• Sonuç bulunamadı

ON THE SABBAN FRAME BELONGING TO INVOLUTE-EVOLUTE CURVES

N/A
N/A
Protected

Academic year: 2021

Share "ON THE SABBAN FRAME BELONGING TO INVOLUTE-EVOLUTE CURVES"

Copied!
13
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ON THE SABBAN FRAME BELONGING TO

INVOLUTE-EVOLUTE CURVES

by

Suleyman SENYURT a*, Yasin ALTUN a, Ceyda CEVAHIR a,

and Huseyin KOCAYIGIT b

a Faculty of Art and Science, Ordu University, Ordu, Turkey b Faculty of Education, Manisa Celal Bayar University, Manisa,Turkey

Original scientific paper https://doi.org/10.2298/TSCI181130054S

In this paper, we investigate special Smarandache curves with regard to Sabban frame of involute curve. We create Sabban frame belonging to spherical indicatrix of involute curve. Smarandache curves are explained by Sabban vectors belong-ing to spherical indicatrix. Then, we calculate geodesic curvatures of this Sma-randache curves. The results found for each curve is given depending on evolute curve. The example related to the subject is given and their figures are drawn with MAPPLE program.

Key words: geodesic curvature, involute-evolute curves, Sabban frame, Smarandache curves

Introduction and preliminaries

The involute of the curve is recently known by the mathematicians especially the differential geometry researchers. There are many essential consequences and properties of curves. Involute curves are examined by some authors [1, 2]. Frenet vectors of a curve are tak-en as the position vector and the regular curve drawn by the new vector is idtak-entified. This curve is called the Smarandache curve [3]. Special Smarandache curves are examined by certain au-thors [4-9]. Taskopru and Tosun [10] studied particular Smarandache curves belonging to Sab-ban frame on S2 [10]. Senyurt and Caliskan [11] investigated particular Smarandache curves

belonging to Sabban frame of spherical indicatrix curves and they gave some characterization of Smarandache curves. Let α: IE3 be a unit speed curve and the quantities { , , , , }T N Bκ τ

are collectively Frenet-Serret apparatus of this curve. The Frenet formulae are also well known as, as follows [2]:

( ) = ( ) ( ), ( ) = ( ) ( ) ( ) ( ), ( ) = ( ) ( )

T s′ κ s N s N s′ −κ s T ss B s B s′ −τ s N s (1)

Let 3

1: I E

α → be the C2-class differentiable curve and

1 1 1

{ ( ), ( ), ( ),T s N s B s

1( ), ( )}s 1 s

κ τ is Frenet-Serret apparatus of the α1 involute curve, then [1]:

1= , 1= cos sin , 1= sin cos

T N N − ϕT+ ϕB B ϕT+ ϕB (2)

where ( , ) =W B ϕ. For the curvatures and the torsions we have:

(2)

1=| | , 1= ( )2 | | W c s c s W κτ τκ κ τ κ κ ′− ′ − (3) 2 2 1 2 1 2 1 2 2 2 2 sin = , cos = W , = W W W W W ϕ ϕ ϕ ϕ ϕ ϕ ϕ φ ϕ ′   ′ +     ′ + ′ + ′ + (4)

Let γ: IS2 be a unit speed spherical curve. We symbolize s as the arc-length

pa-rameter of γ. Let’s give:

( ) = ( ), ( ) = ( ),s s t s s d s( ) = ( ) ( )s t s

γ γ γ′ γ ∧ (5)

The { ( ), ( ), ( )}γ s t s d s frame is denominated the Sabban frame of γ on S2. The

spheri-cal Frenet formulae of γ is:

( ) = ( ),s t s t s( ) = ( )s g( ) ( ),s d s d s( ) = g( ) ( )s t s

γ′ ′ −γ +κ ′ −κ (6)

where κg is denominated the geodesic curvature of the curve γ on S2 which is in [10]:

( ) = ( ), ( )

g s t s d s

κ 〈 ′ 〉 (7)

