• Sonuç bulunamadı

Sensitivity comparison of localized plasmon resonance structures and prism coupler

N/A
N/A
Protected

Academic year: 2021

Share "Sensitivity comparison of localized plasmon resonance structures and prism coupler"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

aDepartmentofElectricalandElectronicsEngineering,BilkentUniversity,06800Ankara,Turkey

bUNAMInstituteofMaterialsScienceandNanotechnology,BilkentUniversity,06800Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18July2013

Receivedinrevisedform

16September2013

Accepted25September2013

Available online 18 October 2013 Keywords:

Surfaceplasmonresonance

Biomolecularsensing

Localizedplasmonresonancesensors

a

b

s

t

r

a

c

t

Plasmonresonancesarewidelyusedinbiomolecularsensingandcontinuetobeanactiveresearch fieldduetotherichvarietyofsurfaceandmeasurementconfigurations,someofwhichexhibitdown tosinglemoleculelevelsensitivity.Theresonancewavelengthshiftoftheplasmonicstructureupon bindingofmolecules,stronglydepends,amongotherparameters,onhowwellthefieldoftheresonant modeisconfinedtothebindingsite.Hereitisshownthat,byusingproperlydesigned metal-insulator-metaltyperesonators,improvedwavelengthresponsecanbeachievedwithlocalizedsurfaceplasmon resonators(LSPRs)comparedtothatofthecommonlyusedKretschmanngeometry.Usingcomputational toolsweinvestigatetheoreticallytherefractiveindexresponseofseveralLSPRstructurestoa2nmthin filmofbindingmolecules.LSPRresonatorsareshowntofeatureimprovedsensitivityoverconventional Kretschmanngeometryinthewavelengthinterrogationschemeforsuchathinfilm.Moreover,someof theLSPRmodesarequasi-omnidirectionalandsuchangularindependence(upto30◦angleofincidence)

allowshighernumericalaperturestobeusedincolorimetricimaging.Resultshighlightthepotentialof LSPRsforbiomolecularsensingwithhighsensitivityandhighspatialresolution.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

ResonanceexcitationanddetectionofSurfacePlasmon Polari-tons (SPPs) provide a versatile platform for affinity based refractometric biomolecular sensing [1,2]. Typically, the refrac-tiveindex profilenear a metal surface is modified due to the refractiveindexcontrastbetweenabuffersolutionandattached biomoleculesandtheresonanceoftheplasmonicmodesareshifted frequency,whichcanbemonitoredusingreflectionortransmission measurements.Duetotheeaseoffarfieldmeasurementandthe simplicityoffabricatingsurfacesexhibitingplasmonicresonances, surfaceplasmonresonance(SPR)techniquehasbeenextensively usedoverthelastfewdecadesforbiomolecularsensing[3–5]. Com-monly,prismandgratingcouplinghavebeenusedtoexciteSPPson planarorquasi-planarsurfaces,andprismcouplingisacceptedto exhibithighersensitivity[6].Theadventofnanofabricationtools allowedmoreandmoretop-downstructurestobeemployedin plasmonicsensing.Therichphysicsofsingleorcoupledplasmonic structuresallows highperformance biomolecular sensing using orderedperiodiclocalizedplasmonmoderesonances(LSPR)[7–9]. Typically,SPRimagingallowssimultaneousdetectionfrom multi-pleindividuallyfunctionalizedspots.AsprismcoupledSPRhasa

∗ Correspondingauthor.Tel.:+903122903502.

E-mailaddress:aykutlu@unam.bilkent.edu.tr(A.Dana).

strongangulardependenceoftheresonantexcitation,alow numer-icalaperturehastobeused,andSPRimaginghasbeeninherentlya lowspatialresolutiontechnique[10,11].Inordertoperform plas-monresonanceimagingwithhighspatialresolution,itisdesirable tohaveplasmonicsurfacesthatarenotsensitivetoangleof excita-tion(omnidirectionality),whilemaintainingahighrefractiveindex sensitivity,therebyallowingsensingofmonolayerbiomolecular coatings.Periodiclocalizedplasmonstructurescan bedesigned withopticalbandstructureswhichexhibitquasi-omnidirectional response[12].

