• Sonuç bulunamadı

Analytical solutions of the klein - gordon equation with the woods-saxon potential for arbitrary l - state

N/A
N/A
Protected

Academic year: 2021

Share "Analytical solutions of the klein - gordon equation with the woods-saxon potential for arbitrary l - state"

Copied!
14
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ANALYTICAL SOLUTIONS OF THE

KLEYN-GORDON EQUATION WITH THE

WOODS-SAXON POTENTIAL FOR

ARBITRARY - STATE

l

V.H.Badalov, H.I.Ahmadov, S.V.Badalov

.

(2)

r

n

In the paper the analytical solution of the Klein

Gordon equation for the Woods - Saxon potential is presented. In our calculations we have applied the Nikiforov - Uvarov method by using the

Pekeris approximation to the centrifugal potential for arbitrary states. The exact bound state

energy eigenvalues and the corresponding

eigenfunctions are obtained for a particle bound on the various values of the quantum numbers and .

l

(3)

0

V

• The Woods-Saxon potential [9] is defined by • (1)

• where is the potential depth, is the width of the potential or the nuclear radius and the

parameter is the thickness of the superficial layer inside of which the potential falls from

value outside of a nucleus up to value inside a nucleus. ) ( 1 ) ( 0 0 0 a R e V r V a R r     0 R a 0  V V  V0

(4)

) 0 ( , 0 ) ( ) 1 ( ) ( 2 ) ( 2 2 2 4 2 0 2 2 2                  R r r r l l c c m V E dr r dR r dr r R d

where is the angular momentum quantum number. After introducing the new function , Eq.(2) takes the form

) ( ) (r rR r ul

0 ) ( ) 1 ( ) ( 2 2 2 4 2 0 2 2 2              u r r l l c c m V E dr r u d

The radial part of the Klein-Gordon equation [11] with Woods-Saxon potential is

(2)

(5)

2 2 2 1 2 0 48 48 8 12 4 1

      , C , C C

            1 2 2 0 1 1 x x l e C e C C ) r ( V~   

According to the Pekeris approximation, we shall replace potential 2 0 2 2 ) 1 ( ) ( r m l l r Vl    with expression

In order to define the constants and ,we also expand this potential in the Taylor series around the point

1 0 ,C C C2 ) ( 0 r R0 x  

(6)

• we obtain

(1 )

( ) 0 , (0 1) ) ( ) 1 ( 2 1 ) ( 2 2 2 2 2              u z z z z z z z u z z z z u    1 0 1             a R r e z where

2 0 2 2 2 4 2 0 2 2 ( 1)   l l C c a c m E       2 1 2 2 2 0 2 2 ( 1)   l l C c a EV    2 2 2 2 2 2 0 2 ( 1)   l l C c a V      (4)

(7)

2

1

4

)

1

(

192

1

0

2 2 2 2 0 4 0 4

c

a

V

R

l

l

a

n

r

2 0 0

1

3

4

0

R

)

l

(

l

ca

V

For the bound states 2 4 , we get

0 2 m c E

(5)

(8)

• The exact energy eigenvalues of the Klein-Gordon equation with the Woods-Saxon potential are

derived as                                                                                        2 2 2 2 0 2 2 2 2 2 0 4 0 4 2 2 2 2 0 4 0 4 0 2 2 2 2 0 2 2 2 2 2 0 4 0 4 3 0 3 0 4 1 2 4 ) 1 ( 192 1 1 2 4 ) 1 ( 192 1 2 1 4 1 2 4 ) 1 ( 192 1 ) 1 ( 32 1 2 c a V n c a V R l l a n c a V R l l a V c c a V n c a V R l l a R l l a V E r r r l nr      

(9)

. 16 ) 1 ( 32 4 1 2 4 ) 1 ( 192 1 12 4 1 ) 1 ( 2 1 2 2 2 3 0 3 2 2 2 2 0 2 2 2 2 2 0 4 0 4 2 0 2 0 2 0 2 2 2 0                                                   a R l l a c a V n c a V R l l a R a R a R l l c m r     0  l nr 0

If the conditions (5) and (6) are satisfied

simultaneously, the bound states exist. From Eq.(5) is seen that if , then one gets . Hence, the

Klein-Gordon equation for the standard Woods-Saxon potential with zero angular momentum has not bound states.

