• Sonuç bulunamadı

Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL

N/A
N/A
Protected

Academic year: 2021

Share "Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL"

Copied!
14
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

w w w . j m r t . c o m . b r

Availableonlineatwww.sciencedirect.com

Original

Article

Evaluation

of

tool

wear,

surface

roughness/topography

and

chip

morphology

when

machining

of

Ni-based

alloy

625

under

MQL,

cryogenic

cooling

and

CryoMQL

a ˘grı

Vakkas

Yıldırım

a

,

Turgay

Kıvak

b

,

Murat

Sarıkaya

c,∗

,

enol

irin

d

aDepartmentofAirframesandPowerplants,ErciyesUniversity,Kayseri,Turkey

bDepartmentofMechanicalandManufacturingEngineering,FacultyofTechnology,DuzceUniversity,Duzce,Turkey cDepartmentofMechanicalEngineering,SinopUniversity,Sinop,Turkey

dDepartmentofMachineandMetalTechnologies,GumusovaVocationalSchool,DuzceUniversity,Duzce,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received2December2019 Accepted22December2019 Availableonline3January2020

Keywords:

Hybridcooling/lubrication Toolwear

Surfacetopography Chipmorphology Ni-basedaerospacealloy

a

b

s

t

r

a

c

t

Although nickel-basedaerospacesuperalloyssuchasalloy625havesuperiorproperties includinghigh-tensileandfatiguestrength,corrosionresistanceandgoodweldability,etc., itsmachinabilityisadifficulttaskwhichcanbesolvedwithalternativecooling/lubrication strategies. Itisalsoimportantthatthesesolutionmethodsare sustainable.In orderto facilitatethemachinabilityofalloy625withsustainabletechniques,weinvestigatedthe effect of minimum quantity lubrication (MQL), cryogenic cooling with liquid nitrogen (LN2)andhybrid-CryoMQLmethodsontoolwearbehavior,cuttingtemperature,surface

roughness/topographyandchipmorphologyinaturningoperation.Theexperimentswere performed atthreecutting speeds(50, 75and100m/min),fixedcuttingdepth(0.5mm) andfeedrate(0.12mm/rev).Asaresult,CryoMQLimprovedsurfaceroughness(1.42␮m) by24.82%comparedtocryogeniccooling.Themediumlevelofcuttingspeed(75m/min) canbepreferredforthelowestroughnessvalueandlowestpeak-to-valleyheightwhen turningofalloy625.Further,toolwearisdecreasedby50.67%and79.60%bytheuseofMQL andCryoMQLcomparedwithcryogenicmachining.AninterestingresultthatMQLismore effectivethancryogenicmachininginreducingcuttingtoolwear.

©2019TheAuthors.PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.

Introduction

Nickel-based superalloys are preferred in critical tasks because oftheir superior propertiesat very high and very

Correspondingauthor.

E-mail:msarikaya@sinop.edu.tr(M.Sarıkaya).

lowtemperatures.Inconel625isoneofthesealloysandhas beenusedformanyyears.Itisusedinoiland gas produc-tioncomponents,marinevehicles,varioussurfacesincontact with acids, biomedical applications, automotive industry, aerospace industry and nuclearreactors, etc.However, the behaviors of the material such as good mechanical char-acteristicsunder stress,poorheatconductivity, high strain hardeningandhighchemicalclosenesstotoolmaterialcause https://doi.org/10.1016/j.jmrt.2019.12.069

2238-7854/©2019 The Authors. Publishedby Elsevier B.V. This isan open access articleunder the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

EDX Energydispersivex-rayanalysis CR Coolingregime

PVD Physicalvapordeposition AMS AerospaceMaterialSpecification Ra Averagesurfaceroughness

ISO Internationalorganizationforstandardization

VBmaxq Flankwear

BUE Builtupedge BUL Builtuplayer

␯ Kinematicviscosity(mm2/s)

VI Viscosityindex

someconcernswhicharehightemperatureincuttingzone, quicktoolwearandpoorsurfaceintegrityinthemachining ofthesealloys[1,2].Oneofthemethodsusedtocontribute tothemachinabilitycharacteristicsofthesematerialsisthe employmentofcuttingfluid.

Cuttingfluids havean importantplace in chip removal operations.They performbasic taskssuchasreducing the frictionandpowerconsumption,chipevacuationaswellas cooling/lubricationofthecuttingzonethatdirectlyaffectthe efficiency of chip removal operations. Moreover, there are alsobenefitssuchasprotectingthecuttingtoolandmachine toolfromoxidation[3].Duetoallthesepositiveeffects,the use ofcuttingfluids isvital especiallyin turningofnickel basedalloy-Inconel625.However,therearesomedamagesto theenvironmentandworkerhealthwhenusingconventional (flood)cuttingfluids[4].Inadditiontothese,itisknownthat theuseofconventionalcuttingfluidincreasestheproduction costs[5]. Asaresult,the amount ofcoolantused inmetal removaloperationsshould bereduced.Currently,thereare variousalternative techniquesavailable.For example, min-imumquantitylubrication(MQL) andcryogeniccoolingare someofthemwhichare quitepopular[6].IntheMQL sys-tem,thecuttingfluidatanaverageflowrateof10−100ml/his mixedwithairandsenttothetool-workregionasanaerosol [7].Inthissystem,thelubricationfunctioniscarriedoutby meansofcuttingoil,whilethecoolingfunctionisachieved byusingcompressedairathighpressure.ThankstotheMQL system,verysmallamountofcuttingfluidisusedandsothe negativeimpactofconventionaltechniqueonenvironment, workerhealthandproductioncostsisminimized[8–10].Some researchesinthe literatureavailable[11–16] haveindicated thattheMQLtechniquecanbeanoptiontotheconventional techniques.Anotheralternativecoolingmethodiscryogenic cooling.Cryogeniccoolingisusedespeciallyinheavy machin-ingconditions,suchasnickelalloys[17],titaniumalloys[18]

2

themostpreferredgasincryogeniccooling.TheeffectofLN2

onmachinabilitywasinvestigatedinseveralstudies[23–25]. Inthesestudies,thepositivecontributionofcryogeniccooling withLN2tomachinabilityhasbeenreportedbyresearches.

