• Sonuç bulunamadı

Wireless deep-subwavelength metamaterial enabling sub-mm resolution magnetic resonance imaging

N/A
N/A
Protected

Academic year: 2021

Share "Wireless deep-subwavelength metamaterial enabling sub-mm resolution magnetic resonance imaging"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

A:

Physical

jo u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

Wireless

deep-subwavelength

metamaterial

enabling

sub-mm

resolution

magnetic

resonance

imaging

Sayim

Gokyar

a,b,∗

,

Akbar

Alipour

a,b

,

Emre

Unal

a,b

,

Ergin

Atalar

a

,

Hilmi

Volkan

Demir

a,b,c

aDepartmentofElectricalandElectronicsEngineering,DepartmentofPhysics,NationalMagneticResonanceResearchCenter(UMRAM),BilkentUniversity, Ankara,TR-06800,Turkey

bUNAM-NationalNanotechnologyResearchCenterandInstituteofMaterialsScienceandNanotechnology,BilkentUniversity,Ankara,TR-06800,Turkey cLuminous!CenterofExcellenceforSemiconductorLightingandDisplays,SchoolofElectricalandElectronicEngineering,SchoolofPhysicaland MathematicalSciences,PhysicsandAppliedPhysicsDivision,NanyangTechnologicalUniversity,Singapore

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received9May2017

Receivedinrevisedform4March2018 Accepted19March2018

Availableonline20March2018 Keywords:

Magneticresonanceimaging Metamaterials

Deep-subwavelengthresonators

a

b

s

t

r

a

c

t

Awirelessdeep-subwavelengthmetamaterialarchitectureisproposed,modeledanddemonstratedfora high-resolutionmagneticresonanceimaging(HR-MRI)applicationthatisminiaturizedtoberesonantat approximately␭0/1500dimensions.Theproposedstructurehastheadjustableresonancefrequencyfrom

65MHzto5.5GHzforthesub-cmfootprintarea(8mm×8mmforthisstudy)andprovidesaqualityfactor (Q-factor)ofapproximately80infreespacefor123MHzofoperation.Thisstructureconsistsofacross-via metallizedpartial-double-layermetamaterial,sandwichingadielectricthinfilm;thisstructurestrongly localizestheelectricfieldinthisfilmandhasahighlycapacitivemetaloverlaythatallowsforawiderange offrequencyadjustment.Althoughtheachievedresonancefrequenciesenablealargenumberof appli-cations,asaproof-of-conceptdemonstration,weexperimentallyshowedtheoperationofthiswireless metastructureinHR-MRItohighlightitsprecisefrequencyadjustmentandsignal-to-noise-ratio(SNR) improvementcapabilities.TheproposedmetamaterialwasfoundtomaintainshighQ-factorsdespite loadingwithabody-mimickinglossyphantom.Theexperimentalresultsindicatedthattheproposed metastructurecanbeusedasanSNR-enhancingdeviceoffering15-foldSNRenhancementsthatallows forimagingofobjectsassmallas200␮mindiameterinitsvicinity,atanunprecedentedlevelof resolu-tionatthegivenDCfieldusingstandardheadcoils.Asaresultofitsdeep-subwavelengthminiaturization accompaniedbyreasonableQ-factorwithoutstandingresonancefrequencyadjustmentcapability,this classofmetastructureisprovedtobeanexcellentcandidateforinvivomedicalapplications.

©2018ElsevierB.V.Allrightsreserved.

1. Introduction

FollowingtheseminalworkofVeselago[1],metamaterialshave beenintroducedindifferentapplicationsincludingmaterial char-acterization[2],sensing[3–8],compactingdevices[9]andimaging ofsubwavelengthfeatures[10],spanningfromopticalfrequencies [11]totheradiofrequency(RF)region[12].Theoperating band-widthof thosemetamaterial devices hasbeentypicallynarrow becauseofthehighqualityfactor(Q-factor)elementsusedinthe unitcelloftheirstructures.Becausemagneticresonanceimaging (MRI)isbasicallyanarrowbandwidthimagingtechnique, meta-materialscouldbequiteattractiveforuseinMRIapplications.It

∗ Correspondingauthorat:DepartmentofElectricalandElectronicsEngineering, DepartmentofPhysics,NationalMagneticResonanceResearchCenter(UMRAM), BilkentUniversity,Ankara,TR-06800,Turkey.

E-mailaddress:sayim@ee.bilkent.edu.tr(S.Gokyar).

waspreviouslyshownthatmetamaterialstructurescanbeusedfor RFfluxguiding[13]andsignal-to-noise-ratio(SNR)improvement purposes[14].Thesemetamaterials,inadditiontoconventional imaging hardwareofthescanner,properlymanipulatestheEM fieldsintheirvicinitytoincreaseimagingsignalemittedfromthe imagedobjects(e.g.,tissues).However,thesewirelessdesignsare largerinsizetobeusedformedicalapplications;hence,thedesign ofwirelesssub-cmmetamaterialstoaddressinvivoMRIofsub-mm featureshasnotbeendemonstratedtodate.

High-resolutionMRI(HR-MRI) suffersthefundamental prob-lemofreducedSNRbecauseofthedecreasedvolumeoftheimaged voxels.ToincreasetheSNRofanMRimage,severalmethodscan beapplied.TheseincludeusingahigherDCmagneticfield[15], using highdensitycoil arrays withparallel imaging techniques [16,17],increasingthenumberofimageacquisitionandusing high-sensitivitywiredcoils[18–27].Practically,theDCfieldstrengthis predeterminedandassumedtobeconstantaftertheinstallmentof themainmagnet.However,usinghighdensitycoilarrayswith par-https://doi.org/10.1016/j.sna.2018.03.024

(2)

allelimagingtechniquesisoneofthemajorbreakthroughs;their performancescanbeincreasedbyusingwirelesscoilsforinvivo applications.Increasingthenumberofacquiredimagesincreases theimaging duration and total RF powerexposure of patients, whichisnotsuitablefor clinicalimaging practices.Hence,for a predeterminedDCfieldandareceivercoilconfiguration,increasing SNRwithoutincreasingthetotalRFpowerexposureandimaging durationbecomespossiblewithlocalizedcoilsolutions. Unfortu-nately,thesecoils[18–28]requirecomplicated electronics(e.g., matchingcapacitors,solder,diodesand/orcryo-coolingetc.)and theyareconnectedtothebodyofthescannerviaRFcables.Hence, theirapplication toinvivo operationsis inherentlychallenging becauseof RF heating risks [29]. Using wireless resonators for invivoMRIapplicationswouldincreasethedetectionperformance ofanMRIsystem[13,14,30–32].Therehasbeensignificanteffortin theliteraturetodecreasetheresonancefrequency(f0)of metama-terials[33]suchas,increasingthesizeoftheelementsgiveninthe slab[34]and/orusinglumpedcapacitors[12]tocapacitivelyload theunitcells.Althoughmostofthesemethodsareacceptablefor certainapplications,suchasstrainsensing[35],theyarenot suit-ableforinvivoapplicationsbecauseoftheirsize[34]andlumped capacitorsusedtotunetheirresonancefrequencies[12].However, noneofthepreviouswirelessdesigns,ormetamaterials,achieved theelectricalsizeofsmallerthan␭/300andaQ-factorofmorethan 50simultaneouslywithoutusingcryo-coolingoralumpedelement thusfar.

