• Sonuç bulunamadı

On generalized Ostrowski-type inequalities for functions whose first derivatives absolute values are convex

N/A
N/A
Protected

Academic year: 2021

Share "On generalized Ostrowski-type inequalities for functions whose first derivatives absolute values are convex"

Copied!
18
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

(2016) 40: 1193 – 1210 c ⃝ T¨UB˙ITAK doi:10.3906/mat-1504-56 h t t p : / / j o u r n a l s . t u b i t a k . g o v . t r / m a t h / Research Article

On generalized Ostrowski-type inequalities for functions whose first derivatives

absolute values are convex

H¨useyin BUDAK, Mehmet Zeki SARIKAYA

Department of Mathematics, Faculty of Science and Arts, D¨uzce University, D¨uzce, Turkey

Received: 18.04.2015 Accepted/Published Online: 20.01.2016 Final Version: 02.12.2016 Abstract: In this paper, we establish some generalized Ostrowski-type inequalities for functions whose first derivatives

absolute values are convex.

Key words: Ostrowski-type inequalities, H¨older’s inequality, convex functions

1. Introduction

In 1938, Ostrowski established the following interesting integral inequality for differentiable mappings with bounded derivatives [11]:

Theorem 1 Let f : [a, b]→ R be a differentiable mapping on (a, b) whose derivative f′: (a, b)→ R is bounded

on (a, b) , i.e. ∥f′∥:= sup

t∈(a,b)

|f′(t)| < ∞. Then we have the inequality

f (x)− 1 b− a ba f (t)dt [ 1 4 + ( x−a+b2 )2 (b− a)2 ] (b− a) ∥f′∥, (1.1)

for all x∈ [a, b]. The constant 1

4 is the best possible.

This inequality is well known in the literature as the Ostrowski inequality.

Definition 1 The function f : [a, b]⊂ R → R is said to be convex if the following inequality holds:

f (tx + (1− t)y) ≤ tf(x) + (1 − t)f(y) for all x, y∈ [a, b] and t ∈ [0, 1] . We say that f is concave if (−f) is convex.

Let f : I ⊆ R →R be a convex function on the interval I of real numbers and a, b ∈ I with a < b. If f is a convex function then the following double inequality, which is well known in the literature as the Hermite–Hadamard inequality, holds [13]:

f ( a + b 2 ) 1 b− ab a f (x)dx≤ f (a) + f (b) 2 . (1.2) Correspondence: hsyn.budak@gmail.com

(2)

In [8], Dragomir and Agarwal gave the following important inequality for convex functions:

Theorem 2 Let f : I◦⊆ R → R be a differentiable mapping on I◦, a, b∈ I◦ with a < b . If |f′| is convex on

[a, b] , then the following inequality holds: f (a) + f (b)2 1 b− a ba f (u)du ≤(b− a)|f (a)| + |f(b)| 8 . (1.3)

In [12], Ozdemir et al. gave the following Ostrowski-type inequalities for functions whose derivatives are convex:

Theorem 3 Let I ⊂ R be an open interval and f : I ⊂ R → R be a differentiable function where a, b ∈ I

with a < b . If |f′|q is a convex function for λ∈ [0, 1] , x ∈ [a, b] , and q ∈ [1, ∞) , then the following inequality holds: b− a1 ba f (u)du (1.4) −(b− x) [(1 − λ) f (x) + λf (b)] + (x − a) [(1 − λ) f (x) + λf (a)] (b− a ≤ (b − a) ( 2− 2λ + 1 2 )q−1 q {[(3− 3λ + 2 6 ) ( b− x b− a )2q+1 |f′(a)|q +   [ 2− 6λ + 3][3− 3λ + 2] (b−x b−a ) 6  (b− x b− a )2q |f′b|q   1 q +     [ 2− 6λ + 3][3− 3λ + 2] (xb−a−a ) 6  (x− a b− a )2q |f′(a)|q + ( 3− 3λ + 2 6 ) ( x− a b− a )2q+1 |f′(b)|q ]1 q   .

For more information and recent advances on Ostrowski-type inequalities, please refer to [1-10, 12, 14-18]. The aim of this paper is to establish generalization of the inequality (1.4) and give some special results.