In the above studies, it is seen that both the MQL and the cryogeniccoolingcanbeanalternativetowet machin-ing(conventionalcooling).However,althoughthesemethods are efficient in light and medium cutting conditions, they are ineffectiveunderheavymachiningconditions.Inheavy machining conditions, the MQL system shows deficiencies with regard to the cooling, while cryogenic cooling also exhibitsdeficienciesrelatedtolubrication[26].Therefore,in ordertobenefitfromfurthercoolingandlubrication,several studieshavebeenconductedespeciallyunderheavy machin-ingconditions,wherecryogeniccoolingisusedtogetherwith theMQL[27].

Accordingtotheliteraturereview,itisseenthatstudies have been made byresearches toexplore the influenceof differentcooling/lubricationmethodsonmachinability indi-cators.Inaddition,someexperimentalstudiesfocusedonthe hybridcoolingmethodsuchasCryoMQL[25].Asaresultof the authors’research, no studieswere found onthe effect of the hybrid cooling/lubrication method as well as MQL and cryogenic cooling on investigating the surface rough-ness/topography, cutting insert wear, wear mechanisms, cuttingtemperaturesandchipmorphologyinmachining Ni-based alloy Inconel 625. In present work, to fill this gap, weaimedtoinvestigatetheeffectivenessofMQL,cryogenic coolingandCryoMQLcooling/lubricationregimesinturning Ni-based alloy 625. In addition, the performance of these regimesunderdifferentvariationsofthecuttingspeedwas alsostudied.

2.

Material

and

methods

2.1. Material-alloy625,machineandcuttingtool

Inconel 625 (alternatively known as alloy 625)was chosen as workpiece material withthe specification ofAMS 5666. Thismaterialisanickel-basedalloywithexcellent thermo-mechanicalproperties.Thankstotheseproperties,theyfind numerousapplicationsincriticalsectorssuchasaerospace, nuclearchemistryandpetrochemicalindustry.Theworkpiece materialproperties arelisted inTables 1and2. ACCUWAY JT-150-8CNClathe(maximumspindlespeed:4000rpm) man-ufacturedbyTaiwanwasemployedduringtheexperiments. Intheturningexperiments,atypeofPVD-TiAlN/TiNcoated

(3)

Table1–Chemicalcompositionofalloy625(%weight).

Ni Cr Fe Mo Nb C Mn Si Al Ti Co

58 20–23 5 8–10 3.15–4.15 <0.1 ≤0.5 ≤0.5 ≤0.4 ≤0.4 ≤1

Table2–Mechanicalandphysicalpropertiesofalloy625. Ultimatetensilestrength[MPa] Modulusof

elasticity[MPa]

Density[g/cm3] Meltingrange [◦C] Thermal conductivity [W/mK] Elongation(%) 880 209 8.47 1290–1350 9.8 35

Table3–Cuttingfluidproperties. Kinematic viscosity,at 20◦C(mm2/s) Kinematic viscosity,at 40◦C(mm2/s) Viscosityindex, VI

Density(kg/m3) Flashpoint(C) Thermal

conductivity (W/mK)

18 10 192.02 860 205 0.1684

Table4–Turningparameters.

Cuttingparameters Unit Level1 Level2 Level3

Coolingregime,CR – MQL Cryogenic(LN2) CryoMQL(MQL+LN2)

Cuttingspeed,Vc m/min 50 75 100

Feedrate,f mm/rev 0.12 – –

Cuttingdepth,ap mm 0.5 – –

carbidetool(ISOdesignation:CNGG120404(S05-S25)) man-ufactured by Taegutec, Korea (manufacturer’s insert code: TT5080)wasutilized withspecificationsofrakeangle: −6◦, clearanceangle:0◦,majoredgecuttingangle:75◦ and nose radius:0.4mmbecausethePVDAlTiNcoatedqualityonthe ultra-thinsubstrategivesanexcellentsurfacefinishfor turn-ingofhightemperaturealloys.Thecuttinginsertwasrigidly mounted to a tool holder having ISO designation: PCLNR 2020M12-TB.

2.2. Cooling/lubricationconditionsandcutting parameters

Intheexperiments,threedifferentcooling/lubrication strate-gies were used. These are MQL, cryogenic cooling and CryoMQL(MQL+LN2).ForMQLexperiments,VariomodelMQL devicemanufacturedbySKFwasoperated.Water-soluble cut-tingoilformulatedwithvegetableestersandspecialadditives wasemployedduringtheexperiments.Thephysical proper-tiesofcuttingfluidaregiveninTable3.TheMQLsystemwas configuredfor8barpressureand50ml/hflowrate.Thecutting oilwassprayedatadistanceof15mmwithnozzlediameterof 2mmandsprayangleof30◦.Thesprayingprocesswasdone ontherakeface.InordertodetermineMQLparameters,itwas utilizedfrom preliminaryexperiments andliterature[7,27]. Theoperatingparametersusedinthisstudy areillustrated inTable4.Here,inordertoseetheimpactcooling/lubrication regimesatdifferentcuttingspeeds,thefeedandcuttingdepth werekeptconstant.

Theliquidnitrogen(LN2)at−196◦Cwasemployedfor

cryo-geniccoolinginexperiments.TheLN2 wasstoredinTaylor

WhartonXL-45HPmodeltank.Itwasdeliveredtothecutting areawiththehelpofaflexiblevacuuminsulatedhose.Inthis

way,heatlosseshavebeentriedtobeminimized.Thenozzle witha3mmoutletdiameterwasusedtobesimilartotheMQL systemduringthesprayingoftheLN2.Theliquidnitrogenwas

passedtothecuttingpointovertherakefaceatadistanceof 15mmwithasprayangleof30◦.Aschematicoverviewofthe experimentalsetupisseeninFig.1.