On the Sabban frame belonging to involute-evolute curves

In this section, we investigated special Smarandache curves created by Sabban frame such as, { , ,T T T1 T1 1 ∧TT1}, { ,N T N T1 N1, 1∧ N1} and { , ,B T B T1 B1 1∧ B1}. We will give some results. These results will be expressed depending on the evolute curve. Let us find results on this Sma-randache curves. Let αT1( ) = ( )s T s1 , αN1( ) = ( )s N s1 and αB1( ) = ( )s B s1 be a regular spherical

curves on S2. The Sabban frames of spherical indicatrix belonging to involute curve are:

1 1

1= ,1 T = ,1 1 T = 1

T T T N T TB (8)

1 1

1= ,1 N = cos 1 1 sin 1 1, 1 N = sin 1 1 cos 1 1

N N T − ϕT + ϕB N T∧ ϕT + ϕ B (9)

1 1

1= ,1 B = 1, 1 B = 1

B B TN B TT (10)

From the eq. (6), the spherical Frenet formulae of ( )T1 , ( )N1 , and ( )B1 are, respectively:

1 1 1 1 1 1 1 1 1 1 1 1 1 = ,T T = T, ( T) = T T T T T τ T T T T τ T κ κ ′ ′ − + ∧ ∧ ′ − (11) 1 1 1 1 1 1 1 1 1 1 1 1 1 = N , N = N , ( N ) = N N T T N N T N T T W W ϕ′ ϕ′ ′ ′ − + ∧ ∧ ′ − (12) 1 1 1 1 1 1 1 1 1 1 1 1 1 = B, B = B, ( B) = B B T T B κ B T B T κ T τ τ ′ ′ − + ∧ ∧ ′ − (13)

Using the eq. (7), the geodesic curvatures of ( )T1 , ( )N1 , and ( )B1 are:

1 1 1 1 1 1 1 1 1 = , = , = T N B g τ g Wϕ g κ κ κ κ κ τ ′ (14)

Definition 1. Let ( )T1 by spherical curve of α1 and let T1 and TT1 be Sabban vectors of 1

(3)

(

1

)

1( ) = 1 1

2 T

s T T

β + (15)

Theorem 2. The geodesic curvature according to β1-Smarandache curve of the

invo-lute curve is:

(

)

(

)

1 4 1 1 1 1 2 1 3 5 2 2 2 1 1 = 2 2 gβ κ κ τ λ τ λ κ λ κ τ + + + (16) where: 2 2 4 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 = 2 , = 2 3 = 2 τ τ τ τ τ τ τ λ λ κ κ κ κ κ κ κ τ τ τ λ κ κ κ ′ ′               − − +   − −                 ′       + +             (17) Proof. 1/2 1 1( ) = (1/2 )(s T T1 T) β + or by eq. (8), we have:

(

)

1( ) =s 12 T N1 1 β + (18)

Taking the derivative of eq. (18), Tβ1 vector give as:

(

1 1 1 1 1 1

)

1 2 1 1 1 ( ) = 2 T sβ κT κN τ B κ τ+ − + + (19)

Considering the eqs. (18) and (19), we have:

(

)

1 1 2 2 1 1 1 1 1 1 1 1 1 ( )( ) = 2 4 2 Tβ s T N B β τ τ κ κ τ ∧ − + + (20)

Using the eq. (19), Tβ′1 vector is:

(

)

(

)

4 1 1 1 2 1 3 1 2 1 2 2 1 1 2 ( ) = 2 T sβ κ λT λ N λB κ τ ′ + + + (21)

From the eqs. (20) and (21), 1

gβ

κ geodesic curvature of β1( )s is:

(

)

(

)

1 4 1 1 1 1 2 1 3 5 2 2 2 1 1 = 2 2 gβ κ κ τ λ τ λ κ λ κ τ + + +

Corollary 3. The geodesic curvature belonging to β1-Smarandache curve of the

evo-lute curve is:

1 6 1 2 3 5 2 2 2 2 = ( ) (2 ) g W W W β κ φ λ φ λ λ φ ′ + ′ + ′ + (22)

(4)

where: 2 2 4 1 2 3 3 = 2 , = 2 3 = 2 W W W W W W W W W W ϕ ϕ ϕ ϕ ϕ ϕ ϕ λ λ ϕ ϕ ϕ λ ′ ′  ′   ′   ′   ′   ′   ′   ′  − −  +     − −  − −                  ′  ′   ′   ′  + +                   (23)

