• Sonuç bulunamadı

On the weighted Ostrowski type inequalities for double integrals

N/A
N/A
Protected

Academic year: 2021

Share "On the weighted Ostrowski type inequalities for double integrals"

Copied!
12
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ON THE WEIGHTED OSTROWSKI TYPE INEQUALITIES FOR DOUBLE INTEGRALS

MEHMET ZEKI SARIKAYA1, HATICE YALDIZ2, AND SAMET ERDEN3

Abstract. In this paper, we obtain weighted Ostrowski type inequalities for func-tion whose second order partial derivatives are bounded.

1. Introduction

In 1938, the classical integral inequality established by Ostrowski [8] as follows. Theorem 1.1. Let f : [a, b]→ R be a differentiable mapping on (a, b) whose deriv-ative f0 : (a, b)→ R is bounded on (a, b), i.e., kf0k = sup

t∈(a,b) |f0(t)| < ∞. Then, the inequality holds (1.1) f (x) − 1 b − a b Z a f (t)dt ≤ " 1 4 + (x − a+b2 )2 (b − a)2 # (b − a) kf0k, for all x ∈ [a, b]. The constant 1

4 is the best possible.

Inequality (1.1) has wide applications in numerical analysis and in the theory of some special means; estimating error bounds for some special means, some mid-point, trapezoid and Simpson rules and quadrature rules, etc. Hence inequality (1.1) has attracted considerable attention and interest from mathematicans and researchers. Due to this, over the years, the interested reader is also refered to ([1]-[7],[9]-[20]) for integral inequalities in several independent variables. In addition, the current approach of obtaining the bounds, for a particular quadrature rule, have depended on the use of Peano kernel. The general approach in the past has involved the assumption of bounded derivatives of degree greater than one.

Key words and phrases. Ostrowski’s inequality, Montgomery’s identities, Double integrals. 2010 Mathematics Subject Classification. Primary: 26D07. Secondary: 26D15.

Received: July 2, 2014 Accepted: October 9, 2014.

(2)

If f : [a, b] → R is differentiable on [a, b] with the first derivative f0 integrable on [a, b], then Montgomery identity holds:

(1.2) f (x) = 1 b − a b Z a f (t)dt + b Z a P (x, t)f0(t)dt, where P (x, t) is the Peano kernel defined by

P (x, t) :=          t − a b − a, a ≤ t < x t − b b − a, x ≤ t ≤ b.

In [3] and [5], the authors obtain two identities which generalize (1.2) for functions of two variables. In fact, for f : [a, b] × [c, d]→ R such that the partial derivative

∂f (t,s) ∂t ,

∂f (t,s) ∂s , and

∂2f (t,s)

∂t∂s all exist and are continuous on [a, b] × [c, d], for all (x, y) ∈

[a, b] × [c, d], they obtain:

(d − c)(b − a)f (x, y) = − b Z a d Z c f (t, s)dsdt + (d − c) b Z a f (t, y)dt + (b − a) d Z c f (x, s)ds + b Z a d Z c p(x, t)p(y, s)∂ 2f (t, s) ∂t∂s dsdt (1.3) and (d − c)(b − a)f (x, y) = b Z a d Z c f (t, s)dsdt + b Z a d Z c p(x, t)∂f (t, s) ∂t dsdt + b Z a d Z c q(y, s)∂f (t, s) ∂s dsdt + b Z a d Z c p(x, t)p(y, s)∂ 2f (t, s) ∂t∂s dsdt (1.4) where p(x, t) = t − a, a ≤ t < x t − b, x ≤ t ≤ b and q(y, s) = s − c, c ≤ s < y s − d, y ≤ s ≤ d.

Definition 1.1. Let w : (a, b) → [0, ∞) be an integrable function, i. e.

b

R

a

w(t)dt < ∞, then define mi(a, b) =

b

R

a

(3)

Definition 1.2. Define the mean of the interval [a, b] with respect to the density w as

(1.5) µ (a, b) = m1(a, b)

m0(a, b)

and the variance by

(1.6) σ2(a, b) = m2(a, b)

m0(a, b)

− µ2(a, b) .

The main aim of this paper is to establish weighted Ostrowski type inequalities for function whose second order partial derivatives are bounded.

2. Main Results

In order to prove main results we need the following lemma:

Lemma 2.1. Let f : [a, b] × [c, d]→ R be an absolutely continuous function such that the partial derivative ∂2∂t∂sf (t,s) exists for all (t, s) ∈ [a, b] × [c, d]. Then, we have

m0(a, b) m0(c, d) (x − µ (a, b)) (y − µ (c, d)) f (x, y) − m0(c, d) (y − µ (c, d))   x Z a   t Z a w (u) du  f (t, y) dt + b Z x   t Z b w (u) du  f (t, y) dt   − m0(a, b) (x − µ (a, b))   y Z c   s Z c w (v) dv  f (x, s) ds + d Z y   s Z d w (v) dv  f (x, s) ds   + m0(a, b) m0(c, d) b Z a d Z c f (t, s) dsdt = b Z a d Z c P (x, t) Q (y, s) fts(t, s) dsdt.