In this work, to address the aforementioned problems of HR-MRI,wedemonstrateawirelessdeep-subwavelength metas-tructureenablingaQ-factorofapproximately80infreespace,in ahighlycompactfootprintarea.Heretheproposedwireless meta-materialstructure,whilebeingelectricallyverysmall,isalsoshown tobeanexcellentcandidateforinvivoMRIapplicationsincluding HR-MRIatsub-mmresolution.

2. Methods

Theproposedstructureisacross-viametallizeddouble-layer metamaterial,inwhichtheconsecutivemetallayersarestrongly coupled (i.e. both inductively and capacitively) to each other throughanoverlayregiontodecreasetheresonancefrequencytoa pre-definedfrequency.Fig.1.ashowsaschematicoftheproposed structure. Conductive cross-via metallization results in a thin-film loaded semi-turn over-laid double-layer resonator. Unlike theclassicalsplitringresonators(SRR)andmulti-layerSRRs,this metamaterialstructureexhibitshigherinductivecouplingviathis cross-viametallizationbetweenconsecutivelayers.

2.1. Equivalentcircuitmodelingandfull-wavenumericalanalysis EquivalentcircuitmodelsofSRRs[36]andspirals[37]havebeen previouslyreportedintheliterature,wherethesinglelayer res-onatorsaremodeledasa seriesRLCcircuitwithpropermutual couplingterms.ResonancefrequencyofaresonatorisgivenbyEq. (1)

f0= 1 2



LeffCeff

(1) whereLeffistheeffectiveinductanceandCeffistheeffective capac-itanceoftheoverallstructure.Q-factorofaseriesresonatorisgiven byEq.(2) Q=2f0Leff Reff = 1 Reff



Leff Ceff = f0 f3dB (2) whereReffistheeffectiveresistanceandf3dBisthe full-width-half-maximum(FWHM)bandwidthoftheresonator.Unlikepreviously

Fig.1.Schematicrepresentationoftheproposedwirelessmetamaterialstructure (notdrawntoscale).(a)Ametal-insulator-metal(MIM)devicewithcross-via met-allizationtoincreaseLeffinagivenfootprintarea(withsemi-turnoverlay).(b)The operationofthestructurecanbemodeledbyusingacascadedequivalentcircuit approach.Eachunitcelliscomposedofdifferentialinductance(dL),capacitance (dC)andresistance(dR)withamutualcouplingofdMforpartialoverlayregions.

studied structures, this metamaterial architecture is composed oftwoinductivelayersconnectedinseries(viacross-via metal-lization)withstrongcapacitivecoupling,resultingindistributed thin-filmcapacitancebehaviorthatcannotbeanalyzedusing con-ventionalmethods[40,41].

Beforewemodeltheproposedarchitecture,wecalculatedthe inductanceofasingleturnrectangularresonator,L0,byusingEq. (3) L0=0.6350rn2Dav



ln



2.07 



+0.18+0.132



(3) andtheparallelplatecapacitance,C0,byusingEq.(4)

C0=ε0εrA

d (4)

where␮0isthepermeabilityofthefreespace,␮ristherelative permeabilityofthematerialusedforresonatorfabrication(which hastobeunityforMRIoperation),nisthenumberofturn(unityfor asinglelayerstructure),Davistheaveragediameter(Dav=Do+D2 i), isthefillratio(= Do−Di

Do+Di),Doistheouterdiameter(sidelength

forrectangularresonators),Diistheinnerdiameter(side length-2×w)fortherectangularresonators),wisthemetallizationwidth, ␧0isthepermittivityofthefreespace,␧ristherelativepermittivity ofthedielectricusedforelectricfieldlocalization,Aistheparallel platesurfaceareaanddisthedistancebetweentheconsecutive layers(e.g.,dielectricthicknessfortheproposedstructure).

Finally,theACresistanceofthesingleturnstructureis calcu-latedbyusingEq.(5)

R0= l

wı(1−e−tmetal/ı) (5)

wherelisthemeantpathlengthofthemetaltrace(proportionalto thenumberofturns,n),tmetalisthethicknessofthemetallization, ␴istheconductivityofthemetalusedforfabricationand␦isthe

(3)

skin-depthofthemetalforthegivenfrequencythatisformulated asgiveninEq.(6). ı=



2 2f (6)

Stackingadditionalturnsdoesnotchangethefillratio,␳.Thus, WhenwesubstituteEqs.(3)and(5)intoEq.(2),weobservethat theQ-factorislinearlyproportionaltothenumberofturns,n,fora pre-determinedresonancefrequency,f0.Thisisnotthecasefor spiralresonatorsbecauseofdecreasingmutualcouplingamong consecutiveturns[33].

To model its behavior, we discretized the proposed struc-tureton0 unit cells,as depictedin Fig.1b;theseunitcells are cascadedtoconstructtheoverallstructure.Eachunitcellis com-posedofdifferentialinductance(dL=L0/2n0),differentialresistance (dR=R0/2n0),differentialthin-filmcapacitance(dC=C0/n0)and dif-ferentialmutualcoupling(dM,dM=kdL),wherekisthecoupling coefficientandhasavalueofapproximately1forstrongpositive couplingviacross-viaconnection[38].Forelectricallysmall struc-tures(e.g.,electricalsize<␭0/300forthiscase),thecornersofthe proposedstructurecanalsobemodeledbyusingtheaboveunitcell configuration.Similarly,theviametallizationisalsomodeledasa seriesRLcircuit(withoutdCelement)betweenconsecutivelayers. ByusingKirchhoff’scurrentlaw,weconstructedtheadmittance matrixasV[Y]=I,whereVandIarethevoltageandcurrentvectorsof thenodesrespectivelyandYistheadmittancematrixoftheoverall structure(detailsarereportedinthesupplementaryfile,sectionS1). TheresultingimpedancegraphsarecalculatedbyusingaMATLAB® (TheMathWorks,Inc.01760USA)todeterminetheresonance fre-quency(i.e.,calculatedfromthepeaksoftheimpedancegraphs) andtheQ-factor(calculatedusingthe,full-width-half-maximum, FWHM,ofthegraphs)ofthemetamaterialforvariousn0.