Proof. From the eqs. (2) and (18), we calculate:

1( ) = 1 ( cos sin )

2

s T N B

β − φ + + φ (24)

If we take derivative of this expression, Tβ1 vector is:

1 2 2 2 2 2 2

sin cos cos sin

= 2 2 2 W W W T T N B W W W β ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ′ − ′ + − + ′ ′ ′ + + + (25)

If cross product from the eqs. (24) and (25), we have: 1

1 2 2 2

2 2 2

2 sin cos 2 cos sin

= 4 2 4 2 4 2 W W T T N B W W W β ϕ ϕ ϕ φ ϕ ϕ ϕ β ϕ ϕ ϕ ′ + ′ − ∧ − + ′ ′ ′ + + + (26)

From the eq. (25), Tβ′1 vector is: 1 4 4 3 2 1 2 2 2 2 2 2 4 3 2 2 2 2 ( sin cos ) 2 2 = (2 ) (2 ) ( cos sin ) 2 (2 ) W W T T N W W W B W β λ ϕ λ ϕ λ ϕ ϕ λ ϕ λ ϕ ϕ − ′ + + ′ ′ + + + + ′ + (27)

If inner product from the eqs. (26) and (27), 1

gβ

κ geodesic curvature is found like eq. (22).

The proofs of the subsequent theorems and corollaries belonging to β2, β3, βς1, βς2, 3

ς

β , βξ1, βξ2, and βξ3- Smarandache curves will be similar to Theorem 2 and Corollary 3. Definition 4. Let ( )T1 be spherical curve of α1 and let TT1 and T T1∧ T1 be Sabban vec-tors of ( )T1 . In the fact β2-Smarandache curve is defined as:

1 1

2( ) =s 12(TT T T1 T)

β + ∧ (28)

Theorem 5. Let 1/2 α1 be involute of α. The geodesic curvature belonging to 2( ) = (1/2 )(s N1 B1),

β + β2-Smarandache curve of involute curve is:

(

)

[

]

2 4 1 1 1 1 2 3 5 2 2 2 1 1 = 2 ( ) 2 gβ κ κ τ ε κ ε ε κ τ + − + + (29) where:

(5)

3 2 4 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 4 1 1 1 3 1 1 1 = 2 2 , = 1 3 2 = 2 τ τ τ τ τ τ τ ε ε κ κ κ κ κ κ κ τ τ τ ε κ κ κ ′ ′             + +   − −             ′       − +       (30)

Corollary 6. Let α1 be an involute of α. The geodesic curvature belonging to 1/2

2= (1/2 )[(sin cos )T (sin cos ) ]B

β φ− φ + φ+ φ β2-Smarandache curve of evolute curve is:

(

)

2 5 2 4 1 2 3 2 2 = 2 2( ) g W W W β κ ϕ ε ε ε ϕ  ′ + − +     +    (31) where: 3 2 4 1 2 2 4 3 = 2 , = 1 3 2 = 2 W W W W W W W W W W ϕ ϕ ϕ ϕ ϕ ϕ ϕ ε ε ϕ ϕ ϕ ε ′ ′  ′   ′   ′   ′   ′   ′   ′  + + − − − −                                           ′  ′   ′   ′  − −  +       (32)

Definition 7. Let ( )T1 be spherical curve of α1, T1, TT1, and T T1∧ T1 be Sabban vectors of ( )T1 . In the fact β3-Smarandache curve is defined as:

1 1

3( ) =s 13(T T1 T T T1 T)

β + + ∧ (33)

Theorem 8. Let 1/2 α1 be involute of α. The geodesic curvature belonging to 3( ) = (1/3 )(s T N1 1 B1)

β + + β3-Smarandache curve of involute curve is:

(

)

