• Sonuç bulunamadı

Başlık: Inverse spectral problems for discontinuous sturm-liouville operator with eigenparameter dependent boundary conditionsYazar(lar):KESKIN, Baki; OZKAN, A. Sinan; YALÇIN, NumanCilt: 60 Sayı: 1 Sayfa: 015-025 DOI: 10.1501/Commua1_0000000666 Yayın Tari

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: Inverse spectral problems for discontinuous sturm-liouville operator with eigenparameter dependent boundary conditionsYazar(lar):KESKIN, Baki; OZKAN, A. Sinan; YALÇIN, NumanCilt: 60 Sayı: 1 Sayfa: 015-025 DOI: 10.1501/Commua1_0000000666 Yayın Tari"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Vo lu m e 6 0 , N u m b e r 1 , P a g e s 1 5 — 2 5 ( 2 0 1 1 ) IS S N 1 3 0 3 — 5 9 9 1

INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER

DEPENDENT BOUNDARY CONDITIONS.

BAKI KESKIN, A. SINAN OZKAN AND NUMAN YALÇIN

A. In this study, Sturm—Liouville problem with discontinuities in the case when an eigenparameter linearly appears not only in the differential equa-tion but it also appears in both of the boundary condiequa-tions is investigated.

1. Introduction. Let us consider the boundary value problem L :

y := −y+ q(x)y = λy, x∈ (0, d) ∪ (d, π) (1) U (y) := λ(y(0) + h0y(0)) − h1y(0) − h2y(0) = 0 (2) V (y) := λ(y(π) + H0y(π)) − H1y(π) − H2y(π) = 0 (3)

y(d + 0) = αy(d − 0)

y(d + 0) = α−1y(d − 0) (4)

where α, d, hi, Hi, i = 0, 1, 2, are real numbers, α ∈ R+, ρ1 := h2− h0h1 > 0,

ρ2 := H0H1− H2 > 0, d ∈ (0, π) , q(x) is real valued functions in L2(0, π), λ is

spectral parameter.

Spectral problems for Sturm-Liouville operator with eigenvalue dependent bound-ary conditions were studied extensively. [2] and [3] are well known example for works with boundary conditions depend on eigenvalue parameter linearly. Moreover, [5], [16] and [18] are also interested in linearly conditions. Nonlinearly conditions were considered in [4], [7], [9]- [12] and [17]. These works have been on Hilbert and Pon-tryagin space formulations, expansion theory, direct and inverse spectral theory. In [2] and [20] an operator-theoretic formulation of the problems without discontinuity conditions (4) and with spectral parameter contained in only one of the boundary conditions has been given.

Received by the editors Nov. 22, 2010, Accepted: May 13, 2011. 2000 Mathematics Subject Classification. 34A55, 34B24, 34L05.

Key words and phrases. Inverse Problem, Weyl Function, Spectrum, Sturm-Liouville Operator.

c

2011 A nkara U niversity

(2)

Boundary value problems with discontinuities inside the interval are extensively studied ([6], [13]) These kinds of problems are often appear in mathematics, me-chanics, physics, geophysics and other branches of natural properties. Discontin-uous inverse problems also appear in electronics for constructing parameters of heterogeneous electronic lines with desirable technical characteristics [14],[24] and [19]. It must be noted that some special cases of the considered problem (1)—(4) arise after an application of the method of separation of variables to the varied as-sortment of physical problems. For example, some boundary-value problems with transmission conditions arise in heat and mass transfer problems (see, for example, [21]), in vibrating string problems when the string loaded additionally with point masses (see, for example, [22]) and in diffraction problems (see, for example, [23]). Inverse problem for discontinious Sturm-Liouville operator with Dirichlet condi-tions were given in [15]. In the present paper, not only differential equation, but also both of the boundary conditions of the problem L contain spectral parameter. In this case, inverse problem according to the Weyl functions [8] and the spectral data, i.e. (i): the sets of eigenvalues and norming constants; (ii): two different eigenvalues sets, is studied.