Theeffectsofvariousgeometricparameters,includingtdieland overlayarea,wereanalyzedbyusingafull-wavenumericalsolver, CST-MicrowaveStudioTM(CST,64289Darmstadt,Germany).The simulationdomainwascomposedofacubicvacuumenvironment withasidelengthof16mmandtheboundaryconditionsareset asperfectlymatchedlayers(PMLs)inalldirections.Asquarecoil havingasidelengthof8mm,atracewidthof1mm,anda met-allizationthicknessof35␮mispositioned0.2mmawayfromthe proposedstructuretobeusedasthepick-upcoiltomeasureits inputimpedance.Themetallizationmaterialusedwasgoldforboth theantennaandtheresonator.Thedielectricmaterialofthe pro-posedstructurewaschosenaslossypolyimidefromthelibrary ofCSTMicrowaveStudio,forfull-wavesolutions.Thefrequency domainsolverwasusedtoacquirethescatteringparametersof thewirelessstructure.Thissimulationenvironmentisdepictedin Fig.2.Here,wefollowedthemethodsdescribedbyGinefrietal. [39]andmeasuredtheinputimpedanceusinganetworkanalyzer (AgilentE5061B)andapick-upcoilantenna(detailsarereportedin thesupplementaryfile,sectionS2).

2.2. Microfabricationofmetastructures

Wefabricatedtwo differentdevices(rigid andflexible ones) withdifferentmicrofabricationmethods.Therigiddevicesaimto achieve thesmallestelectricalfootprint area(without targeting apredefinedoperationalfrequency)fora wirelessmetamaterial structure,where andtheflexibledeviceismicrofabricatedonto apolyimidesubstrateandtunedtoapredefinedMRIfrequency. Therigidsamples,presentedinFig.3(a),aremicrofabricatedonto a<111>siliconsubstrate.Byusingahard-maskwith complemen-tarySRRpatterns,wethermallyevaporatedtwo10␮mthickAu SRRlayers(heregoldischosenbecauseitisbiocompatible)witha

Fig.2. Schematicrepresentationofthemeasurementsetup(notdrawntoscale). Theresonatorisstronglycoupledtothepick-upcoilantennatomeasureits char-acteristicproperties.

Fig.3.Opticalphotographsofthemicrofabricateddevices.(a)Rigidsampleshave thefootprintof6mm×6mm(foreachfeature).Thesesamplesaremanufactured inarrayformontoasiliconwaferwitha1-␮mthicksiliconnitridedielectric sandwichedbetweentwo10-␮mthickgoldlayers.(b)Theflexiblestructureis microfabricatedontoapolyimidethinfilmwithsub-cmdimensions(8mm×8mm). 1␮mthickplasma-enhanced-chemical-vapor-deposited(PECVD) siliconnitride(Si3N4)sandwichedbetweeneachofthegoldlayers. Thesecondsample,presentedinFig.3(b),ismicrofabricated ontoan8mm×8mmfootprintareabyusingaflexiblepolyimide film(Kapton®)withaninitialthicknessof7.5␮m.Theproposed thinfilmisthinnedto2.7␮mbyusingreactiveionetching(RIE), with the following recipe: SF6:O2 of 45:15 sccm at 150W RF power,with25mTorrpressuretoincreasetheeffectivecapacitance betweenconsecutivelayers.Byusingahard-maskwith comple-mentarySRRpatterns,wethermallyevaporatedtwo10-␮mthick AuSRRlayerswithasymmetriccombsizes,withonelayeroneach sideofthepolyimidefilm,andintroducedviametallizationthrough thesubstratecross-connectingapairoftheoppositeedgesofeach SRRontheotherside.Subsequently,thesampleswereannealed at 250◦C for 5min for increased electrical conductivity.Unlike conventionalopticallithographytechniquesusedinrigidsample fabrication[40],thismethodpreventspotentialchemicalhazards forbiocompatibilityanddrawsthesimplestmethodologyforhigh yieldfabrications.

2.3. MRIsetup

To demonstrate the MRI operation of the proposed flexible metamaterialstructure,wepreparedagel-phantomwith dimen-sions80×80×40mm3byusing1g/LNaCl,2.5g/LCuSO

4and14g/L agarose-geltomimicthetissueproperties[41]witha correspond-ingrelativepermittivityofapproximately60andaconductivityof 0.5S/m.Twosetsofevenlydistributed13fiberpillars,eachpillar withadiameterof200␮m,wereimmersedintothepre-mentioned gelphantomandpositionedalong ˆz-directionwithdepthsof0.1 and5.0mmfromthephantomsurface(Fig.4).Hereweacquired the2-DMRimagesperpendiculartotheorientationofthepillar

(4)

Fig.4. SchematicrepresentationoftheMRIimagingsetup(notdrawntoscale).A phantomwithtwosetsofpillars,whereeachsethas13evenlydistributedpillars with200-␮mdiameterandsetsareseparatedby5mmapartfromeachother,is locatedinsidea12-channelheadcoil.Theproposedmetamaterialispositionedon topofthephantomtoimagethepillarsinitsvicinity.

array(i.e.,transverseplaneistheXYplanefor ˆz-directedpillars)by usingspoiledgradientecho(GRE)imagingsequencewithanEcho Time(TE)/RepetitionTime(TR)of9.25ms/100ms,afieldofview (FOV)of34×34mm,animagingmatrixof512×512,animaging durationof4min19s,apixelbandwidthof180Hz,aflipangleof 3◦andaslicethicknessof2mm.Thisimagingconfiguration cor-respondstoabout66␮mspatialresolutionattheimagingplane. Alloftheexperimentswereconductedbyusingstandardtwelve channelheadcoilsofa3TSiemensMagnetomTim-Trioscanner.

Theworkingprincipleoftheproposedmetamaterialstructure canbeexplainedintwo parts:1)theinductivecouplingofthe transmit-field(bodycoilsforthis imagingconfiguration)and2) thereceive-fieldinductivecoupling.Thisstructureconcentrates thefluxinitsvicinitythatistransmittedduringtheexcitationstage, whichiscalledtransmit-fieldcoupling.Inresponsetothis over excitation,excitedspinsinducessurfacecurrentsonthis metama-terialandthemetamaterialinductivelytransmitsthesesignalsto thereceivercoils(headcoilsforthisimagingconfiguration),which iscalledthereceive-fieldcoupling.