In this article, we explore theoretically the refractive index sensitivityofseveralplasmonicdesigns.Typically,asimple figure-of-merit (FOM),defined asthe ratio of sensitivity (shift of the resonance wavelength in nmper change in thebulk refractive indexofthesensingmedium)tothefull-width-at-half-maximum (FWHM)oftheresonantlineshape,isusedtocomparethe perfor-mance[13,14].Wenotethat,inbiomolecularsensingapplications, theperformancedependsnotonbulkrefractiveindexchangebut onmolecularbinding.Therefore,insteadofusingthebulkrefractive indexchangeforthecomparisonofsensitivityofstructureswith thatofaprism,athin(2nmthick)organicfilm(representingthe adsorbedmolecularlayer)isused.Hereweobservethat,whena thinfilmisconsideredinsteadofthebulkrefractiveindex,properly designedlocalizedplasmonresonancesensorsexhibitgreater sen-sitivitycomparedtoaprismcoupler.Previously,variousplasmonic resonatorsdesignedor fabricatedonplanarsurfaceshavebeen

0925-4005/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

Fig.1.Schematiccrosssectionofplasmonicstructuresanalyzedinthiswork.(a)Ametal-insulator-metal(MIM)metasurfacewithathinorganiclayercoatedontop.(b)The

MIMsurfaceisfurtherprocessedtopartiallyeliminatetheinsulatorandopenupspacethatwillallowbindingofmoleculesinbetweenmetallayers(referredtoasT-shaped

MIMstructureor,MIM-T).(c)All-metalversionoftheMIM-Tstructure(referredtoasMMM-T).(d)Metallicnanocavity(MNC)structures.(e)Metal-insulatornano-islands

(MI-NI).(f)Commonlyusedprism-coupledplasmonresonancegeometry.

consideredasplasmonicinterfacesforLSPR sensing[15,16].We alsoconsiderplasmonicstructuresonplanarsurfacesthatcanbe fabricatedbytop-downmethods.Wechoosegeometricstructures thatarestraightforwardtoimplementusingstandard nanofabrica-tiontechniquessuchaselectronbeamlithography.Particularly,we investigatethestructuresshowninFig.1.Thestructuresincludea metal-insulator-metal(MIM)metasurfacewithathinorganiclayer coatedontop(Fig.1a).TheMIMsurfaceisfurtherprocessedto partiallyeliminatetheinsulatorandopenupspacethatwillallow bindingofmoleculesinbetweenmetallayers (referredtoas T-shapedMIMstructureor,MIM-T,Fig.1b).Anallmetalversionof theMIM-Tstructure,referredtoasMMM-TisshowninFig.1c.In additiontoMIMstructures,ametallicnanocavity(MNC)arrayis studied(Fig.1d).TheMNCissimilartoalamellargrating, how-evertherectangulargroovesaregeometricallydesignedtofeature broadlocalizedplasmonmodesconfinedprimarilyintothegroove, thereforeservingasplasmonicnanocavities.TheMNClayer struc-tureallowsfabricationbyasimplenanoimprintingprocess.Alsoa metal-insulatornano-island(MI-NI)arrayisconsidered(Fig.1e). Suchstructurescanbefabricatedbytop-downfabrication tech-niquessuchaselectronbeamlithographyorthegeometrycanbe usedtoapproximateself-organizedmetalnanoislands, typically formedbydewettingofthinmetalfilmsonglasssubstrates[21]. Wecomparethesurfaceswiththecommonlyusedprism-coupled plasmonresonancegeometry(Fig.1f).