2. Main Results

First, we will give the following calculated integrals used as the main results:

b−x b−a ∫ 0 t − λb− x b− a tdt =(3− 3λ + 2 6 ) ( b− x b− a )3 , (2.1)

(3)

b−x b−a ∫ 0 t − λb− x b− a (1 − t)dt (2.2) =   [ 2− 6λ + 3][3− 3λ + 2] (b−x b−a ) 6  (b− x b− a )2 , 1 ∫ b−x b−a t − 1 + λx− a b− a tdt (2.3) =   [ 2− 6λ + 3][3− 3λ + 2] (x−a b−a ) 6  (x− a b− a )2 , 1 ∫ b−x b−a t − 1 + λx− a b− a (1 − t)dt =(3− 3λ + 2 6 ) ( x− a b− a )3 , (2.4) b−x b−a ∫ 0 t − λb− x b− a dt =(2− 2λ + 1 2 ) ( b− x b− a )2 , (2.5) 1 ∫ b−x b−a t − 1 + λxb− a− a dt =(2− 2λ + 12 ) (xb− a− a)2, (2.6) b−x b−a ∫ 0 t − λbb− x− a pdt = ( λp+1− (1 − λ)p+1 p + 1 ) ( b− x b− a )p+1 , (2.7) and 1 ∫ b−x b−a t − 1 + λxb− a− a pdt = ( λp+1− (1 − λ)p+1 p + 1 ) ( x− a b− a )p+1 . (2.8)

We give a important integral identity for differentiable functions:

(4)

then for all x∈ [a, b] we have (b− a) 1 ∫ 0 h(t, λ)f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)] dt (2.9) = (1− λ) f (µx + (1 − µ) (a + b − x)) (1− 2µ) +λ(b− x) f (µb + (1 − µ)a) + (x − a) f (µa + (1 − µ)b) (b− a) (1 − 2µ) 1 (b− a) (1 − 2µ)2 µa+(1−µ)b µb+(1−µ)a f (u)du for µ∈ [0, 1] / {1/2} , where h(t, λ) =            t− λb− x b− a, t∈ [ 0,b− x b− a ] t− 1 + λx− a b− a, t∈ ( b− x b− a, 1 ] . Proof Denote I = 1 ∫ 0 h(t, λ)f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)] dt = b−x b−a ∫ 0 [ t− λb− x b− a ] f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)] dt + 1 ∫ b−x b−a [ t− 1 + λx− a b− a ] f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)] dt = I1+ I2. Integrating by parts, I1 = b−x b−a ∫ 0 [ t− λb− x b− a ] f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)] dt = (1− λ) (b − x) f (µx + (1 − µ) (a + b − x)) (b− a)2(1− 2µ) + λ (b− x) f (µb + (1 − µ)a) (b− a)2(1− 2µ)

(5)

1 (b− a) (1 − 2µ) b−x b−a ∫ 0 f [t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)] dt and I2 = 1 ∫ b−x b−a [ t− 1 + λx− a b− a ] f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)] dt = (1− λ) (x − a) f (µx + (1 − µ) (a + b − x)) (b− a)2(1− 2µ) + λ (x− a) f (µa + (1 − µ)b) (b− a)2(1− 2µ) 1 (b− a) (1 − 2µ) 1 ∫ b−x b−a f [t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)] dt.

Adding I1 and I2, then we have I = I1+ I2 = (1− λ) f (µx + (1 − µ) (a + b − x)) (b− a) (1 − 2µ) +λ(b− x) f (µb + (1 − µ)a) + (x − a) f (µa + (1 − µ)b) (b− a)2(1− 2µ) 1 (b− a) (1 − 2µ) 1 ∫ 0 f [t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)] dt.

If we use the change in the variable u = t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a) with du = b − a) (1 − 2µ) dt, then we have I = (1− λ) f (µx + (1 − µ) (a + b − x)) (b− a) (1 − 2µ) +λ(b− x) f (µb + (1 − µ)a) + (x − a) f (µa + (1 − µ)b) (b− a)2(1− 2µ) 1 (b− a)2(1− 2µ)2 µa+(1 −µ)b µb+(1−µ)a f (u)du

(6)

Remark 1 If we choose µ = 1 in (2.9), then Lemma1reduces to the Lemma 1 in [12].