3. Resultsanddiscussions

3.1. ResonancefrequencyandQ-factorcalculations

TheEffective capacitanceof thestructureis strongly depen-dentonthedielectricthickness,tdiel,andthesurfaceareaofthe thin-filmloadedhelicaltraces.Thissurfacearea, alsocalledthe overlayregion,alsoaffectstheeffectiveinductance,Leff,because ofincreased ordecreased thenumber of turns.Partial removal of oneof the layers (e.g.,thetop layeris partially removed in Fig.1)resultsin decreased Leff and Ceff,thereby increasingthe increasedresonancefrequency.Theeffectofpartialthin-film load-ingisnumericallyanalyzedfordifferentdielectricthicknessesby usingCSTMicrowaveStudio.TheseresultsaredepictedinFig.5. Theresonancefrequencyrangeof65MHzto5.5GHzisfoundto beachievableforthesamefootprintareawiththegivendielectric thicknesses(i.e.,8mm×8mmwith2.5-␮mthickpolyimide).

Resonancefrequencyadjustmentofself-resonantdesigns(i.e, designsthatdonotincludelumpedelements)toapredefinedMRI frequencyisnotpracticalformostofthecases.Unlikethe previ-ouslystudiedchiralmetamaterialstructures[42]orstacked-SRR typedesigns[43],heretheproposedgeometryallowsusto

eas-Fig. 5.Resonance frequency adjustment capability of the flexible design for 8mm×8mmfootprintarea(notdrawntoscale).Forfullyloaded(doubleturn) helicalringgeometry,itispossibletoreachlowerresonancefrequencies.Partial removalofthemetallizationlayer(upperlayerforthisconfiguration)resultsin increasedresonancefrequencyviadecreasedeffectiveinductanceandcapacitance. 100%percentetchedareacorrespondstoasinglelayerSRR,wheretheresonance frequencyincreasedto5.5GHz.

Fig.6.Inputimpedanceoftheproposedmetamaterial,withafootprintareaof 8mm×8mmanddielectricthicknessof2.7␮m,forthegivenequivalentcircuit modelforvariousdiscretizationnumbern0.Theresultsareconvergent,andeven usingn0=10providessignificantlyaccurateresults.

ilyincreasetheresonancefrequencyafteritsmanufacturing,by usingthemetallizationremovalmethodforparallelplatecoils[18]. AsdepictedinFig.5,removalofthemetaloverlayresultsinboth decreasedthin-filmcapacitancebetweenconsecutivemetal lay-ersanddecreasedeffective-inductanceduetoloweredthenumber ofturns.Hence,theresonancefrequencyoftheproposed meta-materialstructurecanbeconvenientlyincreasedtoapredefined resonancefrequency.

AsproposedinSection2.1,theequivalentcircuitmodelforthe givenflexiblemetastructurewithafootprintareaof8mm×8mm isanalyzedtodeterminetheresonancefrequencyandtheQ-factor forvariousnumberofdiscretization.Fig.6depictstheimpedance graphsforvariousdiscretizationnumbers,n0.Theacquired reso-nancefrequenciesandQ-factorscalculatedbyusingtheFWHMof thesegraphsarealsoreportedonTable1.

Here,weobservedthattheincreasingthediscretization num-beroftheproposedarchitectureconvergestothef0of64MHzand Q-factorofapproximately46,inreasonableagreementwiththe experimentalresultsfoundas65MHzand42fortheresonance frequencyandtheQ-factorrespectively.Byusingconventional for-mulae(i.e. f0=1/(2



Lef fCef f, withL0=15.1nH, C0=303pF, andR0=0.16),wecalculatedthef0of74.4MHzandaQ-factor

(5)

Table1

Performance metricsof theproposedmetastructure,with a footprintareaof 8mm×8mmanddielectricthicknessof2.7-␮m,duetodifferentdiscretization number(n0). n0 f0(MHz) Q-factor Time(s) 1 45 36 0,1 2 60 44 0,1 10 64 46 0,1 100 64 46 3,1

Fig.7. Impedancegraphsforthe8mm×8mmsample.Real(top)andimaginary (bottom)partsofthecompleximpedancesshowthattheproposedequivalentcircuit modelestimatestheresonancefrequencyandtheQ-factorofthegivenstructure betterthantheconventionallumpedRLCmodelandhasaperformancesimilarto thatofthefull-wavenumericalsolutions.

of36fortheproposedmetastructure.Finally,f0of71MHzand Q-factorof44isobtainedbyusinganumericalfullwavesolver.The impedancegraphsoftheseresultsareshowninFig.7.

Similarly,forthestructurewithafootprintareaof6mm×6mm, aninductanceof9.5nHandacapacitanceof1.6nF(forthegiven silicon-nitridedielectricofrelativepermittivityof8.9andloss tan-gentof0.0006),andaresistanceof0.08isusedtocalculateits operatingfrequency.ThelumpedRLCformulationresultedinf0 of41.2MHzandQ-factorof20,whereproposedequivalentcircuit modelresultedinf0of35.4MHzandQ-factorof26,whicharein reasonableagreementwiththeexperimentalresultsof33.4MHz and13fortheresonancefrequencyandtheQ-factor,respectively. Finally,f0 of35.6MHzandQ-factorof11isobtainedbyusinga numericalfullwavesolver.Theimpedancegraphsoftheseresults arevisualizedinFig.8.

Weobservedthattheproposedequivalentcircuitmodel esti-matestheresonancefrequencyofthemetastructure,betterthan conventionalcalculationmethods. Additionally,weseethatthe proposedthin-film loadedgeometry neitherbehavesas a sim-ple series resonator, nor like a parallel resonator: rather, it is a cascaded RLC circuit with proper feedback (i.e., feedback in electricalmodelcorrespondstoaphysicalconnectioncalled cross-via-metallization)toprovide better resonancebehavior. Hence, theproposedcascadedequivalentcircuitmodelcharacterizesthe

Fig.8. Impedancegraphsforthe6mm×6mmsample.Real(top)andimaginary (bottom)partsofthecompleximpedancesshowthattheproposedequivalentcircuit modelestimatestheresonancefrequencyandtheQ-factoroftheproposedstructure betterthanconventionallumpedRLCmodelandhasaperformancesimilartothat ofthenumericalfull-wavesolver.

behaviorof thestructure moreaccuratelycomparedto conven-tional lumped-element based methods. Because the proposed circuitmodelcannotincludetheeffectofsurroundingmedium, which requiresfull-wavesimulations,it cannotestimatethe Q-factorcorrectly.Hence,calculationofQ-factorunderlossymedium, suchasloading,mightnotbereliableforthegivencircuitmodel, asisalsothecasefortheconventionallumpedRLCmodels.