3 4 1 1 1 1 1 1 2 1 1 3 5 2 2 2 1 1 1 1 = [(2 ) ( ) (2 ) ] 4 2 gβ κ κ τ κ ϕ κ τ ϕ κ τ ϕ κ κ τ τ − − + + − + + (34) where: 2 3 1 1 1 1 1 1 1 1 1 1 1 2 3 4 1 1 1 1 1 1 2 1 1 1 1 1 1 2 3 4 1 1 1 1 3 1 1 1 1 = 2 4 2 2 1 = 2 2 4 2 2 1 = 2 4 4 2 τ τ τ τ τ φ κ κ κ κ κ τ τ τ τ τ τ φ κ κ κ κ κ κ τ τ τ τ φ κ κ κ κ ′           − +   + +             ′             − + +   +                     − + −                 1 1 1 2 1 τ τ κ κ ′     +       (35)

Corollary 9. Let 1/2 α1 be involute of α. The geodesic curvature belonging to 3( ) = (1/3 )[(sins cos )T N (sin cos ) ],B

β ϕ− ϕ + + ϕ+ ϕ β3-Smarandache curve of evolute

(6)

(

)

3 4 1 2 3 5 2 2 2 = (2 ) ( ) (2 ) 4 2 g W W W W W W β κ ϕ φ ϕ φ ϕ φ ϕ ϕ  ′− − + ′ + − ′    ′ ′ + + (36) where: 2 3 1 2 3 4 2 2 3 = 2 4 4 2 2 1 = 2 2 4 2 1 = 2 4 W W W W W W W W W W W W W W ϕ ϕ ϕ ϕ ϕ ϕ φ ϕ ϕ ϕ ϕ ϕ ϕ φ ϕ ϕ φ ′  ′   ′   ′   ′   ′   ′  − + +   −  +   +    −             ′  ′   ′   ′   ′   ′   ′  − +  −  + −     +               ′   ′  − +             3 4 4 2 2 1 W W W W ϕ ϕ ϕ ′ ϕ  ′   ′   ′   ′  − + −                         (37)

Definition 10. Let ( )N1 be spherical curve of α1 and let N1 and TN1 be Sabban vectors of ( )N1 . In the fact βς1-Smarandache curve is defined as:

1 1 1 1 ( ) = ( ) 2 N s N T ς β + (38)

Theorem 11. Let 1/2 α1 be involute of α. The geodesic curvature belonging to

1 1 1 1 1 1( ) = (1/2 )( coss T N sin B) ς β − ϕ + + ϕ 1 ς

β -Smarandache curve of involute curve is:

(

)

1 4 1 1 1 2 1 3 5 2 2 2 1 1 = 2 2 ( ) g W W W ς β κ ϕ χ ϕ χ χ ϕ ′ − ′ +  + ′    (39) where: 2 2 4 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 = 2 , = 2 3 = 2 W W W W W W W W W W ϕ ϕ ϕ ϕ ϕ ϕ ϕ χ χ ϕ ϕ ϕ χ ′ ′  ′   ′   ′   ′   ′   ′   ′  − −  +     − −  − −                  ′  ′   ′   ′  + +                   (40)

Corollary 12. Let α1 be involute of α. The geodesic curvature Sabban apparatus be-longing to 1 2 2 2 2 2 2 2 2 2 2

sin cos cos sin

( ) = 2 2 2 2 2 2 W W W s T N B W W W ς ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ β ϕ ϕ ϕ ′ − ′ + ′ + ′ + − + ′ + ′ + ′ + 1 ς

β -Smarandache curve of evolute curve is:

(

)

1 1 2 3 5 2 2 1 = ( 2 ) 2 gβς κ ηχ ηχ χ η − + + (41)

(7)

where 1 2 2 1 = = cos (c s) W W ϕ ϕ η ϕ ϕ ′   ′ −    ′ +    and 2 2 4 3 1= 2 , 2 = 2 3 , 3= 2 χ − −η +η η χ′ − − η −η −η η χ′ η η+ +η′ (42)

Definition 13. Let ( )N1 be spherical curve of α1, TN1, and N T1N1 be Sabban vectors of ( )N1 . In the fact

2 ς

β -Smarandache curve is defined as:

1 1 2 1 1 ( ) = ( ) 2 N N s T N T ς β + ∧ (43)