Theorem 4 Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b. If |f′|q, q≥ 1, is convex on

[a, b] for λ∈ [0, 1] and x ∈ [a, b] , then we have the following inequality:

|T (f, λ, µ, x)| (2.10) ≤ (b − a) ( 2− 2λ + 1 2 )11 q × {[( 3− 3λ + 2 6 ) ( b− x b− a )2q+1 |f′(µa + (1− µ)b)|q + F (x, λ) ( b− x b− a )2q |f′(µb + (1− µ)a)|q ]1 q + [ G(x, λ) ( x− a b− a )2q |f′(µa + (1− µ)b)|q + ( 3− 3λ + 2 6 ) ( x− a b− a )2q+1 |f′(µb + (1− µ)a)|q ]1 q    where µ∈ [0, 1] / {1/2} . Here F (x, λ) = [ 2− 6λ + 3][3− 3λ + 2] (b−x b−a ) 6 , G(x, λ) = [ 2− 6λ + 3][3− 3λ + 2] (x−a b−a ) 6 and T (f, λ, µ, x) = (1− λ) f (µx + (1 − µ) (a + b − x)) (1− 2µ) +λ(b− x) f (µb + (1 − µ)a) + (x − a) f (µa + (1 − µ)b) (b− a) (1 − 2µ) 1 (b− a) (1 − 2µ)2 µa+(1 −µ)b µb+(1−µ)a f (u)du

(7)

Proof Firstly, we suppose that q = 1 . Taking the modulus in (2.9), we have |T (f, λ, µ, x)| ≤ (b − a)        b−x b−a ∫ 0 t − λb− x b− a |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]| dt + 1 ∫ b−x b−a t − 1 + λxb− a− a |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]| dt          = (b− a) K1.

Using the convexity of |f′| , we get

K1 (2.11) b−x b−a ∫ 0 t − λb− x b− a [t|f′(µa + (1− µ)b)| + (1 − t) |f(µb + (1− µ)a)|] dt + 1 ∫ b−x b−a t − 1 + λxb− a− a [t|f′(µa + (1− µ)b)| + (1 − t) |f(µb + (1− µ)a)|] dt = |f′(µa + (1− µ)b)| b−x b−a ∫ 0 t − λbb− x− a tdt +|f′(µb + (1− µ)a)| b−x b−a ∫ 0 t − λbb− x− a (1 − t)dt +|f′(µa + (1− µ)b)| 1 ∫ b−x b−a t − 1 + λx− a b− a tdt +|f′(µb + (1− µ)a)| 1 ∫ b−x b−a t − 1 + λxb− a− a (1 − t)dt.

(8)

If we use the equalities (2.1)–(2.4) in (2.11), then we complete the proof for the case q = 1. Secondly, we suppose that q > 1 . Using Lemma1and power mean inequality, we obtain

|T (f, λ, µ, x)| ≤ (b − a)        b−x b−a ∫ 0 t − λbb− x− a |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]| dt + 1 ∫ b−x b−a t − 1 + λxb− a− a |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]| dt          = (b− a)                b−x b−a ∫ 0 t − λb− x b− a dt     11 q ×     b−x b−a ∫ 0 t − λbb− x− a |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]|q dt     1 q +      1 ∫ b−x b−a t − 1 + λxb− a− a dt      11 q      1 ∫ b−x b−a t − 1 + λxb− a− a |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]|q dt      1 q            = (b− a)K2.

Using the convexity of |f′|q, we obtain

K2     b−x b−a ∫ 0 t − λbb− x− a dt     11 q (2.12)

(9)

×     b−x b−a ∫ 0 t − λb− x b− a [t|f′(µa + (1− µ)b)|q+ (1− t) |f′(µb + (1− µ)a)|q]dt     1 q +      1 ∫ b−x b−a t − 1 + λx− a b− a dt      11 q ×      1 ∫ b−x b−a t − 1 + λxb− a− a [t|f′(µa + (1− µ)b)|q+ (1− t) |f′(µb + (1− µ)a)|q]dt      1 q =     b−x b−a ∫ 0 t − λb− x b− a dt     11 q   |f′(µa + (1− µ)b)|q b−x b−a ∫ 0 t − λb− x b− a tdt +|f′(µb + (1− µ)a)|q b−x b−a ∫ 0 t − λb− x b− a (1 − t)dt     1 q +      1 ∫ b−x b−a t − 1 + λxb− a− a dt      11 q    |f′(µa + (1− µ)b)| q 1 ∫ b−x b−a t − 1 + λxb− a− a tdt +|f′(µb + (1− µ)a)|q 1 ∫ b−x b−a t − 1 + λx− a b− a (1 − t)dt      1 q .