2.3. Measurements

In order to collect the data of the cutting temperatures, Infrared Optris PI 450 camera with optical resolution of 382×288 pixels, framerate of80Hz and real-time thermo-graphicmonitoring wasemployed.Asoftware wasusedto evaluatethetemperaturedatadeterminedfromthecamera. Inthismeasurement,theemissivityvalueisveryimportant indeterminingthe temperaturecorrectlydependingonthe material.Inthisstudy,theemissivityvalueforInconel625was chosenas0.5.Forsurfaceroughnessmeasurement,Mahr Mar-surfPS10devicemanufacturedbyGermanywasemployed. Inmeasurements,Ra(averagesurfaceroughnessvalue)was considered.ThismeasurementwasconductedbasedonISO 4287standard[28].Measuringdevicehasbeensetto0.8mm, 4mmand4.8mmforsamplinglength,evaluationlengthand travellength,respectively.Theworkpiecewasrotatedinthe cuttingdirectionandthemaindataoftheRawascalculatedby measuringatdifferentregions.Moreover,aPhaseViewoptical profilometerdevicewasemployedfor3Dsurfacetopography image.Intoolwearexperiments,AM4113ZT(Dino-Lite) polar-ized digitalmicroscopewas usedtodeterminethe amount ofwear.WeartypesweredeterminedaccordingtoISO3685 standard.Afterthewearvaluewas determined,toanalyze thewearmechanismoncuttinginsertandchipmorphology, ascanningelectronmicroscope(SEM;ZeissLEO440)wasused.

(4)

Fig.1–Experimentalsetupandworkflow.

Moreover,it has previouslybeen reported that superalloys tend to adhere to the cutting tool [29]. Thus, work mate-rial adheredtothe cuttingtoolwasinvestigatedbymeans ofEnergy-dispersive X-rayspectroscopy (EDX)andso built-up-edge(BUE), built-up-layer (BUL)and their damagewere analyzed.

3.

Results

and

discussion

3.1. Cuttingtemperature

Themajorityofthemechanicalenergyusedduringthecutting processisconvertedtoheatenergy.Theresultingtemperature hasadirectimpactonfactorssuchasdimensionalaccuracy, geometricaccuracy,andsurfaceintegrityandparticularlytool wear/lifethatareofgreatimportanceformachinability[30]. Therefore,controllingthe cuttingtemperatureisimportant formachiningefficiency.Inthispartofthestudy,itisaimed tofindtheoptimumparametergroupforminimizingthe cut-tingtemperatures.WhenFig.2isexamined,itisseenthatthe mosteffectivecooling/lubricationenvironmentonthecutting temperatureisCryoMQL.However,itshouldbenotedthatthe resultsobtainedfromcryogeniccoolingandCryoMQLcooling areclosetoeachother.Thehighestcuttingtemperaturewas obtainedfromMQL.Thecuttingtemperaturesthatoccurred inLN2andCryoMQLwerereducedby21.7%and24.9%,

respec-tivelycomparedtotheMQL.TheuseofLN2providedafurther

reduction in cutting temperatures compared to MQL. It is clearly possible to say that cooling performance with LN2

Fig.2–Theeffectofcoolingregimesontemperature.

(5)

Fig.4–Imagesofmachinedsurfacesandtheir3Dtopographiesunderdifferentcuttingregimesa)MQL,Vc=50m/minb) MQL,Vc=75m/minc)MQL,Vc=100m/mind)Cryogenic,Vc=50m/mine)Cryogenic,Vc=75m/minf)Cryogenic,

Vc=100m/ming)CryoMQL,Vc=50m/minh)CryoMQL,Vc=75m/mini)CryoMQL,Vc=100m/min.

usageismoreeffectivethanMQL.Asitisknownfrom previ-ousstudies,thecryogeniccoolingenvironmentexhibitsbetter coolingperformanceunderheavymachiningconditions[31]. However,itisnotpossibletosaythatithasthesame perfor-manceintermsoflubrication.Inotherwords,inthecryogenic coolingprocess,thelubricationprocessisparticularlyweak forheavymachiningconditionsand thereforeitsefficiency decreases.Therefore,boththelubricationandcoolingfeatures wereeffectivelyusedintheCryoMQLsystem.Intermsof

cut-tingspeed,therewasalinearrelationshipbetweencutting speedand temperatures(Fig.2).Intheexperimentscarried outatcuttingspeedsof75m/minand100m/min,thecutting temperatureincreasedby7.2%and15.5%respectively, com-paredtothecuttingspeedof50m/min.Furthermore,withthe cuttingspeedrisingto100m/min,therateofincreaseinthe cuttingtemperaturewasmuchhigher.Thisisassociatedwith reducedcuttingabilityaswellasfriction.Asamatteroffact, theresultsconfirmingthissituationaregiveninsection3.3.

(6)

Fig.5–Animagefromthemachiningwithcryogenic cooling.

3.2. Surfaceroughness

Surfaceroughness Raonmaterialsiscommonly expressed toidentify the changing inthe heightofthe surface rela-tivetoabasicline. Theroughness ofsolidsurfacesisvery importantforsurfaceinteractionsincethesurfacefeatures impressthe actual contactarea,friction, wear, lubrication, fatiguestrength,etc.Furthermore,surfaceroughnessisalso prominentinsomeconditionsincludingoptical,electricaland thermalability,coloringandvisual,etc.[32].Therefore,itis veryimportanttodetermineandminimizesurfaceroughness. Therearemanyparametersaffectingthesurfaceroughness, suchascuttingspeed,feedrate,cuttingdepth,cuttingtool materialand toolcoating,cooling/lubricating environment, etc.Inthisstudy,otherparameterswerekeptconstantinorder tomoreclearlyanalyzetheeffectofthe cooling/lubrication regimetogetherwiththecuttingspeed.