2. Operator Treatment.

Let the inner product in the Hilbert SpaceH = L2(0, π) ⊕ C2 be defined by F, G := π 0 F1(x)G1(x)dx + 1 ρ1F2G2+ 1 ρ2F3G3 for F = ⎛ ⎝ F1F(x)2 F3 ⎞ ⎠ , G = ⎛ ⎝ GG1(x)2 G3 ⎞ ⎠ ∈ H.

Define an operator T acting in H with the domain D(T ) = {F ∈ H : F1(x) and F1(x) are absolutely continuous in [0, d) ∪ (d, π], F1∈ L2(0, π), F1(d + 0) = αF1(d−0), F1(d+0) = α−1F1(d−0), F2= F1(0)+h0F1(0), F3= F1(π)+H0F1(π)} such that, T (F ) := ⎛ ⎝ −F  1(x) + q(x)F1(x) h1F1(0) + h2F1(0) H1F1(π) + H2F1(π) ⎞ ⎠ Theorem 2.1. The linear operator T is symmetric. Proof. Let F, G∈ D(T ). Since,

T F, G − F, T G = d 0 T F1(x)G1(x)dx + π d T F1(x)G1(x)dx +1 ρ1T F2G2+ 1 ρ2T F3G3− d 0 F1(x)T G1(x)dx − π d F1(x)T G1(x)dx

(3)

ρ1

1

F2T G2− 1 ρ2F3T G3

by two partial integration, we get T F, G − F, T G =−F 1(x)G1(x) + F1(x)G1(x)  |d 0+ |πd  +ρ1 1(h1F  1(0) + h2F1(0))  G1(0) + h0G1(0) −1 ρ1  h1G1(0) + h2G1(0) (F1(0) + h0F1(0)) +1 ρ2(H1F  1(π) + H2F1(π))  G1(π) + H0G1(π) −1 ρ2  H1G1(π) + H2G1(π) (F1(π) + H0F1(π))

Use the domain of the operator T and ρ1 > 0, ρ2 > 0 to see that, T F, G =

F, T G . So T is symmetric. 

Corollary 1. All eigenvalues of the operator T (or the problem L) are real and two eigenfunctions ϕ(x, λ1), ϕ(x, λ2) corresponding to different eigenvalues λ1 and

λ2 are orthogonal, i.e.,

π 0 ϕ(x, λ1)ϕ(x, λ2)dx +ρ1 1(ϕ (0, λ 1) + h0ϕ(0, λ1))  ϕ(0, λ2) + h0ϕ(0, λ2) +1 ρ2(ϕ (π, λ1) + H0ϕ(π, λ1))ϕ(π, λ2) + H0ϕ(π, λ2) = 0

Let us denote the solutions of (1) by ϕ(x, λ) and ψ(x, λ) satisfying the initial conditions  ϕ ϕ  (0, λ) =  −λ + h1 λh0− h2  ,  ψ ψ  (π, λ) =  −λ + H1 λH0− H2  (5)

respectively and the jump conditions (4). These solutions satisfy the relation ψ (x, λn) = βnϕ (x, λn) for any eigenvalue λn, where βn=

ψ(0, λn) + h0ψ (0, λn)

ρ1 .

Theorem 2.2. The following asymptotics hold for sufficienly large|k|

ϕ(x, k) k2 = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ − cos kx + O  1 |k|exp |τ | x  , x < d, −α+cos kx + αcos k(2d − x) + O 1 |k|exp |τ | x  , x > d (6)

(4)

ψ(x, k) k2 = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ −α+cos k(π − x) − αcos k(x + π − 2d) + +O  1 |k|exp |τ | (π − x)  , x < d, − cos k(π − x) + O  1 |k|exp |τ | (π − x)  , x > d (7) where, k =√λ, τ = Im k and α±= 1 2  α± 1 α  .