Theorem 14. Let α1 be involute of α. The geodesic curvature belonging to

1/2

1 1 1 1 1 1

2( ) = (1/2 )[(sins cos )T (sin cos ) ],B ς

β ϕ − ϕ + ϕ + ϕ

2 ς

β -Smarandache curve of involute curve is:

(

)

2 4 1 1 1 2 3 5 1 1 2 2 2 1 1 = 2 2( ) g W W W W ς β κ ϕ φ φ φ ϕ ′ − +  +      (44) where: 2 3 1 1 1 1 1 1 1 1 1 1 1 2 3 4 1 1 1 1 1 1 2 1 1 1 1 1 1 2 3 4 1 1 1 1 3 1 1 1 1 = 2 4 2 2 1 = 2 2 4 2 2 1 = 2 4 4 2 τ τ τ τ τ φ κ κ κ κ κ τ τ τ τ τ τ φ κ κ κ κ κ κ τ τ τ τ φ κ κ κ κ ′           − +   + +             ′             − + +   +                     − + −                 1 1 1 1 2 τ τ κ κ ′     +       (45)

Corollary 15. Let α1 be involute of α. The geodesic curvature belonging to

2 2 2 2 2 2 2 ( )sin ( )cos ( ) = 2 2 2 2 2 2 W W W s T N B W W W ς ϕ ϕ ϕ ϕ ϕ β ϕ ϕ ϕ ′+ ′− ′− + + ′ + ′ + ′ + 2 ς

β -Smarandache curve of evolute curve is:

(

)

2 1 2 3 5 2 2 1 = (2 ) 2 gβς κ ηφ φ φ η − + + (46) where: 3 2 4 2 4 1= 2 2 , 2= 1 3 2 , 3 = 2 φ η+ η + η η φ′ − − η − η −η′ φ −η − η +η′ (47)

(8)

Definition 16. Let ( )N1 be spherical curve of α1 and let N1, TN1, and N T1∧ N1 be Sab-ban vectors of ( )N1 . In the fact βς3-Smarandache curve is defined as:

1 1 3 1 1 1 ( ) = ( ) 3 N N s N T N T ς β + + ∧ (48)

Theorem 17. Let 1/2 α1 be involute of α. The geodesic curvature belonging to

1 1 1 1 1 1 1

3( ) = (1/3 )[(sins cos )T N (sin cos ) ]B ς

β ϕ − ϕ + + ϕ + ϕ , βς3-Smarandache curve of

invo-lute curve is:

3 1 1 1 1 2 3 1 1 1 5 2 2 1 1 1 1 2 1 1 2 = 4 2 1 g W W W W W ς β ϕ ρ ϕ ρ ϕ ρ κ ϕ ϕ        + − −  +                      ′ ′  +        (49) where: 2 3 1 1 1 1 1 1 1 1 1 1 1 2 3 4 1 1 1 1 1 1 2 1 1 1 1 1 1 = 2 4 2 2 1 = 2 2 4 2 2 1 W W W W W W W W W W W ϕ ϕ ϕ ϕ ϕ ρ ϕ ϕ ϕ ϕ ϕ ϕ ρ ′                     − +   + +                       ′                         − + +   +                        2 3 4 1 1 1 1 1 1 3 1 1 1 1 1 1 = 2 4 4 2 2 W W W W W W ϕ ϕ ϕ ϕ ϕ ϕ ρ  ′                 +     +                                        (50)

Corollary 18. Let α1 be involute of α. The geodesic curvature belonging to 2 2 3 2 2 2 2 2 2 2 2 ( )sin cos ( ) = 3 3 3 3 ( )cos sin 3 3 W W W s T N W W W W B W ς ϕ ϕ ϕ ϕ ϕ β φ ϕ ϕ ϕ ϕ ϕ ϕ ′+ − ′ + ′ − + + ′ + ′ + ′+ + ′ + + ′ + 3 ς

β -Smarandache curve of evolute curve is:

(

)

3 1 2 3 5 2 2 (2 1) ( 1 ) (2 ) = 4 2 1 gβς η ρ η ρ η ρ κ η η − + − − + − − + (51)