Fig. 3 represents the average surface roughness. Here, it is seen that CryoMQL gives the lowest surface rough-ness(Ra=1.42␮m)under CryoMQL coolingenvironment at 75m/minofcuttingspeed;ontheotherhand,thehighest sur-faceroughness(Ra=2.438␮m)wasobtainedundercryogenic coolingat50mm/min ofcuttingspeed.Comparedto cryo-genicmachining, RavaluesobtainedbyMQLand CryoMQL decreasedby13.8%and24.82%,respectively.Fromthisresult, itissaidthatbothcoolingandlubricationwithCryoMQLhave a positiveeffect on the surfacequality. When CryoMQL is used,itismoreeffectivebecauseofcombinedwiththecooling processthatreducesthecuttingtemperatureandthe lubrica-tionthatreducesfrictionandthereforetheroughnessvalue onthemachinedsurfaceislower.Ontheotherhand,when

Fig.7–Variationintoolweardependingon cooling/lubricationregimeandcuttingspeed.

theeffectofcryogeniccoolingwithLN2iscomparedtothe

effectoflubricationwiththeMQLprocess,itcanbesaidthat vegetable-basedcuttingoilinMQLhasagoodlubricating abil-ityduetotheprinciplestructureofvegetable-basedlubricant moleculesandelementcomponent[33].Vegetable-based cut-tingoilmoleculescancreateafilm layeronthe workpiece surface,andthefattyacidinvegetableoilcaninteractwiththe worksurface,creatingamonofilmofmetallicsoap.Theycan reducefrictionandwearandthuscanimprovesurfacequality [34].Inaddition,thetoollifeisincreasedbyusingthe appropri-atecoolingmethod.Thisisdirectlyrelatedtosurfacequality. Becausehomogeneityoftoolflankweardirectlyaffects sur-facequality[17].Toreachthelowestsurfaceroughnessvalue, itisdeterminedthatthemediumcuttingspeedselectionis suitable.Thishasbeenassociatedwithaslightincrementin speedtosoftenthecuttingzoneandmakecuttingeasier. How-ever,withthecontinuedincrementinspeed,thecuttingtool enteredthewearprocessandstartedtoloseitseffective cut-tingability.Thus,thesurfacequalitydeteriorated.Itcanbe clearlystatedherethatwhenthecuttingspeed100m/minis used, thecuttingtoolentersthe wearprocessearlierinall threecoolingenvironments.

Inadditiontotheevaluationoftheaveragesurface rough-ness, the texture and topographyof the machinedsurface arealsoimportantforfinalproductsbecauseabettersurface topographycanmakemanypositivecontributionstothe prod-uctbyimprovingthetribologicalpropertiesofasurface[35]. Inthispartofthepaper,theinfluenceofcuttingspeedsand cuttingregimesonsurfacetopographyisexaminedandthe resultsaregiveninFig.4.When evaluatedintermsof cut-tingspeed,itwasobservedthatthepeak-to-valleyheightwas higherat50m/mincuttingspeed,butthisdistancedecreased withincreasingspeed.Inother words,the surface

(7)

Fig.8–SEMimagesoftheworncuttinginsertunderMQLcuttingconditiona)Vc=50m/min,b)Vc=75m/min,c) Vc=100m/min.

phyimprovedanincrementinspeedto75m/min.However, asthecuttingspeedcontinuedtoincrease,itwasobserved thattherehasbeensomeclimbinginthedistancebetweenthe peaksandthevalleys.Thehighcuttingspeedcauseshighheat generation,whichacceleratesthewearandadverselyaffects the surfaceroughness. Furthermore, the workpiece rotates fasteraroundthecuttingtoolasthecuttingspeedincreases. Thiscontributestosurfacedeteriorationandtheformation ofirregularsurfacetexture[36].Anotherfactoraffectingthe surfacetopographyisthetribologicalinteractionsatthe tool-chipinterface.WhenFig.4isanalyzedfromthisview,itisseen thatthelowestpeak-to-valleyheightisobtainedbyCryoMQL. Thehighestpeak-to-valleyheightisformedinthecryogenic coolingresults.Animagefromtheexperimentwithcryogenic coolingisgiveninFig.5,thechipwasnotregularlybrokenand thereforecouldnotbeevacuatedfromthecuttingarea.Asa resultoftheongoingcuttingoperation,itwasobservedthat chipwasplasteredontotheworkpiece.Althoughthecooling

abilityofcryogeniccoolingissuperior,thelackoflubrication duringcryogenicmachiningmakeschipremovaldifficultand thereforeadverselyaffectsthesurfacequality.The peak-to-valley heightwas lowerthan theother twomethodswhen cryogenic coolingand theMQLsystemwere usedtogether. Moreover,irregularfeedlinesanddebrishavebeenreduced withtheCryoMQLsystem.Thiscanbeexplainedbythe effi-cientoperationofbothlubricationandcooling[37].

3.3. Toolwearandwearmechanisms

Machinabilitycriteriasuchassurfaceroughness,cutting tem-perature,surfaceintegrity,etc.are oftendependentontool wearandaredirectlyinfluencedbyit.Itisundertheeffect ofmanyparameterssuchastoolmaterial,coating applica-tion,cuttingspeed,feed,cuttingdepthandcoolingcondition, etc.[38].Inthissectionofthestudy,toevaluatetheimpactof diversecooling/lubricationregimesandcuttingspeedontool

(8)

Fig.9–SEMimagesoftheworncuttinginsertundercryogeniccuttingconditiona)Vc=50m/min,b)Vc=75m/min,c) Vc=100m/min.

wear,thefeedandcuttingdepthwere fixedas0.12mm/rev and0.5mm.Ineachexperiment,afixedvolumeofthechip (40,000mm3)wastakenfromtheworkpieceandthestateof

thewearwasobserved.Asaresultofthepreliminarytests, itisseenthattheeffectivewearkindoncuttinginsertwas notchwearasseeninFig.6.

Therefore, it can be said that notch wear is primarily responsibleforcompletingthelifeofthecuttingtools.Ithas also been reported inprevious studies that notch wear is mostlyobservedinthemachiningofNi-basedalloys[27,29].In manystudiesofmachiningofNi-basedalloys,althoughnotch wearhasbeenobserved,thereisnocommonconsensusabout thecauseofit.Inaddition,thecauseofthenotchhasbeen associatedwithmorethanonefactor.Theycanbecountedas hightemperature,stress,work-hardeningandabrasivechips [39].