Proof. It is clear that the functions ϕ(x, k) and ψ(x, k) satisfy the following integral equations, ϕ(x, k) = −h2− k 2h 0 k sin kx + (h1− k 2) cos kx +1 k x 0 sin k(x − t)q(t)ϕ(t, k)dt x < d, ϕ(x, k) = −h2− k 2h 0 k (α +sin kx + αsin k(2d − x)) +(h1− k2)(α+cos kx + α−cos k(2d − x)) +1 k d 0 (α+sin k(x − t) − α−sin k(x + t − 2d))q(t)ϕ(t, k)dt +1 k x d sin k(x − t)q(t)ϕ(t, k)dt x > d. ψ(x, k) = H2− k 2h 0 k (α +sin k(π − x) + αsin k(x + π − 2d)) +(H1− k2)(α+cos k(π − x) − α−cos k(x + π − 2d)) +1 k π d (α+sin k(t − x) + α−sin k(x + t − 2d))q(t)ψ(t, k)dt +1 k d x sin k(t − x)q(t)ψ(t, k)dt x < d, ψ(x, k) = H2− k 2H0 k sin k(π − x) + (H1− k 2) cos k(π − x) +1 k π x sin k(t − x)q(t)ψ(t, k)dt x > d.

Since the proof of the equalities (6) and (7) are similar, let us prove only (7). Divide both sides of last integral equality by k2 and put

Ψ(0)(x, k) = H1− k 2

k2 (α

(5)

+H2− k 2H 0 k3 (α +sin k(π − x) + αsin k(x + π − 2d)) Ψ(n+1)(x, k) = k1 π d (α+sin k(t − x) + α−sin k(x + t − 2d))q(t)Ψ(n)(t, k)dt +1 k d x sin k(t − x)q(t)Ψ(n)(t, k)dt, n≥ 1.

If we use the Picard’s iteration method to above integral equations, we get |Ψ(x, k)| = ∞  n=0 Ψ(n)(x, k)   ≤ ∞  n=0 Ψ(n)(x, k) ≤C exp {Cσ(x)} , where C = (α++ |α−|)(|H0| + |H1| + |H2| + 1) , σ(x) = π x |q(t)| dt

Last inequality gives ψ(x, k) = Ok2exp |τ | (π − x). From this equality and

inte-gral equations of ψ(x, k), we get equality (7) 

3. Properties of Spectrum.

In the present section, properties of eigenvalues, eigenfunctions, and the resolvent operator of the problem L are investigated.

It is obvious that the characteristic function Δ(λ) of the problem L is as follows Δ(λ) = W (ϕ, ψ) = λ(ϕ(π, λ) + H0ϕ(π, λ)) − H1ϕ(π, λ) − H2ϕ(π, λ) (8)

The roots of Δ(λ) = 0 coincide with the eigenvalues of problem L. We define norming constants by

αn : = π 0 ϕ2(x, λn)dx +ρ1 1(ϕ (0, λ n) + h0ϕ(0, λn))2 (9) + 1 ρ2(ϕ (π, λ n) + H0ϕ(π, λn))2

Lemma 3.1. The eigenvalues of the problem L are simple and seperated. Proof. Let us write the following equations,

−ψ(x, λ)+q(x)ψ (x, λ) = λψ (x, λ) , −ϕ(x, λ

n)+q(x)ϕ (x, λn) = λnϕ (x, λn) .

If we multiply the first equation by ϕ (x, λn) , second by ψ (x, λ) and subtract, after

integrating from 0 to π we obtain  ϕ(x, λn) ψ (x, λ) − ψ(x, λ) ϕ (x, λn)   |d 0+ |πd  = (λ − λn) π 0 ψ (x, λ) ϕ (x, λn) dx.

(6)

Δ(λ) λ− λn = π 0 ψ (x, λ) ϕ (x, λn) dx+(ϕ(π, λn) + H0ϕ (π, λn))−  ψ(0, λn) + h0ψ (0, λn)  Pass through the limit as λ→ λn and using the equality ψ (x, λn) = βnϕ (x, λn) ,

to get Δ(λn) = βnαn. It is obvious that Δ(λn) = 0. So eigenvalues of the problem

L are simple.

Since, Δ(λ) is an entire function of λ, the zeros of Δ(λ) are seperated. So lemma

is proven. 

One can easily prove the following theorem using same methods in [1].