In the impedance graphs presented in Fig. 8, we found the resonancefrequencyoftherigidmetamaterial(6mm×6mm res-onatorsandwichinga1-␮mthicksilicon-nitride)tobe33.4MHz withacorrespondingfree-spacewavelength(␭0)of8.98m. We calculated that thesidelength ofthe rigidresonator(6mm)is shorterthan␭0/1500,whichisoneofthesmallestsingle-chip deep-subwavelengthresonatorsreportedthusfarintheliterature[44]. Althoughatheoreticalworkwithasidelengthof␭0/1733[45]and anexperimentalworkwithlumpedcapacitorshavingasidelength of␭0/2000[46]werereported,thereis noexperimental demon-strationforawirelessself-resonantstructure(i.e.,withoutlumped element)electricallysmallerthanthestructurepresentedhere. 3.2. Resonancefrequencyadjustmentoftheflexiblesampletoa pre-definedmrifrequency

To achieve the resonance frequency near a predefined MRI frequency(123MHzforour3TMRIscanner)weusedoptical lithog-raphy to precisely etch the necessary amountof metal on the overlay.Weobservedthatetching17.5mm2ontheoverlay (cor-respondstoapproximately63%etchedareaofconsecutivelayers) resultedinaresonancefrequencyof126MHz,whichwasin agree-mentwiththenumericalresultsprovidedinFig.5.Themeasured Q-factoroftheflexiblemetamaterialwasalsoincreasedfrom42 toapproximately82,whichwasinagreementwithQ=2f0Leff/R viatheincreasedresonancefrequency.Itwaspreviouslyreported thattheQ-factorofconventionalstructures,(e.g.,spirals,solenoids

(6)

Table2

Experimentalcharacterizationresultsfordifferentsamples.

Type Dielectric(thickness) EtchRatio(%) f0(MHz) Q-factor

Rigid(6×6mm2) Si

3N4(1␮m) 0 33.4 13

Flexible(8×8mm2) Polyimide(2.7␮m) 0 65.0 42

Flexible(8×8mm2) Polyimide(2.7␮m) 60(tuned) 126.0 82

Flexible-Loaded(8×8mm2) Polyimide(2.7␮m) 60(tuned) 123.5 64

Fig.9. Numericalresultsshowtheelectricfieldconfinementpropertyoftheproposedmetamaterialstructurewithafootprintareaof8mm×8mm.Theelectricfield distributionclearlyindicatesthattheE-fieldisstronglyconfinedbetweenthetopandbottomlayers,leadingtohigherQ-factorevenwhenloadedinalossymedium.(a) Amplitudeoftheelectricfieldnormalizedtotheincidentfieldalongwiththedashedlinemarkedin(b)showingthattheelectricfieldis6ordersofmagnitudehigherinthe localizedregiononresonancewithrespecttotheincidentfield.

andSRRs)donotincreaselinearlybecauseofreducedinductance (andthereducedmutualinductance)fortheconsecutiveturns[33]. However,theproposedgeometryprovidesalmostalinearQ-factor improvement,viathestrongmutualcouplingamongconsecutive layers.Thus,thisstructureisveryspecialintermsofhigherQ-factor andloweredresonancefrequencyforasmallerfootprintarea.

Thetunedresonatorwasimmersedintotheabovementioned phantom,asdescribedinSection2.3,anditswirelessimpedance wasmeasuredbyusingthesamepick-upcoilandmethod[30]. TheloadedQ-factor for this configuration wasmeasuredas 64 accordingtotheFWHMofthecompleximpedance.Theresultsare summarizedinTable2forcomparison.

3.3. Electricfieldconfinementforimprovedloadingperformance Topermituseatextremely subwavelengthfrequencies, con-ventionalresonators(such asSRRs,spiralsetc.)requirelumped capacitorstotunetheirresonancefrequencies.Theelectricfield distributionofthesestructurespillsoverfromtheirplanebecause oftheselumpedcapacitors,resultinginvulnerabilitytoexternal effectssuchasloadingwithalossytissue(seedetailsarereportedin thesupplementaryfile,SectionS3).Theuseofthedouble-layer heli-calgeometryprovidesanadvantageofelectricfieldlocalizationin thelower-lossdielectricregion(comparedtolivingtissues)that allowsforhigherQ-factor.Fig.9(a)presentsthe|E|-fieldprofile ofthemapnormalizedtoincidentfield( E˙I)alongwiththedashed linemarkedinFig.9(b),whereincidentfieldistheelectricfield intensityrecordedattheexcitationportofthesimulationdomain. Weobservedthattheelectricfieldis6ordersofmagnitudehigher inthelocalizedregionunderresonanceconditionmatchedtothe MRIfrequencycomparedtotheincidentfieldandalmost3orders ofmagnitudehighercomparedtotheoff-resonancecase.Fig.9(b) indicatestheabsolutevalueoftheelectricfield distribution(|E| map)localizedinthedielectricregionbetweenthetopand bot-tommetalliclayers.Clearlytheelectricfieldisstronglyconfined betweenthemetallizationlines;thisstrongconfinementis essen-tialtoachievinghighQ-factorevenwhenloadedinalossymedium includingbiologicaltissues.

Livingtissuesexhibithigherconductivelosses,e.g.,conductivity of1S/m,whereasthedielectricshaveradicallylower conductivi-ties,e.g.,conductivityof10−16S/mforaKapton®.Theproposed metamaterialdeviceconfinestheelectricfieldinsidethedielectric material,insteadoflivingtissues,therebydrasticallydecreasingthe dissipatedresistivepoweratthegivenfrequencywhenthe metas-tructureisplacedinalossymedia.Thispropertyhelpstomaintain theQ-factorofthemetamaterialdevice,evenwhenthe metastruc-tureisloadedinvivo.Hence,theproposeddeep-subwavelength metamaterialexhibitsthesepropertiesforwirelessoperationthat arecriticaltoinvivostudies.

3.4. MRIcharacterization

The proposedstructure was locatedon a coronal plane(XZ plane),whereimmersedpillarswerealignedinthe ˆz -direction, andthesamplewaslocatedinsideastandardheadcoilofthe scan-ner,asshowninFig.10(a).Transverseimages,withtheimaging parametersgiveninSection2.3,wereacquiredtocounteachand everypillarasshowninFig.10(b).Here,weobservedthatthepillar arraycanbevisibleonlyinthevicinityoftheresonator,in agree-mentwiththeB1+ mapofthewirelessmetastructureasshown inFig.10(c).TheB1+resultsshowedthattheamplitudeoftheRF magneticfieldcanbeamplifiedsignificantlyinthevicinityofthe resonator.FromtheMR imagegiven inFig.10(b),we obtained theintensityplots alongblueand redlinesmarkedonit.From Fig.10(b),weselectedaregionwithasizeof100×100pixelsthat doesnotcontainanyMRIsource(i.e.noiseregion),andcalculated theaveragenoiseleveltobeapproximately50arbitraryunits(a.u.), wherethesignalintensityintheneighboringregionofthe res-onatorappearstobeapproximately1000a.u.Theintensitycurve inblue,dropstoapproximatelynoiselevelforthecorresponding pillarsinthevicinityofthemetamaterialresonator.Wecanclearly countthenumberofdipsas13,whichisthenumberofpillarsin thearray.Theredcurve(at5mmaway)showstheintensityprofile farawayfromtheresonator(Fig.10-d).Clearly,thepillars5mm awayfromthemetamaterialarenotvisuallyseparablefromeach other.