2. Sensingbywavelengthinterrogationofplasmon resonance

ThepropagationconstantkSPPofthesurfaceplasmawave

prop-agatingattheinterfacebetweenasemi-infinitedielectricmedium andametalisgivenby[1]

kspp=ω c



εmεdo εm+εdo≥k0= ω c



εdo (1)

where εd=n2do and εm=n2m arethe dielectric functionsof the

dielectricandthemetal,ωisthefrequencyandko=2/0isthefree

spacewavevector.SincekSPPislargerthank0,freespaceresonant

couplingtosuchamodeisnotpossibleandaprismofrefractive indexnp>1isgenerallyusedtocouplefreespacelightintotheSPP

mode.Resonantcouplingtakesplaceatanangleofincidence, when

kSPP∼= npkosin() (2)

Intheprismcoupledscheme(Kretschmanngeometry),athin dielectric film,ofrefractiveindexnd andthicknessh,shifts the

resonanceaccordingto[1] ıkSPP∼= K 3 SPP K2 0n3do [1−exp(−2dh)]ınd (3) where d=ikoεdo/(



(εm+εdo)) and h1/Re{d} and

ınd=nd−ndo,ndobeingthebulkrefractiveindexofthedielectric

medium.In LSPRsensingusinganisolatedplasmonicresonator wherethemodefieldcanbeassumedtoisotropicallydecayinto thesurroundingmedium, thewavelengthshiftupon bindingis given similarly by ı=Sınd(1−exp(−2h/1d)), where sis the

sensitivityfactor(shiftinresonanceperRIUchangeinenvironment refractiveindex)andldiselectromagneticdecaylengthoftheLSPR

mode[8–17].However,foranisotropicresonators,suchasprism ordiskshaped,themodefieldisnon-uniformlydistributedonthe resonatorandsensitivityofbindingassumesalocationdependent form.Thesameistrueforresonatorsboundtoasubstrate,where onlyonesideoftheresonatorisavailableformolecularbinding. For ageneralplasmonicresonatorincludingcoupledresonators andcavitiesinbufferoronasurface,asimpleequationincluding asingledecaylengthcannotbeusedtoexpressthewavelength shift.Instead, perturbation theorycan be used toestimate the resonancewavelengthshiftuponachangeintherefractiveindex profilethrough[18] ıres res =− 1 2



|E(r)|2(n2d(r)−n2do)d

v



|E(r)|2d

v

(4)

whereE(r)istheelectricfielddistribution(modeprofile),ndoisthe

refractiveindexprofilebeforeperturbation,nd(r)istherefractive

indexprofileaftertheperturbationandintegrationisperformed overallspace.

Sensitivityforwavelengthinterrogateddetectionis[6] S= ıres

ınd

(3)

structuresofcoupledLSPRresonators,wedonotattempttomodel thebandstructuresusingsuchmodels.Instead,thedimensions ofthestructuresareoptimizedbyRCWAcalculationssothatthe bandstructuresofthemetasurfacesfeaturearesonancearound 600–700nmwavelengthfornormalincidence.Suchachoiceallows resistivelossestobesimilar,resultinginstructureswithsimilar resonanceFWHM.Wealsochoosedimensionsthatexhibithigh sensitivitytorefractiveindexchangewhilekeepingthestructures largesothatfabricationismorepracticalusingtop-down tech-niques.Structuresizesareh1=2nm(film),h2=10nm,h3=50nm,

gratingheighth5=50nm,periodof=200,gapofg=35forthe

MIM(seeFig.1fordimensionlabels).FortheMIM-Tand MMM-T,b=62.5nm,w=200nm,topmetalh5=10nm,h4=10nm,period

=250nm,gapg=50nm.ForMNC,h6=40nm,period=200nm,

gapg=35nm.ForMI-NI,topmetalthicknessh5=100nm,period

=200nm,gapg=25nmandfortheKretschmannconfiguration h7=50nm.

Theelectricfielddistributionsofthestructuresexcitedon res-onance at normal incidence are shown in Fig. 2. For the MIM structure,onresonancethefieldsareprimarilyconfinedtothe insu-latorandthespacebetweentopmetalislands(Fig.2a).According toEq.(4),MIMstructuresareexpectedtohavealowersensitivity tochangesoftherefractiveindexofthebackground,sincefieldsare partiallyconfinedtothedielectricinsidetheMIM.Incontrast,the MIM-Tstructureshavealargersurfacetowherethemoleculescan bebound(Fig.2b).TheMMM-Tconfigurationdisplaysfieldsthat aresimilartotheMIM-T,however,fieldpenetrationintothe inter-mediatemetalpostregionissmallerandgreaterfractionofthefield isconfinedtotheexposedareas(Fig.2c).TheMNCstructurehas allthefieldsconfinedwithinthenanocavity,whichisacompletely exposedsurface(Fig.2d).TheMI-NIstructuresaresimilartothe MNC,howeverfieldpenetrationintothedielectricreducesthe frac-tionofmodewithintheexposedareas(Fig.2e).IntheKretschmann configuration,theSPPmodeisconfinedtothesurface,however themodevolumeislargeduetothelargedecaylengthintothe dielectric(Fig.2f).