Theorem 3.2. The operator T (or problem L ) has a discrete spectrum. Moreover, the resolvent operator of T is defined as follows ;

Rλ(T ) := (T − λI)−1 ⎛ ⎝ GG1(x)2 G3 ⎞ ⎠ = ⎛ ⎝ F1F(x)2 F3 ⎞ ⎠ , with F1= π 0 G(x, t, λ)G1(t)dt, F2= F1(0) + hF1(0) and F3= F1(π) + HF1(π) where G(x, t, λ) is defined by G(x, t, λ) = −1 Δ(λ)  ϕ(x, λ)ψ(t, λ), x≤ t ϕ(t, λ)ψ(x, λ), t≤ x

The following theorem gives knowledge about the behaviour at infinity of the eigenvalues, eigenfunctions and normalizing numbers of L.

Theorem 3.3. The eigenvalues λn, eigenfunctions ϕ(x, λn) and normalizing

num-bers αn of the problem L have the following asymptotic estimates for large n;  λn = kn= kn−30 + δn n + ζn n (10) ϕ(x, kn) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ −kn−30 2cos kn−30 x + O  1 n  , x < d,  kn−30 2−α+cos k0n−3x + α−cos kn−30 (2d − x)  + O  1 n  , x > d (11) αn = kn−30 4  π− d 2  α+2+α−2 + d 2  + On3 (12) where, ζn= o(1), δn∈ ∞, kn0 are zeros of

Δ0(λ) := λ3  α+sin √ λπ √ λ + α −sin √ λ(2d − π) λ  and k0n= n + hn, hn∈ ∞.

Proof. Using (6) in (8), we get, Δ(λ) = λ3  α+sin √ λπ √ λ + α −sin √ λ(2d − π) λ  + Oλ2exp |τ | π

(7)

for sufficiently large value of|λ| . Denote Δ0(λ) := λ3  α+sin √ λπ √ λ + α −sin √ λ(2d − π) λ  , Gn:= {λ ∈ C : λ = k2,|k| =k0n −δ}, where δ is sufficiently small and k0nare the zeros of Δ0(λ) except 0.

Since, |Δ0(λ)| ≥ C exp(λ52exp |τ | π) and |Δ(λ) − Δ0(λ)| = O(λ2exp |τ | π) for

λ ∈ Gn and large values n, using the Rouche’s theorem, we establish that, the functions Δ0(λ) and Δ(λ) have the same number of zeros inside the contour Gn.

Consequently, in the annulus between Gn and Gn+1, Δ has precisely one zero, namely k2n. Therefore, for the eigenvalue λn, the equality λn+3 = kn2 is true. On the other hand, by using again the Rouche’s theorem in γε:=λ :λ− k0n< ε, for sufficiently small ε, we get the asymptotic formulae kn = k0n+ εn, (εn= o(1))

is valid for large n. Finally, the equality εn= O(1

n) is taken from the well known formulae Δ0(k0n+ εn) = Δ0(k0n).εn+ o(εn). This fact proves the equality (10). By

using (10) in (6) and (11) in (9) we get (11) and (12) , respectively.  4. Inverse Problems.

In the present section, we study the inverse problem recovering the boundary value problem L from its spectral data. We consider three statements of the in-verse problem of the reconstruction of the boundary-value problem L fom the Weyl function, from the spectral data{λn, αn}n≥0 and from two spectra{λn, μn}n≥0.

Let the functions χ(x, k) and Φ(x, k) denote solutions of (1) that satisfy the conditions χ(0, k) = −1, χ(0, k) = h0 and U (Φ) = 1, V (Φ) = 0, respectively and the jump conditions (4). Since W [χ, ϕ] = ρ1 = 0, it is clear that the functions

ψ(x, k) can be represented as follows ψ(x, k) = Δ(k) ρ1 χ(x, k) − ψ(0, k) + h0ψ(0, k) ρ1 ϕ(x, k) or ψ(x, k) Δ(k) = χ(x, k) ρ1 − ψ(0, k) + h0ψ(0, k) ρ1Δ(k) ϕ(x, k) (13) Denote M (k) : = ψ (0, k) + h 0ψ(0, k) ρ1Δ(k) (14) It is clear that. Φ(x, k) = χ(x, k) ρ1 − M(k)ϕ(x, k) (15)

(8)

The function Φ(x, k) and M (k) are called the Weyl solution and theWeyl function, respectively for the boundary value problem L.