(9)

where: 2 3 2 3 4 1 2 2 3 4 3 = 2 4 4 2 2 (2 1), = 2 2 4 2 2 (1 ) = 2 4 4 2 (2 ) ρ η η η η η ρ η η η η η η ρ η η η η η η ′ ′ − + − + + − − + − + − − + ′ − + − + − (52)

Definition 19. Let ( )B1 be spherical curve of α1 and let B1 and TB1 be Sabban vectors of ( )B1 . In the fact βξ1-Smarandache curve is defined as:

1 1 1 1 ( ) = ( ) 2 B s B T ξ β + (53)

Theorem 20. Let α1 be involute of α. The geodesic curvature belonging to

1/2 1 1 1( ) = (1/2 )(s N B) ξ β − + 1 ξ

β -Smarandache curve of involute curve is:

(

)

1 4 1 1 1 1 2 1 3 5 2 2 2 1 1 = ( 2 ) 2 gβξ τ κ κ ω κ ω τ ω τ κ − + + (54) where: 2 2 4 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 = 2 , = 2 3 = 2 κ κ κ κ κ κ κ ω ω τ τ τ τ τ τ τ κ κ κ ω τ τ τ ′ ′               − − +   − −                 ′       + +             (55)

Corollary 21. Let α1 be involute of α. The geodesic curvature belonging to 1

1

( ) = [(cos sin ) (cos sin ) ]

2 s T B ξ β ϕ+ ϕ + ϕ− ϕ 1 ξ

β -Smarandache curve of evolute curve is:

(

)

(

)

1 4 1 2 3 5 2 2 2 = 2 2 g W W ξ β ϕ κ ω ω ϕ ω ϕ ′ − +   ′ + (56) where: 2 2 4 1 2 3 3 = 2 , = 2 3 = 2 2 W W W W W W W W W W ω ω ϕ ϕ ϕ ϕ ϕ ϕ ϕ ω ϕ ϕ ϕ ′ ′               − −  +    − −   −  −                  ′       + +             (57)

Definition 22. Let ( )B1 be spherical curve of α1 and let TB1 and B T1∧ B1 be Sabban vectors of ( )B1 . In the fact βξ2-Smarandache curve is defined as:

1 1 1 2 1 ( ) = ( ) 3 B B s T B T ξ β + ∧ (58)

(10)

Theorem 23. Let 1/2 α1 be involute of α. The geodesic curvature belonging to 1 1 2( ) = (1/2 )(s T N ), ξ β − 2 ξ

β -Smarandache curve of involute curve is:

(

)

2 4 1 1 1 1 2 1 3 5 2 2 2 1 1 = (2 ) 2 gβξ τ κ κ ψ τ ψ τ ψ τ κ − + + (59) where: 3 2 4 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 4 1 1 1 3 1 1 1 = 2 2 , = 1 3 2 = 2 κ κ κ κ κ κ κ ψ ψ τ τ τ τ τ τ τ κ κ κ ψ τ τ τ ′ ′             + +   − −             ′       − +       (60)

Corollary 24. Let 1/2 α1 be involute of α. The geodesic curvature belonging to 2( ) = (1/2 )(coss T N sin B),

ξ

β ϕ + − ϕ

2 ξ

β -Smarandache curve of evolute curve is:

(

)

(

)

2 4 1 2 3 5 2 2 2 = 2 2 g W W ξ β ϕ κ ψ ϕ ψ ϕ ψ ϕ ′ − + ′ + (61) where: 3 2 4 1 2 2 4 3 = 2 , = 1 3 2 = 2 W W W W W W W W W W ψ ψ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ψ ϕ ϕ ϕ ′ ′               + + − − − −                             ′       − + ′ ′ ′       (62)

Definition 25. Let ( )B1 be spherical curve of α1 and let B1, TB1, and B T1B1 be Sabban vectors of ( )B1 . In the fact βξ3-Smarandache curve is defined as:

1 1 1 1 3 1 ( ) = ( ) 3 B B s B T B T ξ β + + ∧ (63)

Theorem 26. Let α1 be involute of α. The geodesic curvature belonging to 1/2 1 1 1 3 = (1/3 )(T N B), ξ β − + 3 ξ