TheabsorptionspectraofthestructuresarecalculatedbyRCWA andareshowninFig.3.TheLSPRstructuresmaypossessfurther resonancesoutsidethewavelengthrangeshown,howeverweare onlyconcernedabouttheresonancenear650–850nm.The absorp-tioniscalculatedfor normalincidenceforchanges inrefractive indexofa2nmthickfilmonan=1.33background.Ascanbeseen inFig.3,anincreaseintherefractiveindexofthefilmtypically resultsinaredshiftoftheresonancelinesduetodielectricloading oftheresonators.

Thefieldscalculatedbynumericalcalculationsareusedfor esti-mationof theresonance shiftthrough Eq.(5) and are given in Table1.Theresultsareacquiredforresonanceexcitationandfora shiftofthebackgroundindex.Theshiftsarecomparedwithdirect calculationofresonancefrequenciesusingRCWAandEq.(5)(Eq.

approach.Therefore,intuitivelywecanexpectthestructureswith greaterexposedareaandsmallermodevolumetoexhibitimproved sensitivitytothepresenceofthinmolecularfilms.Itmustbenoted that,inordertoachievecorrectresultsusingEq.(5),the dielec-tricfunction ofthemetalfilmand fieldspenetratinginsidethe metalstructuresmustbeincludedinthecalculation.Otherwise, forexamplebyincorrectlyassumingzerofieldpenetrationintothe metalandassumingthedielectricportionsoftheresonatoraccount forallofthemodevolume,theperturbationapproachproduces erroneousresonanceshiftsthatare100–300%largerthanthose predictedbydirectnumericalcalculation.Therefore,modeenergy insidethemetalsurfacescontributesasignificantportionofthe actualmodevolume.

Anorganicmolecularfilmisexpectedtohavearefractiveindex of1.47around600–800nmandtheindexcontrastwithbuffer solu-tion(nd=1.33–1.34)resultsintheperturbationofresonances.We

calculatetheabsorptionspectraofsurfacesusingRCWAasshown inFig.3,andextractpeakpositionsoftheabsorptionpeaksaround 650–800nmtocalculatesensitivitytotherefractiveindexofa2nm thickfilmaswellastothebackgroundrefractiveindex(Table2).Itis observedthat,KretschmannconfigurationsurpassesallLSPR struc-turesinsensitivityifthebackgroundrefractiveindexischanged. However,forathinorganicfilm,duetothesmallmodevolume of theLSPR resonators, severalLSPR structuresshow improved responseovertheprism.Forexample,acomparisonofthe spec-tralshiftsofMIM-TandKretschmannconfigurationsisgivenin Fig.4forthinfilmandbackgroundrefractiveindexchange.Inthe presenceofathinfilm,alargershiftofresonancefrequencyofthe LSPRstructurecomparedtoaprismisinteresting(Fig.4aandb), sinceprismcouplingistypicallyacceptedtobesuperiortoother SPPstructures(suchasgratingcoupledplasmonresonance[6]) intermsofwavelengthsensitivity.Athin organicfilmisalsoof greaterpractical interestthan bulkbackgroundrefractiveindex change,asthisconfigurationmoreaccuratelydescribesanactual molecularbindingexperiment.Forthethinfilmcase,itisseenthat allLSPRstructures excepttheMIM exhibitbetterabsolute sen-sitivitycomparedtotheprism.TheMIM isanexception,being lesssensitiveduetothefactthatgreaterportionofthemodeis Table2

Wavelengthsensitivityupon%1changeofrefractiveindexof2nmthinfilm,around

n=1.47,comparedwith%1changeofbackgroundindexnearn=1.33,calculated

usingfiniteelementanalysis.

