sensing properties, the kinetic response of the LB sample to the benzene, toluene, isopropyl alcohol, ethyl alcohol and chloroform vapors was recorded by