If we use the equalities (2.1)–(2.6) in (2.12), then we complete the proof completely. 2

Remark 2 If we choose µ = 1 in Theorem 4, then the inequality (2.10) reduces to the inequality (1.4).

Corollary 1 Under assumptions of Theorem 4, if we choose µ = 0 in (2.10), then we have the inequality

|(1 − λ) f (a + b − x) (2.13) +λ(b− x) f (a) + (x − a) f (b) (b− a) 1 b− a ba f (u)du

(10)

≤ (b − a) ( 2− 2λ + 1 2 )11 q{[(3− 3λ + 2 6 ) ( b− x b− a )2q+1 |f′(b)|q +   [ 2− 6λ + 3][3− 3λ + 2] (b−x b−a ) 6  (b− x b− a )2q |f′(a)|q   1 q +     [ 2− 6λ + 3][3− 3λ + 2] (xb−a−a ) 6  (x− a b− a )2q |f′(b)|q + ( 3− 3λ + 2 6 ) ( x− a b− a )2q+1 |f′(a)|q ]1 q   .

Corollary 2 If choose λ = 0 in Corollary 1, then we have the inequality

f (a + b− x) − 1 b− a ba f (u)du (2.14) b− a 211q {[ 1 3 ( b− x b− a )2q+1 |f′(b)|q + [ 1 2 1 3 ( b− x b− a )] ( b− x b− a )2q |f′(a)|q ]1 q + [[ 1 2 1 3 ( x− a b− a )] ( x− a b− a )2q |f′(b)|q +1 3 ( x− a b− a )2q+1 |f′(a)|q ]1 q   .

Remark 3 If we choose x = a+b

2 in Corollary 2, then Corollary2reduces to the Theorem 2.1 in [9].

Corollary 3 If we take λ = 1 in Corollary 1, then we have the following inequality:

(b− x) f (a) + (x − a) f (b)(b− a) 1 b− a ba f (u)du (2.15) (2.16)

(11)

b− a 211q    [ 1 6 ( b− x b− a )2q+1 |f′(b)|q + [ 1 2 1 6 ( b− x b− a )] ( b− x b− a )2q |f′(a)|q ]1 q + [[ 1 2 1 6 ( x− a b− a )] ( x− a b− a )2q |f′(b)|q +1 6 ( x− a b− a )2q+1 |f′(a)|q ]1 q   .

Corollary 4 If we take x = a+b

2 in Corollary 3, the we have the following trapezoid inequality:

f (a) + f (b)2 1 b− a ba f (u)du (2.17) b− a 8 {[ 5|f′(a)|q+|f′(b)|q 6 ]1 q + [ |f′(a)|q + 5|f′(b)|q 6 ]1 q } ( 611q 8 ) (b− a) [|f′(a)| + |f′(b)|] .

Proof The proof of the first inequality is obvious. For the second inequality, let a1= 5|f′(a)| q

, a2=|f′(a)| q

, b1=|f′(b)|q, b2= 5|f′(b)|q. Here 0 < 1q < 1, for q > 1. Using the fact that

nk=1 (ak+ bk)s≤ nk=1 ask+ nk=1 bsk for ( 0 < s < 1 ) a1, a2, ..., an≥ 0, b1, b2, ..., bn ≥ 0, we have ( 5|f′(a)|q+|f′(b)|q 6 )1 q + ( |f′(a)|q + 5|f′(b)|q 6 )1 q = 1 61q [( 5|f′(a)|q+|f′(b)|q)1q +(|f′(a)|q+ 5|f′(b)|q)1q ] ( 1 + 51q ) 51q [|f′(a)| + |f′(b)|] ≤ 611 q[|f′(a)| + |f′(b)|] .