Structure 2nmfilm(nm/RIU) Background(nm/RIU)

MIM 18.9 60 MIM-T 97.3 330 MMM-T 78.4 330 MI-NI 59.5 260 MNC 56.8 390 Prism 48.7 4500

(4)

Fig.2. Relativeelectricfieldintensitydistributionsascalculatedbynumericalanalysisfornormalincidenceon(a)MIMmetasurfaceat=800nm,(b)MIM-Tstructuresat =750nm,(c)MMM-Tstructuresat=625nm,(d)MNCsurfaceat=650nm,(e)MI-NIstructuresat=650nm.Scalebarsare50nmwide.

confinedintheunexposedinsulatorregion.TheMIM-Tand MMM-Tfeatureabouttwicethesensitivityofa prism,partiallydueto thefactthatbothtopandbottomsurfaceshave2nmfilm cover-ingthemandthereisabouttwicemorematerialperunitareathat contributetoresonancewavelengthshift.IfwecalculatetheFOM givenbyEq.(6),fora2nmfilm,wegetvaluesof0.34fortheMIM, 0.62fortheMI-NI,0.44fortheMNC,1.35theMIM-T,0.91forthe MMM-Tand0.87fortheKretschmann.IntermsoftheFOM,the MIM-TandMMM-Texhibitimprovedperformancecomparedto theprismcoupledSPR.Itmustbenotedthat,forLSPRsensingby resonatorsinfluid,arefractiveindexsensitivityof∼500nm/RIU isconsidereddesirable[20]Itisobservedthatforthestructures excepttheMIM,sensitivitiesof300–400nm/RIUcanbeachieved withsurfaceboundstructuresconsideredhere.Thesensitivityfor LSPRstructuresonsurfacesisinherentlylowascomparedtofree

structuresinfluid,duetosinglesidedmolecularbinding.For sur-faceboundstructures,sensitivityvaluesrangingfrom80nm/RIU havebeenpreviouslyreported[16].Thesensitivitycanbeincreased to750nm/RIUforverticalcavitystructuressimilartotheMIM-T, designedinthenear-infraredportionofthespectrum.Thisincrease wasattheexpenseofincreasedfabricationtolerancesanda poten-tiallycomplicatedfabricationprocedure[15].

Anotherissueweaddressincomparingtheperformanceofthe LSPRsensorsistheangularsensitivityoftheresonances.Inthecase ofafocusedbeamwithahalf-coneangle,thebroadeninginthe wavelengthresponseofaplasmonicresonancewillbegiventoa firstorderapproximationby∼= 2(∂res/∂).Theresonance

willfeatureapeakgivenbytheconvolutionoftheangularspread withtheintrinsicresonancelineshape,resultinginanoverall res-onancewidthoftotal∼=



2

res+2.Rewritingtheangular

Fig.3. Absorptionspectraat30◦angleofincidenceisshownforthe(a)MIM,(b)MIM-T,(c)MMM-T,(d)MNC,(e)MI-NIand(f)Kretschmannconfigurationsforchangesin

(5)

Fig.4. RIresponsescomparedforbulkand2nmfilm.(a)TheMIM-Tstructureexhibitsasuperiorsensitivityascomparedtotheprismcoupledcaseshownin(b)forathin

film.Refractiveindexofthefilmisassumedtobe1.33,1.5and1.7forthesolid,dottedanddashedcurves.(c)ResponseoftheMIM-Tstructuretoabackgroundrefractiveindex

change.(d)Responseofprismtoabackgroundrefractiveindexchange.Forbackgroundrefractiveindexchange,theprismcoupledconfigurationissuperiorinsensitivity.

Legendshowsrefractiveindicesofthebackgroundforeachgraph.