(7)

Fig.10.MRIcharacterizationofthetunedmetamaterial,withthefootprintareaof8mm×8mmusedtoresolvetheevenlydistributedpillarswithadiameterof200␮m.(a) 3TSiemensMagnetomTrioimagingsystemisusedwithaheadcoil;thesystemisloadedwithabodymimickingphantomtoimagefibersimmersedinthephantom.(b)MRI imageshowingthatpillarsareclearlyvisibleandcanbecountedinthevicinityoftheresonatoralongtheblueline(at0.1mmawayfromthemetastructure),whereasthey arenotfullyresolvablealongtheredline(5mmawayfromthemetastructure).(c)B1+mapofthewirelessmetamaterialstructureshowingsignificantB1+amplificationin itsvicinity.(d)Thered(dashed)curveindicatestheimageintensitypatternat5mmawayfromthedeviceandtheblue(solid)curveindicatestheimageintensityat0.1mm awayfromthedevice.Theblue(solid)profileclearlyresolves13ofthepillars(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothe webversionofthisarticle).

Herewealsoseethatthesignalintensityisamplified approx-imatelyoneorderofmagnitude(1000/100)inthevicinityofthe metastructure.Forthepillarsclosetotheresonatormetallization, thecontrast-to-noise-ratio(CNR)reachestoapproximately15.4 (e.g.,CNR=920−150

50 ), whereCNRdropstoapproximately6.9for the6thand7thpillarsbecauseoftheincreasedSNRinthe proxim-ityofthemeta-device,verifiedbyitsB1+map.Forthepillarsaway fromtheresonator,theCNRdropstoapproximatelyunity,which ismeaningless.Toimagesmallobjects,e.g.,pillarswith200␮m diameter,theSNRshouldbekepthighenoughtoeliminatenoise effects.TheproposedmetamaterialstructuremanipulatestheEM fieldstronglyinitsvicinitytoincreasetheSNR,allowingforMRIof sub-mmpillarswithanunprecedentedresolutionfor3Theadcoils thatisotherwisenotpossibleusingtheseimagingparameters.

4. Conclusion

Inconclusion,weproposed,modeledanddemonstrateda wire-less compact metamaterial architecture with a side length of approximately␭0/1500andfrequencyadjustmentrangeof65MHz to 5.5GHz. This proposed metastructure possess a Q-factor of approximately80for123MHz.Wedemonstratedthatthis deep-subwavelength metamaterialcan beusedas anSNR-enhancing deviceforMRI.Becauseofitsstrongelectricfieldconfinement prop-ertyinitsdielectricregion,theproposedstructureexhibitshigher Q-factorseveninalossymedium(i.e.,livingtissues).Therefore, thiswirelessmetastructureisanexcellentcandidateforusein

var-iousapplicationsincludinginvivoMRimagingplatformsandsmart implants.

Acknowledgements

HVD gratefullyacknowledgessupportfromTÜBA. Thiswork ispartiallysupportedbyTurkishNationalScientificand Techno-logical Research InstituteTÜB˙ITAK-B˙IDEB. Authorsof this work gratefullyacknowledgethesupportofUNAM-National Nanotech-nology Research Center and Instituteof Materials Science and Nanotechnology.

References

[1]V.G.Veselago,Theelectrodynamicsofsubstanceswithsimultaneously negativevaluesof␧and␮,Sov.Usp.10(1968)509–514.

[2]W.Withayachumnankul,K.aruwongrungsee,A.Tuantranont,C.Fumeaux,D. Abbott,Metamaterial-basedmicrofluidicsensorfordielectric

characterization,Sens.Actuators:Phys.189(2013)233–237.

[3]A.Daliri,A.Galehdar,S.John,C.H.Wang,W.S.T.Rowe,K.Ghorbani,Wireless strainmeasurementusingcircularmicrostrippatchantennas,Sens. Actuators:Phys.184(2012)86–92.

[4]R.Melik,E.Unal,N.K.Perkgoz,C.Puttlitz,H.V.Demir,Metamaterial-based wirelessstrainsensors,Appl.Phys.Lett.95(2009)011106.

[5]A.K.Horestani,J.Naqui,Z.Shaterian,D.Abbott,C.Fumeaux,F.Martin, Two-dimensionalalignmentanddisplacementsensorbasedonmovable broadside-coupledsplitringresonators,Sens.Actuators:Phys.210(2014) 18–24.

[6]R.Melik,E.Unal,N.K.Perkgoz,C.Puttlitz,H.V.Demir,Flexiblemetamaterials forwirelessstrainsensing,Appl.Phys.Lett.95(2009)181106.

[7]A.Alipour,E.Unal,S.Gokyar,H.V.Demir,Developmentofa distance-independentwirelesspassiveRFresonatorsensorandanew

(8)

telemetricmeasurementtechniqueforwirelessstrainmonitoring,Sens. Actuators:Phys.255(2017)87–93.

[8]M.Lapine,D.Powell,M.Gorkunov,I.Shadrivov,R.Marqués,Y.Kivshar, Structuraltunabilityinmetamaterials,APL95(2009)084105,http://dx.doi. org/10.1063/1.3211920.

[9]F.Bilotti,L.Nucci,L.Vegni,AnSRRbasedmicrowaveabsorber,Microw.Opt. Technol.Lett.48(11)(2006)2171–2175.

[10]J.B.Pendry,NegativerefractionmakesaperfectLens,Phys.Rev.Lett.85 (2000)3966.

[11]N.Fang,H.Lee,C.Sun,X.Zhang,Sub–Diffraction-limitedopticalimagingwith asilversuperlens,Science308(2005)534.

[12]M.J.Freire,R.Marques,Near-fieldimaginginthemegahertzrangebystrongly coupledmagnetoinductivesurfaces:experimentandabinitioanalysis,J. Appl.Phys.100(2006)063105.

[13]M.C.K.Wiltshire,J.B.Pendry,I.R.Young,D.J.Larkman,D.J.Gilderdale,J.V. Hajnal,MicrostructuredmagneticmaterialsforRFfluxguidesinmagnetic resonanceimaging,Science291(2001),849–51.