(12)

Theorem 5 Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b. If |f′|q, q > 1 is convex on

[a, b] for λ∈ [0, 1] and x ∈ [a, b] , then we have the following inequality:

|T (f, λ, µ, x)| (2.18) ≤ (b − a) ( λp+1+ (1− λ)p+1 p + 1 )1 p × [( x− a b− a )p+1 p ( 1 2 ( b− x b− a )2 |f′(µa + (1− µ)b)|q + [ 1 2 1 2 ( x− a b− a )2] |f′(µb + (1− µ)a)|q )1 q + ( b− x b− a )p+1 p ([ 1 2 1 2 ( b− x b− a )2] |f′(µa + (1− µ)b)|q +1 2 ( x− a b− a ) |f′(µb + (1− µ)a)|q )1 q ] where 1p+1q = 1 and µ∈ [0, 1] / {1/2} .

Proof Taking the modulus in Lemma1 and using H¨older’s inequality, we have

|T (f, λ, µ, x)| ≤ (b − a)        b−x b−a ∫ 0 t − λbb− x− a |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]| dt + 1 ∫ b−x b−a t − 1 + λx− a b− a |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]| dt          ≤ (b − a)                b−x b−a ∫ 0 t − λbb− x− a pdt     1 p

(13)

×     b−x b−a ∫ 0 |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]|q dt     1 q +      1 ∫ b−x b−a t − 1 + λx− a b− a pdt      1 p ×      1 ∫ b−x b−a |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]| dt      1 q            = (b− a)K3.

Using the convexity of |f′|q, we obtain

K3                b−x b−a ∫ 0 t − λb− x b− a pdt     1 p ×    |f′(µa + (1− µ)b)|q b−x b−a ∫ 0 tdt +|f′(µb + (1− µ)a)|q b−x b−a ∫ 0 (1− t) dt     1 q +      1 ∫ b−x b−a t − 1 + λxb− a− a pdt      1 p ×     |f′(µa + (1− µ)b)| q 1 ∫ b−x b−a tdt +|f′(µb + (1− µ)a)|q 1 ∫ b−x b−a (1− t) dt      1 q           

(14)

=                b−x b−a ∫ 0 t − λbb− x− a pdt     1 p ( 1 2 ( b− x b− a )2 |f′(µa + (1− µ)b)|q + [ 1 2 1 2 ( x− a b− a )2] |f′(µb + (1− µ)a)|q )1 q +      1 ∫ b−x b−a t − 1 + λxb− a− a pdt      1 p ([ 1 2 1 2 ( b− x b− a )2] |f′(µa + (1− µ)b)|q +1 2 ( x− a b− a )2 |f′(µb + (1− µ)a)|q )1 q   .

If we use equalities (2.7) and (2.8), then we obtain the required result. 2

Remark 4 If we choose µ = 1 in (2.18), then the inequality Theorem5reduces to the Theorem 2 in [12].

Corollary 5 Under the assumptions of Theorem 5, choosing µ = 0, we get the inequality

|(1 − λ) f (a + b − x) (2.19) +λ(b− x) f (a) + (x − a) f (b) (b− a 1 b− a ba f (u)du ≤ (b − a) ( λp+1+ (1− λ)p+1 p + 1 )1 p ×  (b− x b− a )p+1 p ( 1 2 ( b− x b− a )2 |f′(b)|q + [ 1 2 1 2 ( x− a b− a )2] |f′(a)|q )1 q + ( b− x b− a )p+1 p ([ 1 2 1 2 ( b− x b− a )2] |f′(b)|q +1 2 ( x− a b− a ) |f′(a)|q )1 q .

(15)

Corollary 6 If we take λ = 1 and x = a+b2 in Corollary 5, then we have the following trapezoid inequality: f (a) + f (b)2 1 b− a ba f (u)du b− a 4 (p + 1)1p [( 3|f′(a)|q+|f′(b)|q 4 )1 q + ( |f′(a)|q + 3|f′(b)|q 4 )1 q ] ( b− a 4 ) ( 4 p + 1 )1 p [|f′(a)| + |f′(b)|] .