The Weyl function is meromorphic in λ with simple poles in the points λn. Relations (13) and (15) yield

Φ(x, k) = ψ(x, k)

Δ(k) (16)

To study the inverse problem, we agree that together with L we consider a boundary value problem L of the same form but with different coefficients q(x), a, d, hi, Hi, i = 0, 1, 2.

Theorem 4.1. If M (k) = ˜M (k), then L = L, i. e., q(x) = q(x), a.e. and d = d, α = α, hi= hi, Hi= Hi, i = 0, 1, 2.

Proof. Let us define the matrix P (x, k) = [Pij(x, k)]i,j=1,2by the formula

 P11(x, k) P12(x, k) P21(x, k) P22(x, k)  =  ϕ ˜Φ− Φ˜ϕ Φ˜ϕ− ϕ˜Φ ϕΦ˜− Φϕ˜ Φϕ˜− ϕΦ˜  (17)

and inversion formula  ϕ(x, k) Φ(x, k)  =  P11(x, k)˜ϕ(x, k) + P12(x, k)˜ϕ(x, k) P11(x, k) ˜Φ(x, k) + P12(x, k) ˜Φ(x, k)  (18)

It is easy to see that the functions [Pij(x, k)]i,j=1,2are meremorphic in k . Moreover,

if M (k) = ˜M (k) then from (15) and (17) P11(x, k) and P12(x, k) are entire functions in k. Denote Gδ= {k : |k − kn| > δ, n = 1, 2, ...} and  Gδ=  k :k − kn > δ, n = 1, 2, ...  ,

where δ is sufficiently small number and knand kn are square roots of eigenvalues of problem L and L, respectively. Φ(ν)(x, k) ≤ Cδ|k|ν−3exp(− |τ | x) is valid for

k∈ Gδ, ν = 0, 1, Thus we get

|P11(x, k)| ≤ Cδ, |P12(x, k)| ≤ Cδ|k|−1, k∈ Gδ∩ Gδ (19)

from (17). According to the last inequalities, if M (k) = ˜M (k) then from well known Liouville’s theorem P11(x, k) = A(x), P12(x, k) ≡ 0. Using (18), we take

(9)

From W [Φ(x, λ), ϕ(x, λ)] = Φ(0, λ) (λh0− h2) − Φ(0, λ) (h1− λ) = ψ(0, λ) (λh0− h2) − ψ (0, λ) (h 1− λ) Δ(λ) ≡ 1 and similarly W Φ(x, λ), ϕ(x, λ) !

≡ 1, we have A(x) ≡ 1, i.e. ϕ(x, k) ≡ ϕ(x, k), Φ(x, k) ≡ Φ(x, k) and ψ(x, k) ≡ ψ(x, k). Therefore we get from (1), (4) and (5) that q(x) = q(x), a.e. and d = d, α = α, and hi= hi, Hi= Hi, i = 0, 1, 2. Consequently

L = L. 

Lemma 4.2. The following equality holds: M (λ) = ∞  n=0 1 αn(λn− λ) (21)

Proof. It follows from (14) the residues of M (λ) at λn are

Res λ=λnM (λ) = ψ(0, λn) + h0ψ(0, λn) ρ1Δ(λ. n) . If we use equalities βn= −ψ (0, λ n) + h0ψ (0, λn) ρ1 and Δ(λn) = βnαn, Res λ=λnM (λ) = − 1 αn (22)

is obtained. Denote Γn= {k : |k| = kn+ε}, ε is sufficiently small number. Consider

the counter integral Fn(λ) = 1

2πi

Γn

M (k)

(k − λ)dk, λ∈ intΓn, Since, the estimate Δ(k) ≥ |k|

5C

δexp(|τ | π)

holds for k ∈ Gδ, using this inequality and (14) we get, |M(k)| ≤ Cδ

|k|2, k ∈ Gδ. Hence, lim n→∞Fn(λ) = 0, consequently, M (λ) = ∞  n=0 1 αn(λn− λ) is obtained by

residue theorem and (22). 