[14]M.J.Freire,R.Marques,L.Jelinek,Experimentaldemonstrationofau=-1 metamateriallensformagneticresonanceimaging,Appl.Phys.Lett.93(2008) 231108.

[15]E.Moser,M.Meyerspeer,F.Ph.S.Fischmeister,G.Grabner,H.Bauer,S.Trattnig, Windowsonthehumanbody-invivohigh-fieldmagneticresonanceresearch andapplicationsinmedicineandpsychology,Sensors10(2010)5724–5757. [16]M.Blaimer,F.Breuer,M.Mueller,R.M.Heidemann,M.A.Griswold,P.M.Jakob,

SMASH,SENSE,PILS,GRAPPA,howtochoosetheoptimalmethod,TopMag. Reson.Imaging15(August)(2004)223–236,Nu.4.

[17]M.A.Griswold,P.M.Jakob,R.M.Heidemann,M.Nittka,V.Jellus,J.Wang,B. Kiefer,A.Haase,Generalizedautocalibratingpartiallyparallelacquisitions (GRAPPA),Magn.Reson.Med.47(2010)1202–1210.

[18]P.Gonord,S.Kan,A.Leroy-Willig,ParallelplateSplit-conductorsurfacecoil: Analysisanddesign,Magn.Reson.Med.6(1998)353–358.

[19]P.Gonord,S.Kan,A.Leroy-Willig,C.Wary,Multigapparallel-platebracelet resonatorfrequencydeterminationandapplications,Rev.Sci.Instrum.65 (1994)3363,http://dx.doi.org/10.1063/1.1144573.

[20]T.Dohi,K.Matsumoto,I.Shimoyama,Flexiblemicroresonatorforthe magneticresonancecatheter,in:The13thInt.Conf.onSolid-StateSensors, ActuatorsandMicrosystems,Seoul,Korea,June5-9,2005.

[21]T.Matsunaga,Y.Matsuoka,S.Ichimura,Q.Wei,K.Kuroda,Z.Kato,M.Esashi, Y.Haga,Multilayeredreceivecoilproducedusinganon-planar

photofabricationprocessforanintraluminalmagneticresonanceimaging, Sens.Actuators:Phys.(2018),http://dx.doi.org/10.1016/j.sna.2017.04.021. [22]J.Gawlitza,M.Reiss-Zimmermann,G.Thörmer,A.Schaudinn,N.Linder,N. Garnov,L.C.Horn,D.H.Minh,R.Ganzer,J.U.Stolzenburg,T.Kahn,M.Moche, H.Bussea,Impactoftheuseofanendorectalcoilfor3TprostateMRIon imagequalityandcancerdetectionrate,Nat.,Sci.Rep.7(2017)40640,http:// dx.doi.org/10.1038/srep40640.

[23]C.Baltes,N.Radzwill,S.Bosshard,D.Marek,M.Rudin,MicroMRIofthe mousebrainusinganovel400MHzcryogenicquadratureRFprobe,NMR Biomed.22(2009)834–842,http://dx.doi.org/10.1002/nbm.1396.

[24]D.Sakellariou,G.LeGoff,J.F.Jacquinot,High-resolution,high-sensitivityNMR ofnanolitreanisotropicsamplesbycoilspinning,Nature447(7June)(2007) 694–697.

[25]I.Lin,H.C.Yang,J.H.Chen,Diffusiontensorimagingusingahigh-temperature superconductingresonatorina3Tmagneticresonanceimagingfora spontaneousratbraintumor,Appl.Phys.Lett.102(2013)063701. [26]E.M.Kardoulaki,R.R.A.Syms,I.R.Young,M.Rea,W.M.W.Gedroyc,Thin-film

micro-coildetectors:ApplicationinMR-thermometry,Sens.Actuators:Phys. 226(2015)48–58.

[27]R.R.R.A.Syms,I.R.Young,M.M.Ahmad,M.Rea,C.A.Wadsworth,S.D. Taylor-Robinson,Thin-filmdetectorsystemforinternalmagneticresonance imaging,Sens.Actuators:Phys.163(2010)15–24.

[28]E.Laistler,M.Poirier-Quinot,S.A.Lambert,R.M.Dubuisson,O.M.Girard,E. Moser,L.Darrasse,J.C.Ginefri,InvivoMRimagingofthehumanskinat subnanoliterResolutionusingasuperconductorsurfacecoilat1.5tesla,J. Magn.Reson.Imaging41(February(2))(2015)496–504,http://dx.doi.org/10. 1002/jmri.24549.

[29]P.A.Bottomley,TurninguptheheatonMRI,J.Am.Coll.Radiol.5(7)(July 2008)853–855.

[30]J.C.Ginefri,A.Rubin,M.Tatoulian,M.Woytasik,F.Boumezbeur,B.Djemai,M. Poirier-Quinot,F.Lethimonnier,L.Darrasse,E.Dufour-Gergam,Implanted, inductively-coupled,rfcoilsfabricatedonflexiblepolymericmaterial: ApplicationtoinvivoratbrainMRIat7T,J.Magn.Reson.224(2012)61–70. [31]J.A.Lehmann-Horn,J.F.Jacquinot,J.C.Ginefri,C.Bonhomme,D.Sakellariou,

MonolithicMACSmicroresonators,J.Magn.Reson.271(2016)46–51. [32]R.Kriegl,J.C.Ginefri,M.Poirier-Quinot,L.Darrasse,S.Goluch,A.Kuehne,E.

Moser,E.Laisler,Novelinductivedecouplingtechniqueforflexible transceiverarraysofmonolithictransmissionlineresonators,Magn.Reson. Med.73(2015)1669–1681.

[33]F.Bilotti,A.Toscano,L.Vegni,DesignofspiralandmultipleSplit-ring resonatorsfortherealizationofminiaturizedmetamaterialsamples,IEEE Trans.AntennasPropag.55(August(8))(2007),http://dx.doi.org/10.1109/ TAP.2007.901950.

[34]D.R.Smith,J.B.Pendry,M.C.K.Wiltshire,MetamaterialsandNegative RefractiveIndex,Science305(2004)788.

[35]Q.Y.Tang,Y.M.Pan,Y.C.Chan,K.W.Leung,Frequency-tunablesoftcomposite antennasforwirelessstrainsensing,Sens.Actuators:Phys.179(2012) 137–145.

[36]J.D.Baena,J.Bonache,F.Martin,R.MarquesSillero,F.Falcone,T.Lopetegi, M.A.G.Laso,J.Garcia-Garcia,I.Gil,M.F.Portillo,M.Sorolla,Equivalent-circuit modelsforsplit-ringresonatorsandcomplementarysplit-ringresonators coupledtoplanartransmissionlines,IEEETrans.Microw.TheoryTechnol. MTT-53(2005)1451–1461.