Proof The proof of the first inequality is obvious. For the second inequality, let a1= 3|f′(a)|q, a2=|f′(a)|q, b1=|f′(b)|

q

, b2= 3|f′(b)| q

. Here 0 < 1q < 1, for q > 1. Using the fact that nk=1 (ak+ bk) s nk=1 ask+ nk=1 bsk for ( 0 < s < 1 ) a1, a2, ..., an≥ 0, b1, b2, ..., bn ≥ 0, we have ( 3|f′(a)|q+|f′(b)|q 4 )1 q + ( |f′(a)|q + 3|f′(b)|q 4 )1 q = 1 41q [( 3|f′(a)|q+|f′(b)|q) 1 q +(|f′(a)|q+ 3|f′(b)|q)1q ] ( 1 + 31q ) 4q1 [|f′(a)| + |f′(b)|] ≤ 411 q[|f′(a)| + |f′(b)|] .

This completes the proof. 2

Remark 5 If we take λ = 0 and x = a+b2 in Corollary5, then Corollary5reduces to the Theorem 2.4 in [10].

Theorem 6 Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b. If |f′|q, q > 1 is convex on

[a, b] for λ∈ [0, 1] and x ∈ [a, b] , then we have the following inequality:

|T (f, λ, µ, x)| ≤ b− a 21q ( λp+1+ (1− λ)p+1 p + 1 )1 p × [( b− x b− a )p+1 p ( |f′(µx + (1− µ) (a + b − x))|q +|f′(µb + (1− µ)a)|q) 1 q + ( x− a b− a )p+1 p ( |f′(µa + (1− µ)b)|q +|f′(µx + (1− µ) (a + b − x))|q) 1 q ] where 1p+1q = 1 and µ∈ [0, 1] / {1/2} .

(16)

Proof Taking the modulus in Lemma1 and using H¨older’s inequality, we have |T (f, λ, µ, x)| ≤ (b − a)        b−x b−a ∫ 0 t − λb− x b− a |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]| dt + 1 ∫ b−x b−a t − 1 + λx− a b− a |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]| dt          ≤ (b − a)                b−x b−a ∫ 0 t − λbb− x− a pdt     1 p ×     b−x b−a ∫ 0 |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]|q dt     1 q +      1 ∫ b−x b−a t − 1 + λx− a b− a pdt      1 p ×      1 ∫ b−x b−a |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]| dt      1 q            .

With convexity of |f′|q, using the Hermite–Hadamard inequality we have

b−x b−a ∫ 0 |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]|q dt (2.20) = 1 (b− a) (1 − 2µ) µa+(1−µ)(a+b−x)µb+(1−µ)a f (u)du |f′(µx + (1− µ) (a + b − x))| q +|f′(µb + (1− µ)a)|q 2

(17)

and 1 ∫ b−x b−a |f′[t (µa + (1− µ)b) + (1 − t) (µb + (1 − µ)a)]| dt (2.21) = 1 (b− a) (1 − 2µ) µa+(1−µ)b µa+(1−µ)(a+b−x) f (u)du +|f (µa + (1− µ)b)|q +|f′(µx + (1− µ) (a + b − x))|q 2

If we put (2.7)–(2.8) and (2.20)–(2.21) in (2.20), then we complete the proof. 2

Corollary 7 Under the assumption of Theorem 6, if we choose µ = 1, then we have the inequality

(1− λ) f (x) + λ(b− x) f (b) + (x − a) f (a) (b− a) 1 (b− a) ba f (u)du (2.22) b− a 21q ( λp+1+ (1− λ)p+1 p + 1 )1 p[(b− x b− a )p+1 p ( |f′(x)|q +|f′(b)|q)1q + ( x− a b− a )p+1 p ( |f′(a)|q +|f′(x)|q) 1 q ] .

Remark 6 If we choose λ = 0 in Corollary 7, then Corollary 7reduces to the Theorem 2 in [3].

Corollary 8 If we choose λ = 1 and x = a+b

2 in Corollary7, then we have the following trapezoid inequality:

f (a) + f (b)2 1 (b− a) ba f (u)du 4 (p + 1)b− a 1p [( f′ ( a + b 2 ) q+|f′(b)|q )1 q + ( |f′(a)|q + f′ ( a + b 2 ) q) 1 q] . References

[1] Alomari M, Darus M, Dragomir SS, Cerone P. Ostrowski type inequalities for functions whose derivatives are convex in the second sense. Appl Math Lett 2010; 23: 1071-1076.