Fig.7indicates the variationintoolweardependingon cooling/lubricationregimesandcuttingspeed.Itwasfound

thatwhilethemaximumtoolwear(2.602mm)occurredunder cryogenic cooling, the minimum toolwear (0.211mm) was reachedfromtheCryoMQLcuttingenvironmentinturningof Ni-basedInconel625.Accordingtothis,toolwearisreduced by50.67%and79.60%withtheuseofMQLandCryoMQL com-paredwithcryogenicmachining.Aninterestingfindingthat MQLismoreeffectivethancryogenicmachininginreducing toolwear.Thecryogeniccoolinghelpsreducethe tempera-tureinthecuttingzoneonlythroughforcedconvection,while theMQLmethodcontributesmorethanone.Firstly,the lubri-cation inMQLwrapsthe cutting regionwith alayerofoil andthishelpstoreducefriction.Secondly,MQLcontributes totheheattransferduetotheevaporationofdroplets. More-over,theimprovementintoolwearwasmoreobviouswith the useofCryoMQL.Similarresultsontheeffective perfor-manceoftheCryoMQLhavebeenreportedbyBagherzadeh and Budak[40]and Gupta[6].Bagherzadeh andBudak[40] claimedthatmorethanonemechanismonthisperformance

(9)

Fig.10–SEMimagesoftheworncuttinginsertunderCryo-MQLcuttingconditiona)Vc=50m/min,b)Vc=75m/min,c) Vc=100m/min.

couldbeeffectivewiththesimultaneousapplicationofMQL andcryogeniccooling.Thesearehigherpenetrationofoilinto thechiptoolinterface,higherheattransferbecauseofvery low-temperatureoil,sprayingtheoilintothepre-cooledzone andreducingoilburningwithcryogeniccoolingand increas-ingtheefficiencyofMQL.AsseeninFigs.8,9and10,SEM imagesindicate thecharacterizationofwearmechanismof thecuttingtoolunderdifferent cooling/lubricationregimes (MQL,cryogeniccoolingandCryoMQLandatcuttingspeeds of50,75,and100m/min). Itisobservedfrom thesefigures thattheactivewearmechanismwasfoundtobeadhesion inallcuttinginserts.Thepresenceoftheadhesion mecha-nismhasbeenprovenwiththebuilt-upedge(BUE)andlayer (BUL)formsoccuronthe cuttingtool.Moreover,asseen in Fig. 11, EDX analysis made on the rake surface of cutting toolsclearly demonstrates that adhesionis effectivein all cooling/lubricating regimes since the element composition ofthe workmaterialisobtainedintheseanalyses.Habeeb

et al.[41] statedthat thesephenomena (BUEand BUL)are verycommonduringcuttingNi-basedsuperalloys.Ithasbeen reportedbyEzugwuetal.[42]thatwelding/adhesionof Ni-based superalloys onto the cutting insert often observe in cuttingprocess,whichcausesseriousdamagetothecutter. Itcanbesaidthatoncethetemperatureofthetool-chip inter-facereachesacriticallevel,thetendencyofworkpiecetoweld increasesduetothechemicalclosenessbetweenthecutting toolmaterialandtheworkmaterial.WhenFigs.8,9and10 wereanalyzed,itwasseenthatthecooling/lubrication meth-odsusedinthisstudywereinsufficienttoeliminatetheBUE andBULforms.Moreover,anothercommontypeofdamage that occurredinallconditionswas chipping.Cantero etal. [43]emphasizedthattoolwearmechanismsarenottreatedas separatesubjects,butareallinterrelated.BUEandBUL result-ing from the adhesion mechanism tend to encouragetool chippingwhichisformedbytheseparationoftoolmaterials togetherwiththeworkpiecematerialadheredontool,because

(10)

Fig.11–EDXanalysisforworncuttinginsertundera)MQL,b)Cryogenic,c)CryoMQL.

the BUE and BUL are notcompletely stableon the cutting insert.

InFigs.8,9and10,itcanbeseenthatanothereffectivewear mechanismoncuttingtoolwasabrasivewearwhenturning ofNi-basedalloy625.Groovesparalleltodirectionofthechip flowintheflank-surfaceprovedthepresenceofabrasivewear. Asstatedinpreviousresearches,abrasiveweariscommon duringthecuttingofnickel-basedalloys[39].Hard-abrasive carbidesinworkpiecematerialenterthetool-workpiece inter-face,whichproducesasimilareffecttothegrindingprocess, whichcausesabrasivewear.Fig.9showsthatabrasivewear in machining under cryogenic cooling conditions is quite noticeablecomparedtoothercooling/lubricationconditions. Moreover,anincreaseincuttingspeedacceleratedthis situa-tion.Thereasonforthisisthoughttobethepoorperformance ofcryogenic coolinginlubricating, asthe friction between thetoolandtheworkpieceincreasesinunittime.WhenSEM

photographsareexamined,anotherfindingisnotching. How-ever, asmentionedabove,thereisnogeneralconsensusin thecategoryoffactorscausingnotching.Whenanevaluation wasmadeaccordingtocooling/lubricationconditionsand cut-tingparameters,notchingwasobservedinalmostallcutting speedsandcuttingconditions.However,itcannotbesaidthat thereisasignificant changeinparallelwiththe changein coolingconditionsandcuttingparameters.