(10)

0

R

According to Eq.(7) the energy eigenvalues depend on the depth of the potential the width of the potential , and the surface thickness . Any energy eigenvalue must be less than . If constraints imposed on , and are satisfied, the bound states appear. From Eq.(6) is seen that the potential depth increases when the parameter increases, but the parameter

is decreasing and vice versa. Therefore, one can say that the bound states exist within this potential. Thus, the energy spectrum Eq.(7) are limited, i.e. we have only the finite number of energy eigenvalues.

0 V 0 V

a

r n V0 l nr E a R0

(11)

The corresponding radial wave functions are given by expressions

) (z unrl

)

z

(

P

)

z

(

z

C

)

z

(

u

n l n l n( , ) r r r

1

1

2

2 2 2 2 2 2 2 2

       

where is the Jacobi polynomials

and are the normalization constants determined using constraint. ) 2 1 ( ) 2 , 2 ( 2 2 2 z P r n      

( )

1 0 2

dr r unrl l nr C

 

    n nn n ) , ( n z ( z ) dz d ) z ( z ! n ) z ( P 1 2 1 1 1

(12)

REFERENCES

• [1] F. Cooper, A. Khare and U. Sukhatme, Supersymmetry and Quantum Mechanics, Phys. Rep. 251, 267 (1995).

• [2] D. A. Morales, Sypersymmetric improvement of the Pekeris approximation for the rotating Morse potential, Chem. Phys.

Letters, 394, 68 (2004).

• [3] C. L. Pekeris, The rotation-vibration coupling in diaatomic molecules, Phys. Rev. 45, 98 (1934).

• [4] S. Flügge, Practical Quantum Mechanics, Springer, Berlin, vol. 1, 1994.

• [5] O. Bayrak and I. Boztosun, Arbitrary-state solutions of the rotating Morse potential by the asymptotic iteration

(13)

• [6] O. Bayrak, G. Kocak and I. Boztosun, Any - state solutions of the Hulten potential by the asymptotic

iteration method, J. Phys. A: Math. Gen. 39, 11521 (2006), (arxiv: math-ph / 0609010 V1).

• [7] S. M. Ikhdair and R. Sever, Exact Solution of the Klein - Gordon Equation for the PT – Symmetric

Generalized Woods-Saxon Potential by the Nikiforov - Uvarov method, arxiv: quant-ph /0610183, (2006).

• [8] H. Egrifes and R. Sever, Bound - state solutions of the Klein - Gordon equation for the generalized PT -

Symmetric Hulthen potential Int. J. Theo. Phys. 46, 935 (2007), (arxiv: quant-ph / 0609231).

• [9] R. D. Woods and D. S. Saxon, Diffuse surface

optical model for nucleon - nuclei scattering, Phys. Rev.

(14)

• [10] A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhäuser, Basel, 1988.

• [11] W. Greiner, Relativistic Quantum Mechanics, Springer, Berlin, 1990.

• [12] H. Bateman and A. Erdelyi, Higher

Transcendental functions, McGraw-Hill, New York,

Referanslar

Benzer Belgeler

Hah Müzesi’nin eski müdürü olan ve şu anda Kültür ve Arşiv Şube Müdürü olarak görev yapan Serpil Özçelik, Kilim Müzesi'nin geleceği ile ilgili şunları

沒多久就因為我行走的動作給扯破了,雨水順著裂縫往裡流,我的衣服都濕了,

臺北醫學大學今日北醫: 「選才與紮根:二十一世紀的醫師培育」研討會

Sürme yaşı tamamlandığı halde, normal okluzyonda yerini alamamış, kemik veya yumuşak doku içerisinde (bütünüyle veya kısmen) kalmış dişler, gömülü diş

Yine, döviz kuru değişkeninin üretici fiyatlarının varyansındaki değişimi açıklama gücü, tüketici fi- yatlarının varyansındaki değişimi açıklama gücünden

The total thiol content, native thiol and disulphide levels, disulphide/native thiol, disulphide/total thiol and native thiol/total thiol ratios were evaluated in the serum plasma

Çocukluk çağı cinsel istismar yaşantısı bulunan katılımcıların güvensiz bağlanma puanları, kaygılı bağlanma puanları ve kaçıngan bağlanma puanları çocukluk