Fig.5.(a)RIresponsescomparedfor2nmfilmforthestructuresshowninFig.1.(b)TheangularsensitivityisplottedfortheLSPRstructures.TheMIM-T,MMM-Tand

MNC,MI-NIstructuresexhibitweakangulardependenceupto30◦ofangle-of-incidenceduetotheirbandstructure,whereastheMIMstructuresshownon-zeroangular

sensitivity.TheKretschmannconfigurationhasinherentlyaveryhighangularsensitivity.

spreadintermsofthenumericalapertureofthefocusinglens(N.A.), forsmallN.A.thefigureofmeritwillbegivenapproximatelyby FOM ∼= FOMo



res

2

res+[2(∂res/∂)(N.A./n)

(7) whereFOMois thefigureofmeritmeasuredusingacollimated

beam.Inthecase ofanomni-directionalresonance,∂res/∂≈0

andalargeN.A.wouldnotdegradetheFOM,allowinghigh spa-tialresolution imaging.Theangular sensitivityistypicallylarge foraprismcoupledconfiguration,howeverLSPRsurfacestypically exhibitangleindependent spectralresponse. Angularresponses oftheLSPR resonanceareshowninFig.5b,alongwithspectral responseto2nmthickfilmsofvaryingrefractiveindex(Fig.5a). It isseen that, fortheMIM-T, MMM-Tand MI-NIsurfaces,the ∂res/∂res(i.e.∂res/∂≈0)issatisfiedforanglesupto30◦.

ThiswouldallowaN.A.=0.66tobeused(inbufferwithn=1.33) forcolorimetricimagingofLSPRresonances,resultingina diffrac-tionlimitedresolutionof490nmassumingaresonancewithpeak around650nm.TheactualbandstructureofcoupledLSPR struc-turesdeterminethevalueofangularsensitivityres/∂andMIM-T,

MMM-TandMI-NIsurfaceshavesuperioromni-directionalityas

comparedtotheMIMsurfaceforthesetofgeometricparameters giveninTable1.

4. Conclusion

WehavecomparedtherefractiveindexresponseofseveralLSPR structuresandprismcoupledSPRinthepresenceofathinorganic film.Itisseenthatforabulkbackgroundrefractiveindexchange, theprismpossessessuperiorrefractiveindexsensitivitywhileLSPR structurescanexhibitimprovedsensitivityfora2nmthickfilm. Themainreasonbehindthisimprovedsensitivityisthefactthat themodesareconfinedtosmallvolumeswith10–30nm character-isticdimensionsfortheLSPRcase,whereagreaterfractionofthe modeisperturbedbythepresenceofthethinfilm.Itisalsoshown that,iftheLSPRmodesareconfinedtoregionswhere biomolec-ularadhesionis inhibited bythepresence of a dielectric,as in theMIMcase,sensitivityisdegraded,sinceasmallerportionof themodevolumeisperturbedbybiomolecularadhesion. Calcu-lationsvalidatetheapplicabilityoftheperturbationapproachto calculatingtherefractiveindexresponse,asseenbycomparingEq. (5)withdirectnumericalcalculations.Inthecalculations,itwas

(6)

seenthatgeometricvolumeofthemetal-freeregionofthe res-onatorsdoesnotcorrespondtotheactualmodevolume,which needstobe calculated taking intoaccount themetal dielectric constantsandfieldsconfinedinsidethemetalregions.Therefore, althoughtheperturbationapproachprovidesintuition,thefields thatpenetrateintothemetallayermustbeconsidered,asthemetal dielectricfunctionmayhave alargemagnitudeascomparedto organiclayers.TheangularresponsesoftheLSPRstructuresare alsocalculated, demonstratingtherelative insensitivity of LSPR structurestochangesintheangleofincidence.Theresultsshow that,properlydesignedLSPRstructuresretainomni-directionality whilemaintainingahighersensitivityascomparedtoaprismfor athinorganicfilm.Particularly,theMIM-Ttyperesonators exhib-itedabout2timesimprovedsensitivityoveraprism.Therefore,the calculationsshowthathighresolutioncolorimetricplasmon reso-nanceimagingispossibleusingoptimizedLSPRsurfaceswithout compromisingsensitivityforbiomoleculardetection.