Theorem 4.3. If kn = kn and αn = ˜αn for n = 0, 1, ... , then L = L, i. e., q(x) = q(x), a.e. and d = d, α = α, hi= hi, Hi= Hi, i = 0, 1, 2. Thus, the problem L is uniquely defined by spectral data.

Proof. If kn = kn and αn = ˜αn for n = 0, 1, ..., then from Lemma2, we get

M (λ) = "M (λ). Hence, Theorem6 gives L = L. 

Let us consider the boundary value problem L1 which is the problem that we take the condition y(0, k) − h0y(0, k) = 0 instead of the condition (2) in L and

{μ2

(10)

Theorem 4.4. If kn= kn and μn= ˜μn for all n∈ N , then

L (q, d, α, h0, h1, h2, Hi) = L(q, d,α, h0, h1, h2, Hi), i = 0, 1, 2.

Proof. Since, Δ(λ) is entire in λ of order 1

2, by Hadamard’s factorization theorem Δ(λ) = C ∞  n=0  1 − λ λn  (23)

Where, C is a constant which depends only on{λn}n≥0. It follows from (23) that the specification of the spectrum {λn}n≥0 uniquely determines the characteristic function Δ(λ). Analogously, the function ψ(0, k) − h0ψ(0, k) is uniquely

deter-mined by{μn}n≥0. Thus Δ(λ) = Δ(λ), ψ(0, k) − h0ψ(0, k) = ψ(0, k) − h0ψ(0, k)

and consequently by (14), M (λ) ≡ "M (λ). Hence from Theorem6 , the proof is

completed. 

ÖZET: Bu çalı¸smada, sadece denklemin de˘gil, her iki sınır ko¸su-lunun da spektral parametreye ba˘glı oldu˘gu, aralıkta süreksizli˘ge sahip Sturm—Liouville problemi ele alınmı¸stır. Öncelikle bu prob-leme kar¸sılık gelen operatör tanımlanmı¸s ve bu operatör yardımıyla problemin spektral özellikleri ara¸stırılmı¸stır. Daha sonra,

spektral karakteristiklere göre problemin tek olarak belirlenebile-ce˘gini gösteren ters problemin teklik teoremleri ispatlanmı¸stır. Bu teoremler çalı¸smanın temel sonuçlarıdır.

R    

[1] B. M. Levitan, and I. S. Sargsyan, Sturm-Liouville and Dirac Operators [in Russian], Nauka, Moscow (1988).

[2] C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinburgh, A77 (1977), 293-308.

[3] C. T. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the bound-ary conditions, Proc. R. Soc. Edinburgh, A87 (1980), 1-34.

[4] E. M. Russakovskii, Operator treatment of boundary problems with spectral parameters entering via polynomials in the boundary conditions, Funct. Anal. Appl. 9 (1975) 358—359. [5] N. J. Guliyev, Inverse eigenvalue problems for Sturm-Liouville equations with spectral

pa-rameter linearly contained in one of the boundary conditions, Inverse Problems, 21(2005), 1315-1330.

[6] G. Freiling, V. Yurko, Inverse Sturm—Liouville Problems and their Applications, Nova Science, New York, 2001.

[7] H. Schmid and C. Tretter, Singular Dirac Systems and Sturm—Liouville Problems Nonlinear in the Spectral Parameter, Journal of Differential Equations, Volume 181, Issue 2, 20 May 2002, Pages 511-542.

[8] H. Weyl, Über gewohnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann. 68 (1910) 220—269.

(11)

[9] P. A. Binding, P. J. Browne, K. Seddighi, Sturm—Liouville problems with eigenparameter dependent boundary conditions, Proc. Edinburgh Math. Soc. (2) 37 (1993) 57—72.

[10] P. A. Binding, P. J. Browne, B. A. Watson, Inverse spectral problems for Sturm—Liouville equations with eigenparameter dependent boundary conditions, J. London Math. Soc. 62 (2000) 161—182.

[11] P. A. Binding, P. J. Browne and B. A. Watson,. Equivalence of inverse Sturm—Liouville problems with boundary conditions rationally dependent on the eigenparameter, J. Math. Anal. Appl. 291 (2004) 246—261.