β -Smarandache curve of involute curve is:

(

)

[

]

3 4 1 1 1 1 1 1 2 1 1 3 5 2 2 2 1 1 1 1 = (2 ) ( ) (2 ) 4 2 gβξ τ κ κ τ ζ τ κ ζ τ κ ζ τ κ τ κ − − + + − + + (64) where: 2 3 1 1 1 1 1 1 1 1 1 1 1 2 3 4 1 1 1 1 1 1 2 1 1 1 1 1 1 = 2 4 2 2 1 = 2 2 4 2 2 1 κ κ κ κ κ ζ τ τ τ τ τ κ κ κ κ κ κ ζ τ τ τ τ τ τ ′           − +   + +             ′             − + +   +             (65)

(11)

2 3 4 1 1 1 1 1 1 3 1 1 1 1 1 1 = 2 κ 4 κ 4 κ 2 κ κ 2 κ ζ τ τ τ τ τ τ ′             − + − + −                         (65)

Corollary 27. Let 1/2 α1 be involute of α. The geodesic curvature belonging to 3( ) = (1/3 )[(sins cos )T N (cos sin ) ],B

ξ

β ϕ+ ϕ + + ϕ− ϕ

3 ξ

β -Smarandache curve of evolute curve is: 3 4 1 2 3 5 2 5 2 = (2 ) ( ) (2 ) 4 2 g W W W W W ξ β ϕ κ ϕ ζ ϕ ζ ϕ ζ ϕ ϕ ′ − − + + −    + +    (66) where: 2 3 1 2 3 4 2 2 3 4 3 = 2 4 4 2 2 1 = 2 2 4 2 1 = 2 4 4 2 W W W W W W W W W W W W W W W W W ζ ϕ ϕ ϕ ϕ ϕ ϕ ζ ϕ ϕ ϕ ϕ ϕ ϕ ζ ϕ ϕ ϕ ϕ ϕ ′             − + +   + +   ′ ′ ′ ′ ′ ′             ′             − +  −   +  −   −   +                       − + − +                2 W ϕ ′   −         (67)

Example. Let us consider the unit speed evolute and involute curve, respectively:

( )

( )

( )

( )

( )

2 1 2 1 4

( ) = sin 2 sin 8 , cos 2 cos 8 , sin 3

5 40 5 40 15 s t t t t t α  − − +   

( )

( )

(

) ( )

1 2 1 4 2

( ) = sin 2 sin 8 1 cos 5 , ,

5 40 5 5

s s s s s

α  − + − −

( )

1

( )

4

(

) ( )

4

( )

3 3

cos 2 cos 8 1 sin 5 , sin 3

40 5 15 5 5

s + s + −s s s − + s

The Frenet vectors belonging to involute curve α1 are found:

1= 54cos(5 ), sin(5 ),45 35

T s s − 

 

( )

( )

( )

( )

( )

( )

1= 15cos 8 45cos 2 sin 3 45sin 2 15sin 8 cos 3

N  ss ss + s s

   

( )

( )

( )

( )

( )

( )

4sin 2 1sin 8 sin 3 cos 3 4cos 2 1cos 8 ,0

5 s 5 s s s 5 s 5 s   +++           

( )

( )

( )

( )

( )

( )

1= cos 3 45cos 2 15cos 8 sin 3 45sin 2 15sin 8

B s ss − s s + s

   

( )

4

( )

1

( )

( )

4

( )

1

( )

4

cos 3 sin 2 sin 8 sin 3 cos 2 cos 8 ,

5 5 5 5 5

s ss + s s + s

(12)

According to the definitions, we reach specific Smarandache curves belonging to Sab-ban frame of this curve. β1, β2, β3, βς1, βς2, βς3, βξ1, βξ2, and βξ3, see figs. 1-3.

Figure 1. (a) β1-curve, (b) β2-curve, and (c) β3-curve

(a) (b) (c)

Figure 2. (a) βς1-curve, (b) βς2-curve, and (c) βς3-curve

(a) (b) (c)

Figure 3. (a) βξ1-curve, (b) βξ2-curve, and (c) βξ3-curve

(a) (b) (c)

Conclusion

In this paper, we reviewed the well-known involute and evolute curves in the litera-ture. We created the Sabban frames on the unit sphere of the involute and evolute curves. We gived Smarandache curves from the Sabban frame and calculated the geodesic curvature of these curves. Finally, we gave an example and draw their figures in the MAPPLE program.