Acknowledgment

Thiswork waspartially supportedby TUBITAK under Grant 111M344,EUFP7:People-IAPPNanoBacterPhageSERS.

References

[1]J.Homola(Ed.),SurfacePlasmonResonanceBasedSensors,SpringerSerieson ChemicalSensorsandBiosensors,Vol.4,Springer-Verlag,2006.

[2]J.Homola,Surfaceplasmonresonancesensorsfordetectionofchemicaland biologicalspecies,Chem.Rev.108(2008)462–493.

[3]B.Liedberg,I.Lundstrom,E.Stenberg,Principlesofbiosensingwithanextended couplingmatrixandsurfaceplasmonresonance,Sens.ActuatorsB11(1993) 63–72.

[4]L.M.Zhang,D.Uttamchandani,Opticalchemicalsensingemployingsurface plasmonresonance,Electron.Lett.23(1988).

[5]Ch.Striebel,A.Brecht,G.Gauglitz,Characterizationofbiomembranesby spec-tralelipsometry,surfaceplasmonresonanceandinterferometrywithregard tobiosensorapplication,Biosens.Bioelectron.9(1994)139–146.

[6]H.Jiri,K.Ivo,S.S.Yee,Surfaceplasmonresonancesensorsbasedon diffrac-tiongratingsandprismcouplers:sensitivitycomparison,Sens.ActuatorsB54 (1999)16–24.

[7]M.Stewart,C.Anderton,L.Thompson,J.Maria,S.Gray,etal.,Nanostructured plasmonicsensors,Chem.Rev.108(2)(2008)494–521.

[8]K.A.R.Willets,P.VanDuyne,Localizedsurfaceplasmonresonancespectroscopy andsensing,Ann.Rev.Phys.Chem.58(1)(2007)267–297.

[9]A.A.Yanik,A.E.Cetin,M.Huang,A.Artar,S.HosseinMousavi,A.Khanikaev,J.H. Connor,G.Shvets,H.Altug,Seeingproteinmonolayerswithnakedeyethrough plasmonicFanoresonances,Proc.Natl.Acad.Sci.108(29)(2011)11784–11789.

[10]T.G.Terry,L.HyeJin,M.Robert,CornDirectdetectionofgenomicDNAby enzy-maticallyamplifiedSPRimagingmeasurementsofRNAmicroarrays,J.Am. Chem.Soc.126(2004)4086–4087.

[11]J.BiancaBeusink,A.M.C.Lokate,G.A.J.Besselink,G.J.M.Pruijn,R.B.M. Schas-foort,Angle-scanningSPRimagingfordetectionofbiomolecularinteractions onmicroarrays,Biosens.Bioelectron.23(2008)839–844.

[12]S.Ayas,H.Güner,B. Türker,O.ÖEkiz, F.Dirisaglik, A.K.Okyay, A.Dâna, Ramanenhancementonabroadbandmeta-surface,ACSNano6(8)(2012) 6852–6861.

[13]M.Najiminaini,F.Vasefi,B.Kaminska,J.L.Jeffrey,Carsoneffectofsurface plas-monenergymatchingonthesensingcapabilityofmetallicnano-holearrays, Appl.Phys.Lett.100(2012)063110.

[14]T.-Y.Chang,M.Huang,A.A.Yanik,H.-Y.Tsai,P.Shi,S.Aksu,M.F.Yanik,H.Altug, Large-scaleplasmonicmicroarraysforlabel-freehigh-throughputscreening, LabChip11(2011)3596.

[15]O.Saison-Francioso,G. Lévêque, A.Akjouj,Y. Pennec, B.Djafari-Rouhani,

R. Boukherroub, S. Szunerits, Search of extremely sensitive

near-infrared plasmonic interfaces: a theoretical study, Plasmonics (2013)

1–8,http://dx.doi.org/10.1007/s11468-013-9588-9.

[16]E.Galopin,etal.,Sensitivityofplasmonicnanostructurescoatedwiththinoxide filmsforrefractiveindexsensing:experimentalandtheoreticalinvestigations, J.Phys.Chem.C114(27)(2010)11769–11775.