[37]S.S.Mohan,M.Hershenson,Simpleaccurateexpressionforplanarspiral inductances,IEEEJ.SolidStateCircuits34-10(October)(1999)1419–1424. [38]InderBahl,LumpedElementsforRFandMicrowaveCircuits”,ArtechHouse,

2003.

[39]J.C.Ginefri,E.Durand,L.Darrasse,Quickmeasurementofnuclearmagnetic resonancecoilsensitivitywithasingle-loopprobe,Rev.Sci.Instrum.70 (1999)4730.

[40]A.L.Coutrot,E.Dufour-Gergam,E.Martincic,J.P.Gilles,J.P.Grandchamp,J.M. Quemper,A.Bosseboeuf,F.Alves,B.Ahamada,Electromagneticmicro-device realizedbyelectrochemicalway,Sens.ActuatorsA91(2001)80–84. [41]V.Acikel,O.Ulutan,A.C.Ozen,B.Akin,Y.Eryaman,E.Atalar,AnovelMRI

basedelectricalpropertiesmeasurementtechnique,Proc.Intl.Soc.Mag. Reson.Med.(2013)21.

[42]R.Marques,L.Jelinek,F.Mesa,Negativerefractionfrombalanced quasi-planarinclusions,Microw.Opt.Technol.Lett.49(10)(2007). [43]E.Ekmekci,K.Topalli,T.Akin,G.Turhan-Sayan,Atunablemulti-band

metamaterialdesignusingmicro-splitSRRstructures,Opt.Express17(18) (2009).

[44]FabriceLemoult,NadegeKaina,MathiasFink,GeoffroyLerosey,Wave propagationcontrolatthedeepsubwavelengthscaleinmetamaterials,Nat. Phys.9(2013).

[45]X.Zhang,E.Usi,S.K.Khan,M.Sadatgol,D.O.Guney,Extremely

sub-wavelengthnegativeindexmetamaterial,Prog.Electromagnet.Res.152 (2015)95–104.

[46]C.P.Scarborough,Z.H.Jiang,D.H.Werner,C.Rivero-Baleine,C.Drake, Experimentaldemonstrationofanisotropicmetamaterialsuperlenswitha negativeunitypermeabilityat8.5MHz,Appl.Phys.Lett.101(2012)014101.

Biographies

Sayim GokyarcompletedhisPh.D. atBilkent Univer-sity,DepartmentofElectricalandElectronicsEngineering, Ankara.Hisresearchinterestsincludewirelesssensors anddesigningimplantableelectronicdevicesforwireless imagingapplicationsaswellasforsensing.

AkbarAlipourcompletedhisPh.D.atBilkent Univer-sity,DepartmentofElectricalandElectronicsEngineering, Ankara.Hisresearchinterestslieintheareaofthin-film microwavestructureswhichareusedformagnetic res-onanceimaging(MRI)markingandwirelesssensing.He hasbeeninvolvedinthedevelopmentofdeviceswhichare mainlyusedininterventionalMRIandmedicalimplants.

EmreUnalreceivedhisB.S.degreeinelectricaland elec-tronicsengineeringfromHacettepeUniversity,Ankara, Turkey,in2005.Heisafull-timeResearchEngineerunder thesupervisionofProf.H.V.DemirwiththeInstituteof MaterialsScienceandNanotechnology,Bilkent Univer-sity,Ankara,whereheisworkingonthedevelopmentof microwaveandoptoelectronicdevices.

(9)

ErginAtalarreceivedhisB.S.degreefromBogazici Uni-versityin1985,M.S.degreefromMiddleEastTechnical Universityin1987,andPh.D.degreefromBilkent Univer-sityin1991,allinElectricalEngineering.Hejoinedthe JohnsHopkinsUniversity,wherehebecameaProfessor ofRadiology,BiomedicalEngineeringandElectricaland ComputerEngineeringandDirectorofCenterforImage GuidedInterventions.Currently,Dr.AtalarisaProfessorof theDepartmentofElectricalandElectronicsEngineering andtheDirectorofNationalMagneticResonanceResearch Center atBilkent University.Themainresearch inter-estsofDr.AtalarareMagneticResonanceImagingand Imageguidedinterventions.In2006,ErginAtalarwonthe TUBITAKscienceaward.

Hilmi Volkan Demir (M’04-SM’11) received the B.S. degree inelectrical and electronics engineeringfrom BilkentUniversity,Ankara,Turkey,in1998andtheM.Sc. andPh.D.degreesinelectricalengineeringfromStanford University,Stanford,CA,in2000and2004,respectively. InSeptember2004,hejoinedBilkentUniversity,where heiscurrentlyaprofessorwithjointappointmentsatthe DepartmentofElectricalandElectronicsEngineeringand theDepartmentofPhysicsandisalsowithUNAM-the InstituteofMaterialsScienceandNanotechnology. Con-currently,heisafellowofNationalResearchFoundation inSingaporeandaprofessorofNanyangTechnological University.Hisresearchinterestsincludethe develop-mentofinnovativeoptoelectronicandRFdevices.Prof.Demiristherecipientof theEuropeanUnionMarieCurieFellowship,theTurkishNationalAcademyof Sci-encesDistinguishedYoungScientistAward(TUBA-GEBIP),theEuropeanScience Foundation-EuropeanYoungInvestigatorAward(ESF-EURYI),andNanyangAward forResearchExcellence.

Referanslar

Benzer Belgeler

kelime kalemi limana elime kilimi laleli naneli elleme anneme ekmeli lekeli emekli.. elekle

[1] Although computed tomography (CT), multi-detector CT, and magnetic resonance imaging (MRI) have been used in the preoperative staging of mediastinal masses,

To begin with a path planning problem in the presence of a single elliptical barrier region problem was considered to develop alternate feasible and

Curricula of the Ganja State University and the Azerbaijan State Pedagogical University, which prepare students on the specialty of Informatics Teacher, were compared based on

H alen Yeni Parti’nin Genel Başkanı olan Yu­ su f Ö zal’ın ANAP’a d ö n ü p Genel Başkan olm ası­ nı isteyenlerin sayısı g id e re k artıyor.. İlhan

In our case, the tumor showed cere- bellar hemispheric involvement with supra tento- rial extension that make this case unique for invol- vement in a location other than posterior

Masses such as rectal adenocarcinoma, sarcoma, neuroendocrine tumor, leiomyoma, ovarian mass, rectal gastrointestinal stromal tumor (GIST), prostate adenocarcinoma,

Bu çah~mada, akut inme nedeniyle kliniğimize yatınlan ve erken dönemde BBT ile tam ke- sinlefitirilemeyen 39 olguda erken MRG inceleme,si yapılını~tır... SSK TEPECiK