3.4. Chipmorphology

Chip morphology provides important clues about the cut-tingmechanicsandiscloselyrelatedtosurfaceintegrityof thefinishedproduct(surfaceroughness,surfacetopography, etc.)andmachiningefficiency.Therearemanyvariablessuch as cutting tool and workpiece material properties, operat-ingparameters(feed,cuttingspeed,cuttingdepth,etc.)and

(11)

Fig.12–Chipmorphologiesoffrontandbacksideundercuttingspeed75m/minandfeedrate0.1mm/revwhenusinga) MQL,b)Cryoandc)CryoMQL.

cooling/lubricationconditionsaffectingchipmorphologyand itsshape [44].Inpresent work,the impactofdiverse cool-ing/lubricationstrategiesonchipformationmorphologyhas beenanalyzedwhilekeepingothervariablesconstant.Forthis purpose,SEMphotographsofthechipsproducedunder cryo-geniccooling,MQL,CryoMQLcoolingregimesat75m/minof speedand0.1mm/revoffeedwereconsidered.Fig.12shows themicrographsofthefrontandbacksurfacesofthechips producedunderdifferentcuttingconditions.Whenthe back-sideofthechipisexamined,it isseenthatlargescratches occurowingtotheseverefrictionbetweenthetoolrake sur-faceandthechip,especiallyincryogeniccoolingcondition. Thisisanindicationthatthelubricityofthecryogenic cool-ingatthetool-chipinterfaceisinsufficient.Thefactthatthe highestRavalueand poor surfacetopography(see section 3.2)obtainedundercryogeniccoolingconditionconfirmsthis situation.MQLandCryoMQLcoolingregimeswerefoundto significantlyreducescratches on the backface ofthe chip (Fig. 12(a) and(c)).Here,it canbesaid thattheMQLhas a decisiverole inreducing thefriction atthe tool-chip

inter-facethankstoitssuperiorlubricity.Bycombiningthesuperior coolingperformance ofcryogenic coolingand the superior lubricationpropertiesofMQL,thereductionofscratcheson the backface ofthechip, betterRavaluesand highertool lifehasbeenachieved.Lookingatthechipfrontsurfaces, ser-ratedchipformationisclearlyseenforallcuttingconditions (Fig.12).

When thefrontsurfacesofthechipsareexamined, ser-ratedchipformationisclearlyvisibleforallcuttingconditions (Fig. 12). Large serration occurred inthe cryogenic cutting condition while small serration occurred in the MQL and CryoMQLcuttingconditions.In addition,chip cross-section photographsgiveninFig.13showsthattheformationof ser-rationundercryogeniccoolingconditionhassharpandlinear linescomparedtoMQLandCryoMQL.Here,itcanbesaidthat thereisarelationshipbetweentheformationofserrationon thefrontfaceofthechipandthescratchesonthebacksurface ofthechip.Therefore,itcanbestatedthathighdeformation duetofrictionmaybeeffectiveinclarifyingserration forma-tion.

(12)

Fig.13–SEMimagesofchipcrosssectionproducedundera)MQL,b)Cryoandc)CryoMQL.

4.

Conclusions

Inthis experimentalwork,Ni-based superalloy-Inconel 625 was handled in order to determine the consequences of thevariouscooling/lubricatingcuttingconditionsandcutting speedontoolwearand mechanisms,cuttingtemperatures, surfaceroughness,surfacetopographyandchipmorphology inturningprocess.Thefindingsfromthisworkwere summa-rizedasfollows:

1) Hybridcooling/lubricationstrategy(CryoMQL)hasrevealed bettersurfaceroughnessRa(1.42␮m)andsurface topogra-phy(thelowestpeak-to-valleyheight),ontheotherhand, thehighestsurfaceroughness(2.438␮m)valueisobtained undercryogeniccooling.Accordingtothecalculations, Cry-oMQLimprovedtheRaby24.82%comparedtocryogenic cooling.Themediumlevelofcuttingspeed(75m/min)can bepreferred for the lowestroughness valueand lowest peak-to-valleyheightinthemachiningofInconel625. Fur-ther,MQLalsocontributedtotheimprovementofsurface roughnesswith%13.8.

2) The cutting temperature was highest (310◦C) in MQL cooling/lubricationregimeat100m/minofcuttingspeed while minimum cutting temperature (200◦C) obtained from CryoMQLat 50m/minof cuttingspeed.Thanks to cryogeniccoolingandCryoMQL,thecuttingtemperatures werereducedby21.7%and24.9%,respectivelycompared to the MQL. In the experiments carried out at cutting speedsof75m/minand100m/min,thecutting tempera-tureincreasedby7.2%and15.5%.Withthecuttingspeed rising to 100m/min, the rate of increase inthe cutting temperatureswasmuchhigher.Thiswasexplainedwith

thereducedcuttingabilityofthecuttingtoolaswellas friction.

3) Itwasobtainedthatthenotchwearisprimarilyresponsible forcompletingthelifeofthecuttingtoolsasseenclearly inallcuttingconditions.Itwasfoundthatmaximumtool wear(VB=2.602mm)isemerged from cryogeniccooling at100m/minofcuttingspeed,whileminimumtoolwear (VB=0.211mm)isinCryoMQLat75m/minofcuttingspeed. Moreover,toolwearisdecreasedby50.67%and79.60%by theuse ofMQL and CryoMQLcomparedwith cryogenic machining.AninterestingresultthatMQLismore effec-tivethancryogenicmachininginreducingtoolwearwhen turningNi-basedalloy625.

4) From SEM photographs, it was found that the effective mechanismforwearisadhesioninallcooling/lubrication regimesfollowedbyabrasivewearmechanism.Thesewear mechanismshavecauseddamagetothecuttingtoolsuch aschipping,BUEandBULformations,fracture,flankwear andnotchwear.Asaresultoftheadhesionmechanism, the BUE and BUL forms are very active on the cutting tool.Moreover,thepresenceoftheadhesionmechanism has been proven with EDX analysis. It is said that the cooling/lubricationmethodssuchasMQL,cryogenicand CryoMQLare insufficientto eliminate the BUE and BUL formsandtheirdamagessuchaschipping.

5) SEMphotographsofthebacksideofchipsproducedunder different cooling regimesindicated that large scratches formduetotheseverefrictionbetweenthetoolrake sur-faceandthechip,especiallyincryogeniccoolingcondition. ItwasfoundthatMQLandCryoMQLcoolingregimesreduce significantlythescratchesonthebacksurfaceofthechip. Furthermore,serratedchipformationatthefrontsurfaces ofthechipsisexistedforallcuttingconditions.Large

(13)

ser-rationoccurred inthecryogenic cuttingconditionwhile small serration occurred in the MQLand CryoMQL cut-tingconditions.Theformationofserrationundercryogenic coolingconditionhassharpandlinearlinescomparedto MQLandCryoMQL.