[17]S.Szunerits,R.Boukherroub,Sensingusinglocalisedsurfaceplasmon reso-nancesensors,Chem.Commun.48(72)(2012)8999–9010.

[18]J.D.Joannopoulos,S.G.Johnson,J.N.Winn,R.D.Meade,PhotonicCrystals: Mold-ingtheFlowofLight,2nded,PrincetonUniv.Press,Princeton,2008.

[19]M.G.Moharam, T.K.Gaylord,Rigorouscoupled-wave analysisofmetallic surface-reliefgratings,J.Opt.Soc.Am.A3(1986)1780.

[20]J.N.Anker,etal.,Biosensingwithplasmonicnanosensors,Nat.Mater.7(6) (2008)442–453.

[21]S.Ayas,G.Cinar,A.D.Ozkan,Z.Soran,O.O.Ekiz,D.Kocaay,A.Tomak,P.Toren,Y. Kaya,I.Tunc,H.Zareie,T.Tekinay,A.B.Tekinay,M.O.Guler,A.Dana,Label-Free Nanometer-ResolutionImagingofBiologicalArchitecturesthroughSurface EnhancedRamanScattering,ScientificReports3(2013)2624.

Biographies

YasinKayaisaresearchassistantattheUNAMMaterialsScienceand

Nanotech-nologyProgramatBilkentUniversity.Hisresearchinterestsare inthefieldof

computationalelectromagneticsanddesignofplasmonicnanostructures.

SencerAyasisaPh.D.studentattheUNAMMaterialsScienceand

Nanotechnol-ogyProgramatBilkentUniversity.Hisresearchisonthedesignandrealization

ofplasmonicnanostructuresandmetasurfaces,withapplicationstoimagingand

spectroscopy.

AhmetEminTopalisaPh.D.studentattheUNAMMaterialsScienceand

Nano-technologyProgramatBilkentUniversity.Hisresearchinterestsareinthefieldof

colorimetricbiomolecularsensingandimagingusingplasmonresonances.

HasanGünerisaPh.D.studentattheUNAMMaterialsScienceandNanotechnology

ProgramatBilkentUniversity.Hisresearchinterestsareinthefieldofdesignand

implementationofplasmonresonancesensingsystems.

AykutluDanaisaAssociateProfessorattheUNAMMaterialsScienceand

Nanotech-nologyProgramatBilkentUniversity.HereceivedhisPh.D.fromStanfordUniversity

and continuesto work inthe fieldsof nanoscale optoelectronic devicesand

Şekil

Fig. 1. Schematic cross section of plasmonic structures analyzed in this work. (a) A metal-insulator-metal (MIM) metasurface with a thin organic layer coated on top
Fig. 2. Relative electric field intensity distributions as calculated by numerical analysis for normal incidence on (a) MIM metasurface at  = 800 nm, (b) MIM-T structures at
Fig. 4. RI responses compared for bulk and 2 nm film. (a) The MIM-T structure exhibits a superior sensitivity as compared to the prism coupled case shown in (b) for a thin film

Referanslar

Benzer Belgeler

[r]

Klasik İslami Edebiyatlarda Alegorik Eserler: Bu bölüm, yazarın İslami edebiyatlar olarak tanımladığı Arap, Fars, Urdu ve Türk edebiyatlarında alegorik eserler

This paper analyzes how the dierent types of in"ation uncertainty aect a set of interest rate spreads for the UK. Three types of in"ation uncertainty—structural

While the group discussions involved with con- structing the modified consensus group forecasts im- proved the accuracy over that of the staticized group forecasts when either

Our results indicating that high early efficacy beliefs mitigated the potential negative effects on subsequent goals among teams who failed to reach higher and lower goals also

Model-Driven Software Development (MDSD) aims to support the development and evolution of soft- ware intensive systems using the basic concepts of model, metamodel, and

Vector invariants of finite groups (see the introduction for definitions) pro- vides, in general, counterexamples for many properties of the invariant theory when the characteristic

Finally, in the last chapter, we considered the mostly-ignored problem of user privacy in broad- cast systems, and we showed how an anonymous trace and revoke scheme can be built