[12] P. A. Binding and P. J. Browne, Oscillation theory for indefinite Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Proc. R. Soc. Edinburgh A 127 (1997), 1123-1136.

[13] O. H. Hald, Discontinuous inverse eigenvalue problems, Comm. Pure Appl. Math., 37, (1984), 539-577.

[14] O. N. Litvinenko, V. I. Soshnikov, The theory of Heteregeneous Lines and Their Applications in Radio Engineering, Radio, Moscow, 1964 (in Russian).

[15] R. Kh. Amirov, On Sturm-Liouville operators with discontinuity conditions inside an interval, J. Math. Anal. Appl. 317 (2006) 163-176.

[16] R. Kh. Amirov, A. S. Ozkan, B. Keskin, Inverse Problems for Impulsive Sturm-Liouville Op-erator with Spectral Parameter Linearly Contained in Boundary Conditions, Integral Trans-forms and Special Functions, Vol. 20, 8(2009), 607—618.

[17] R. Mennicken, H. Schmid, A. A. Shkalikov, On the eigenvalue accumulation of Sturm-Liouville problems depending nonlinearly on the spectral parameter, Math. Nachr. 189, 157-170 (1998). [18] N. Altinisik, M. Kadakal, O. Sh. Mukhtarov, Eigenvalues and eigenfunctions of discontinuous Sturm-Liouville problems with eigenparameter dependent boundary conditions, Acta Math. Hungar. 102 (1-2), 2004, 159-175.

[19] V. P. Meschanov, A. L. Feldstein, Automatic Design of Directional Couplers, Sviaz, Moscow, 1980.

[20] J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary condition, Math.Z. 133(1973), 301-312.

[21] A. V. Likov and Yu. A. Mikhailov, The Theory of Heat and Mass Transfer, Gosenergoizdat. [22] A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Pergamon, Oxford. [23] N. N. Voitovich, B. Z. Katsenelbaum, and A. N. Sivov, Generalized Method of Eigen-vibration

in the Theory of Diffraction [M]. Nauka, Moskov, 1997(Russian).

[24] J. McLaughlin and P. Polyakov, On the uniqueness of a spherical symmetric speed of sound from transmission eigenvalues, J. Diff. Eqn. 107(1994),351-382.

Current address : Baki Keskin and Numan Yalçın, Department of Mathematics Faculty of Art and Sci. Cumhuriyet University 58140, Sivas, TURKEY

E-mail address : bkeskin,bsozkan@cumhuriyet.edu.tr URL: http://communications.science.ankara.edu.tr

Referanslar

Benzer Belgeler

olarak gerçek laboratuvar yöntemiyle öğretim gören kontrol grubunun kalıcılık testi puanlarının ön test puanları arasında anlamlı bir fark çıkmamıştır

“Ermeni Olayları Tarihi” adlı eserinde, Diyarbakır Vilayeti Polis Komiserliği’nin 8 Kasım 1895 tarihli telgrafına istinaden, Diyarbakır vilayetinde meydana

Keywords: Representation of time, temporal databases, object-oriented databases, QQL, S Q L , temporal query languages, periodic events, aperiodic e vents, absolute

Bu çalışmada, mevcut ürünlerin katı modelleri kullanılarak gerçekleştirilmiş olan sonlu elemanlar sonuçlarından örnek- ler sunulmuş ve modern mühendislik

Klima olmayan asansör- lerde asansör boşluğunda bulunan havanın bir fan aracılığıyla direkt olarak asansör kabinine verilmesi durumunda, asansör boşluğunda bulunan

A) Öğrencilerin şekerin tadını çok sevmeleri B) Şekerin öğrencilerin susamasını önlemesi C) Şekerin öğrencilere uğur getirdiğine inanılması D) Öğrencilerin

Major restruc- ise to use, state resources to enhance their chances turing would have required de-linking the SEEs of public office, the outcome is ultimately

Ankilozan spondilitli hastalarda TNF-α blokeri ile tedavi sonrası ortalama ESH (p=0,018) ve CRP (p=0,039) düzeyleri tedavi öncesine göre anlamlı olarak düşük saptandı..