Conflict

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgment

TheauthorsthanktheErciyesUniversityResearchFundfor financialsupport(ProjectNumber:FBA/2018/8074).

r

e

f

e

r

e

n

c

e

s

[1]LotfiM,JahanbakhshM,AkhavanFaridA.Wearestimation ofceramicandcoatedcarbidetoolsinturningofInconel625: 3DFEanalysis.TribolInt2016;99:107–16,

http://dx.doi.org/10.1016/J.TRIBOINT.2016.03.008. [2]MagriA,DinizAE,SuyamaDI.Evaluatingtheuseof

high-pressurecoolantinturningprocessofInconel625 nickel-basedalloy.ProcInstMechEngPartBJEngManuf 2018;232:1182–92,

http://dx.doi.org/10.1177/0954405416664373.

[3]XaviorMA,AdithanM.Determiningtheinfluenceofcutting fluidsontoolwearandsurfaceroughnessduringturningof AISI304austeniticstainlesssteel.JMaterProcessTechnol 2009;209:900–9,

http://dx.doi.org/10.1016/j.jmatprotec.2008.02.068.

[4]TanXC,LiuF,CaoHJ,ZhangH.Adecision-makingframework modelofcuttingfluidselectionforgreenmanufacturingand acasestudy.JMaterProcessTechnol2002;129:467–70, http://dx.doi.org/10.1016/S0924-0136(02)00614-3. [5]SreejithPS,NgoiBKA.Drymachining:machiningofthe

future.JMaterProcessTechnol2000;101:287–91.

[6]GuptaMK,MiaM,SinghG,PimenovDY,SarikayaM,Sharma VS.Hybridcooling-lubricationstrategiestoimprovesurface topographyandtoolwearinsustainableturningofAl 7075-T6alloy.IntJAdvManufTechnol2019;101:55–69, http://dx.doi.org/10.1007/s00170-018-2870-4.

[7]YıldırımC¸V,KıvakT,SarıkayaM,ErzincanlıF.Determination ofMQLparameterscontributingtosustainablemachiningin themillingofNickel-Basesuperalloywaspaloy.ArabJSci Eng2017;42,http://dx.doi.org/10.1007/s13369-017-2594-z. [8]SarikayaM.Optimizationofthesurfaceroughnessby

applyingtheTaguchitechniquefortheturningofstainless steelundercoolingconditions.MaterTehnol2015;49:941–8, http://dx.doi.org/10.17222/mit.2014.282.

[9]YildirimC¸V,KivakT,ErzincanliF,etal.OptimizationofMQL parametersusingtheTaguchimethodinmillingofnickel basedwaspaloy.GaziUnivJSci2017;30:173–86.

[10]GuptaMK,SongQ,LiuZ,etal.Machiningcharacteristics basedlifecycleassessmentineco-benignturningofpure titaniumalloy.JCleanProd2019:119598,

http://dx.doi.org/10.1016/J.JCLEPRO.2019.119598. [11]YıldırımC¸V,KıvakT,ErzincanlıF.Influenceofdifferent

coolingmethodsontoollife,wearmechanismsandsurface roughnessinthemillingofnickel-basedwaspaloywithWC tools.ArabJSciEng2019;44:7979–95,

http://dx.doi.org/10.1007/s13369-019-03963-y. [12]SarıkayaM,YılmazV,GüllüA.Analysisofcutting

parametersandcooling/lubricationmethodsforsustainable

machininginturningofHaynes25superalloy.JCleanProd 2016;133:172–81,

http://dx.doi.org/10.1016/j.jclepro.2016.05.122.

[13]YıldırımC¸V,KıvakT,ErzincanlıF.Toolwearandsurface roughnessanalysisinmillingwithceramictoolsof Waspaloy:acomparisonofmachiningperformancewith differentcoolingmethods.JBrazilianSocMechSciEng 2019;41:83,http://dx.doi.org/10.1007/s40430-019-1582-5. [14]MiaM,GuptaMK,SinghG,etal.Anapproachtocleaner

productionformachininghardenedsteelusingdifferent cooling-lubricationconditions.JCleanProd

2018;187:1069–81,

http://dx.doi.org/10.1016/J.JCLEPRO.2018.03.279.

[15]GuptaMK,MiaM,PruncuCI,etal.Parametricoptimization andprocesscapabilityanalysisformachiningof

nickel-basedsuperalloy.IntJAdvManufTechnol 2019;102:3995–4009,

http://dx.doi.org/10.1007/s00170-019-03453-3. [16]AbbasAT,GuptaMK,SolimanMS,etal.Sustainability

assessmentassociatedwithsurfaceroughnessandpower consumptioncharacteristicsinnanofluidMQL-assisted turningofAISI1045steel.IntJAdvManufTechnol 2019;105:1311–27,

http://dx.doi.org/10.1007/s00170-019-04325-6.

[17]IturbeA,HormaetxeE,GarayA,ArrazolaPJ.Surfaceintegrity analysiswhenmachininginconel718withconventionaland cryogeniccooling.ProcediaCIRP2016;45:67–70,

http://dx.doi.org/10.1016/j.procir.2016.02.095. [18]ShokraniA,DhokiaV,NewmanST.Comparative

investigationonusingcryogenicmachininginCNCmilling ofTi-6Al-4Vtitaniumalloy.MachSciTechnol2016;20:475–94, http://dx.doi.org/10.1080/10910344.2016.1191953.

[19]YıldırımC¸V.Investigationofhardturningperformanceof eco-friendlycoolingstrategies:Cryogeniccoolingand nanofluidbasedMQL.TribolInt2020;144:106127, http://dx.doi.org/10.1016/J.TRIBOINT.2019.106127. [20]RaviS,PradeepKumarM.Experimentalinvestigationson

cryogeniccoolingbyliquidnitrogenintheendmillingof hardenedsteel.Cryogenics(Guildf)2011;51:509–15, http://dx.doi.org/10.1016/j.cryogenics.2011.06.006.