[2] Alomari M, Ozdemir ME, Kavurmacı H. On companion of Ostrowski inequality for mappings whose first derivatives absolute value are convex with applications. Miskolc Math Notes 2012; 13: 233-248.

(18)

[3] Alomari M, Darus M, Some Ostrowski’s type inequalities for convex functions with application, RGMIA Research Report Collection 2010; 13: Art. 3.

[4] Barnett NS, Dragomir SS. An Ostrowski type inequality for double integrals and applications for cubature formulae. Soochow J Math 2001; 27: 109-114.

[5] Cerone P, Dragomir SS. Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions. Demonstratio Math 2004; 37: 299-308.

[6] Dragomir SS. Ostrowski type inequalities for functions whose derivatives are h-convex in absolute value. RGMIA Research Report Collection 2013; 16: Article 71.

[7] Dragomir SS. Ostrowski type inequalities for functions whose derivatives are h−convex in absolute value.Tbilisi Math J 2014; 7: 1-17.

[8] Dragomir SS, Agarwal RP. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl Math Lett 1998; 11: 91-95.

[9] Kirmaci US, Ozdemir ME. On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl Math Comput 2004; 153: 361-368.

[10] Kirmaci US. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl Math Comput 2004; 147: 137-146.

[11] Ostrowski AM. ¨Uber die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert. Comment Math Helv 1938; 10: 226-227.

[12] Ozdemir ME, Kavurmacı H, Avcı M. Ostrowski type inequalities for convex functions. Tamkang J Math 2014; 45: 335-340.

[13] Peˇcari´c JE, Proschan F, Tong YL. Convex Functions, Partial Orderings and Statistical Applications. Boston, MA, USA: Academic Press, 1992.

[14] Sarikaya MZ. On the Ostrowski type integral inequality. Acta Math Univ Comenianae 2010; LXXIX: 129-134. [15] Sarikaya MZ On the Ostrowski type integral inequality for double integrals, Demonstratio Math. 2012; XLV:

533-540.

[16] Sarikaya MZ, Ogunmez H. On the weighted Ostrowski type integral inequality for double integrals. Arab J Sci Eng ASJE Math 2011; 36: 1153-1160.

[17] Sarikaya MZ, Set E, Ozdemir ME, Dragomir SS. New some Hadamard’s type inequalities for co-ordinated convex functions. Tamsui Oxf J Inf Math Sci 2012; 28: 137-152.

[18] Sarikaya MZ, Yaldiz H. On the Hadamard’s type inequalities for L -Lipschitzian mapping. Konuralp J Math 2013, 1: 33-40.

Referanslar

Benzer Belgeler

Düzce İli fındık bahçelerinde Mayıs böceği popülasyon yoğunluğu ekonomik zarar eşiği açısından incelendiğinde; İl genelinde incelenen 32 bahçenin 3’ünde,

türlerinin bulunduğu su örneklerindeki klor miktarlarına bakıldığında sadece iki örneğin klor miktarı 0.3ppm’den yüksek (0.4 ppm) çıkmıştır. Klor miktarı

RBSÖ açısından benlik saygısı, anne-baba ilgisi ve babayla ilişki hasta grubunda kontrol grubuna göre daha düşük iken, eleştiriye duyarlılık, depresif

In this study, AISI D2 cold work tool steel was used as the workpiece, along with CVD- and PVD-coated tungsten carbide cutting tools The main purpose of this study investigated

In diabetic aorta, the relaxation response to acetyl- choline (Ach) was found to be significantly decreased compared with control subjects, and resveratrol treatment reversed this;

Bu romanda önermek istediğim, sizin okur katında çok güzel algıladığınız, tıpkı bu roman yazarının bunu oluştururken bir şeyle­ re şöyle bakması gibi sen bu

Sayısal örnek için seçilen bir taşıyıcı sistem modeli, x ve y yönünde dört açıklıklı, zemin+dört katlı üç boyutlu çerçeve sistem olup,

Bu oluşturulan serilerden her birinden 9 adet (150x150x150 mm) küp numuneler hazırlanmıştır. İkinci aşamada ise maksimum agrega çapı 4, 8, 16 mm olan beton karışımlarla