References

[1] Bilici, M., Caliskan, M., Some Characterizations For The Pair of Involute-evolute Curves is Euclidian E3,

Bulletin of Pure and Applied Sciences, 21E (2002), 2, pp. 289-294

[2] Hacisalihoglu, H. H., Diferensiyel Geometry (in Turkish), Academic Press Inc. Ankara, Turkey, 1994 [3] Turgut, M., Yilmaz, S., Smarandache Curves in Minkowski Sspace-Ttime, International Journal of

Math-ematical Combinatorics, 3 (2008), Jan., pp. 51-55

[4] Ali, A. T., Special Smarandache Curves in the Euclidian Space, International Journal of Mathematical

Combinatorics, 2 (2010), Jan., pp. 30-36

[5] Bektas, O., Yuce, S., Special Smarandache Curves According to Darboux Frame in Euclidean Space,

(13)

[6] Cetin, M., et al., Smarandache Curves According to Bishop Frame in Euclidean 3-Space, Gen. Math.

Notes, 20 (2014), 2, pp. 50-66

[7] Senyurt, S., Sivas, S., An Application of Smarandache Curve, University of Ordu Journal of Science and

Technology, 3 (2013), 1, pp. 46-60

[8] Senyurt, S., et al., Smarandache Curves According to Sabban Frame of Fixed Pole Curve Belonging to the Bertrand Curves Pair, AIP Conf. Proc. 1726 (2016), 020045

[9] Senyurt, S., et al., On The Darboux Vector Belonging To Involute Curve A Different View, Mathematical

Sciences and Applications E-Notes, 4 (2016), 2, pp. 121-130

[10] Taskopru, K., Tosun, M., Smarandache Curves on S2, Boletim da Sociedade Paranaense de Matematica 3

Srie. 32 (2014), 1, pp. 51-59

[11] Caliskan, A., Senyurt, S., Smarandache Curves in Terms of Sabban Frame of Spherical Indicatrix Curves,

Gen. Math. Notes, 31 (2015), 2, pp. 1-15

Paper submitted: November 30, 2018 Paper revised: December 26, 2018 Paper accepted: January 12, 2019

© 2019 Society of Thermal Engineers of Serbia Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions

Referanslar

Benzer Belgeler

In the light of recent events given above, the aim of this study is to study the evolution of analytic space curve according to the modified orthogonal frame and the

 All naturally occurring TL phosphors exhibit complex TL glow curves, consisting of several prominent (easy to identify) as well as a number of hidden (shoulder) TL peaks..  Only

Kullanımdaki Dizin (Current Folder) Penceresi; Matlab’ın herhangi bir anda aktif olarak kullandığı geçerli dizin yolunu değiştirmek, içinde bulunulan klasör içerisinde

Araştırma sonuçlarına gore okul yöneticilerinin karar verme stillerinin alt boyutları cinsiyet değişkenine incelendiğinde dikkatli, kaçıngan, erteleyici karar

Önce- den belirli sınırlara dayanarak kredi verebilen bankalar, kredi türev ürünlerinin çeşitlenmesiyle uygulamada verilen kredi sınırının ötesinde kredi verebilmekte-

Uzaktan eğitimin daha fazla kişiye aynı anda ulaşılabilmesi, birbirlerinden fiziksel olarak çok uzakta bulunan kişilere ulaşılabilmesi, eğitim giderlerini azaltması,

Kompleks / Sendromik vakalara genetik yaklaşım Bu gruptaki otizmli hastaların genel özellikleri şöyle sıralana- bilir: Dış görünüşte hastalığa özgü klinik bir bulgu

kin bilgilerin yer aldığı, ünlü bes­ tecilerden de söz eden, temel mü­ zik bilgilerini vermek üzere yazıl­ mış bir kitap, ama müzikle ilgili hiçbir şey