[21]KhannaN,AgrawalC,GuptaMK,SongQ.Toolwearandhole qualityevaluationincryogenicDrillingofInconel718 superalloy.TribolInt2019:106084,

http://dx.doi.org/10.1016/J.TRIBOINT.2019.106084.

[22]HongSY.Economicalandecologicalcryogenicmachining.J ManufSciEng2001;123:331–8.

[23]DhananchezianM.Effectivenessofcryogeniccoolingin turningofinconel625alloy.In:VijaySekarKS,GuptaM, ArockiarajanA,editors.Advancesinmanufacturing processes.Singapore,Singapore:Springer;2019.p.591–7. [24]MiaM,SinghG,GuptaMK,SharmaVS.Influenceof

Ranque-HilschvortextubeandnitrogengasassistedMQLin precisionturningofAl6061-T6.PrecisEng2018;53:289–99, http://dx.doi.org/10.1016/j.precisioneng.2018.04.011. [25]YıldırımC¸V.Experimentalcomparisonoftheperformanceof

nanofluids,cryogenicandhybridcoolinginturningof Inconel625.TribolInt2019;137:366–78,

http://dx.doi.org/10.1016/J.TRIBOINT.2019.05.014. [26]BenedictoE,CarouD,RubioEM.Technical,economicand

environmentalreviewoftheLubrication/Coolingsystems usedinmachiningprocesses.ProcediaEng2017;184:99–116, http://dx.doi.org/10.1016/j.proeng.2017.04.075.

[27]YıldırımC¸V,SarıkayaM,KıvakT,S¸irinS¸.Theeffectof additionofhBNnanoparticlestonanofluid-MQLontoolwear patterns,toollife,roughnessandtemperatureinturningof Ni-basedInconel625.TribiologyInt2019;134:443–56. [28]ISO4287.Geometricalproductspecifications(GPS).Surface

(14)

toollifeimprovementincryogenicmachiningoftitanium alloyTi-6Al-4V.IntJMachToolsManuf2001,

http://dx.doi.org/10.1016/S0890-6955(01)00041-4.

[32]BhushanB.Surfaceroughnessanalysisandmeasurement techniques.ModTribolHandbVolOnePrincTribol 2000:49–119.

[33]AsadauskasS,PerezJM,DudaJL.Lubricationpropertiesof castoroil-Potentialbasestockforbiodegradable

lubricants©.LubrEng1997;53:35–40.

[34]WangY,LiC,ZhangY,etal.Experimentalevaluationofthe lubricationpropertiesofthewheel/workpieceinterfacein minimumquantitylubrication(MQL)grindingusing differenttypesofvegetableoils.JCleanProd2016;127:487–99, http://dx.doi.org/10.1016/j.jclepro.2016.03.121.

[35]S¸irinS¸,KıvakT.Performancesofdifferenteco-friendly nanofluidlubricantsinthemillingofInconelX-750 superalloy.TribolInt2019;137:180–92,

http://dx.doi.org/10.1016/J.TRIBOINT.2019.04.042. [36]CapassoS,PaivaJM,JuniorEL,etal.Anovelmethodof

assessingandpredictingcoatedcuttingtoolwearduring InconelDA718turning.Wear2019;432–433:202949, http://dx.doi.org/10.1016/J.WEAR.2019.202949.

[40]BagherzadehA,BudakE.Investigationofmachinabilityin turningofdifficult-to-cutmaterialsusinganewcryogenic coolingapproach.TribolInt2018;119:510–20,

http://dx.doi.org/10.1016/J.TRIBOINT.2017.11.033.

[41]HabeebHH,Abou-El-HosseinKA,MohammadB,Kadirgama K.Effectoftoolholdergeometryandcuttingconditionwhen millingnickel-basedalloy242.JMaterProcessTechnol 2008;201:483–5,

http://dx.doi.org/10.1016/J.JMATPROTEC.2007.11.154. [42]EzugwuEO,WangZM,MachadoAR.Themachinabilityof

nickel-basedalloys:areview.JMaterProcessTechnol 1999;86:1–16,

http://dx.doi.org/10.1016/S0924-0136(98)00314-8.

[43]CanteroJL,Díaz-ÁlvarezJ,MiguélezMH,MarínNC.Analysis oftoolwearpatternsinfinishingturningofInconel718. Wear2013;297:885–94,

http://dx.doi.org/10.1016/J.WEAR.2012.11.004.

[44]MusaviSH,DavoodiB,NiknamSA.Effectsofreinforced nanoparticleswithsurfactantonsurfacequalityandchip formationmorphologyinMQL-turningofsuperalloys.J ManufProcess2019;40:128–39,

Referanslar

Benzer Belgeler

It is an attempt to formulate a definition for a system, which utilises different mediums like text, image and audio in the standards o f World Wide Web with a motive for

With the SPCEM, effective ionized impurity concentration of SiC substrate, extracted 2D-mobility, and sheet carrier density of the graphene layer are calculated with using

Yine son yıllarda yap ılan bir baüka çalıümada ise sol tip tutulum gösteren Ülseratif kolit'li hastalarda steroidli lav- man kullan ımı (6 hasta) ile SC úFN-α (6 hasta)

İndirekt bilirubin değerinin doğum şekli açısından karşılaştırılması (Mann Whitney); Doğum şekli sezaryen ile vajinal olan bebeklerin indirekt bilirubin değerleri arasında

Overall, new strategies in the field of cartilage regeneration focus on the unique biochemical and physical properties of native cartilage to design novel tissue constructs that

a) Proses karakteristiği yukarıya doğru bir değişme göstermektedir. Nedenleri araştırılarak düzeltme veya değişime uygun yeni limitleri belirleme

Bu amaçla Eurocode 1 ve Avustralya standartları kullanılarak silo cidarı yüzeyine etki eden basınç yükleri doldurma ve boşaltma koşullarında (düşey,

Post- mortem examination revealed severe epithelial lung damage, and the cause of death was noted as severe acute broncho- spasm, probably precipitated by the use of pepper spray