Proof. We define the following functions:

P (x, t) =        t R a (t − u) w(u)du, a ≤ t < x t R b (t − u) w(u)du, x ≤ t ≤ b and Q(y, s) =        s R c (s − v) w(v)dv, c ≤ s < y s R d (s − v) w(v)dv, y ≤ s ≤ d

(4)

for all (x, y) ∈ [a, b] × [c, d] . Thus, by definitions of P (x, t) and Q (y, s) , we have b Z a d Z c P (x, t) Q (y, s) fts(t, s) dsdt = x Z a y Z c   t Z a (t − u) w (u) du     s Z c (s − v) w (v) dv  fts(t, s) dsdt + x Z a d Z y   t Z a (t − u) w (u) du     s Z d (s − v) w (v) dv  fts(t, s) dsdt + b Z x y Z c   t Z b (t − u) w (u) du     s Z c (s − v) w (v) dv  fts(t, s) dsdt + b Z x d Z y   t Z b (t − u) w (u) du     s Z d (s − v) w (v) dv  fts(t, s) dsdt = I1+ I2+ I3+ I4.

Integrating by parts, we can state: I1 = x Z a   t Z a (t − u) w (u) du   ×      s Z c (s − v) w (v) dv  ft(t, s) y s=c − y Z c   s Z c w (v) dv  ft(t, s) ds    dt = x Z a   t Z a (t − u) w (u) du   ×      y Z c (y − v) w (v) dv  ft(t, y) − y Z c   s Z c w (v) dv  ft(t, s) ds    dt =   y Z c (y − v) w (v) dv   x Z a   t Z a (t − u) w (u) du  ft(t, y) dt − y Z c   s Z c w (v) dv     x Z a   t Z a (t − u) w (u) du  ft(t, s) dt  ds

(5)

=   y Z c (y − v) w (v) dv       t Z a (t − u) w (u) du  f (t, y) x t=a − x Z a   t Z a w (u) du  f (t, y) dt   − y Z c   s Z c w (v) dv       t Z a (t − u) w (u) du  f (t, s) x t=a − x Z a   t Z a w (u) du  f (t, s) dt  ds =   x Z a (x − u) w (u) du     y Z c (y − v) w (v) dv  f (x, y) −   y Z c (y − v) w (v) dv     x Z a   t Z a w (u) du  f (t, y) dt   −   y Z c   s Z c w (v) dv     x Z a (x − u) w (u) du  f (x, s) ds   + x Z a y Z c   t Z a w (u) du     s Z c w (v) dv  f (t, s) dsdt

with similar methods

I2 =   x Z a (x − u) w (u) du     d Z y (y − v) w (v) dv  f (x, y) −   d Z y (y − v) w (v) dv     x Z a   t Z a w (u) du  f (t, y) dt   −   d Z y   s Z c w (v) dv     x Z a (x − u) w (u) du  f (x, s) ds   + x Z a d Z y   t Z a w (u) du     s Z d w (v) dv  f (t, s) dsdt,

(6)

I3 =   b Z x (x − u) w (u) du     y Z c (y − v) w (v) dv  f (x, y) −   y Z c (y − v) w (v) dv     b Z x   t Z b w (u) du  f (t, y) dt   −   y Z c   s Z c w (v) dv     b Z x (x − u) w (u) du  f (x, s) ds   + b Z x y Z c   t Z b w (u) du     s Z c w (v) dv  f (t, s) dsdt, I4 =   b Z x (x − u) w (u) du     d Z y (y − v) w (v) dv  f (x, y) −   d Z y (y − v) w (v) dv     b Z x   t Z b w (u) du  f (t, y) dt   −   d Z y   s Z d w (v) dv     b Z x (x − u) w (u) du  f (x, s) ds   + b Z x d Z y   t Z b w (u) du     s Z d w (v) dv  f (t, s) dsdt.

Adding I1, I2, I3 and I4 and rewriting, we easily deduce:

  b Z a (x − u) w (u) du     d Z c (y − v) w (v) dv  f (x, y) −   d Z c (y − v) w (v) dv     x Z a   t Z a w (u) du  f (t, y) dt + b Z x   t Z b w (u) du  f (t, y) dt   −   b Z a (x − u) w (u) du     y Z c   s Z c w (v) dv  f (x, s) ds + d Z y   s Z d w (v) dv  f (x, s) ds  

(7)

+ b Z a d Z c   b Z a w (u) du     d Z c w (v) dv  f (t, s) dsdt = b Z a d Z c P (x, t) Q (y, s) fts(t, s) dsdt

which completes the proof. 

Theorem 2.1. Let f : [a, b] × [c, d]→ R be an absolutely continuous function such that the partial derivative ∂2∂t∂sf (t,s) exists and is bounded, i.e.,

∂2f (t, s) ∂t∂s ∞ = sup (t,s)∈(a,b)×(c,d) ∂2f (t, s) ∂t∂s < ∞ for all (t, s) ∈ [a, b] × [c, d]. Then, we have

|F (x, y)| ≤ m0(a, b)m0(c, d) 4 (x − µ (a, b)) 2 + σ2(a, b) × ×(y − µ (c, d))2 + σ2(c, d) ∂2f (t, s) ∂t∂s ≤ m0(a, b)m0(c, d) 4  x − a + b 2 +b − a 2 2 × (2.1) ×  y − c + d 2 + d − c 2 2 ∂2f (t, s) ∂t∂s where F (x, y) = m0(a, b) m0(c, d) (x − µ (a, b)) (y − µ (c, d)) f (x, y) − m0(c, d) (y − µ (c, d))   x Z a   t Z a w (u) du  f (t, y) dt + b Z x   t Z b w (u) du  f (t, y) dt   − m0(a, b) (x − µ (a, b))   y Z c   s Z c w (v) dv  f (x, s) ds + d Z y   s Z d w (v) dv  f (x, s) ds   + m0(a, b) m0(c, d) b Z a d Z c f (t, s) dsdt.

(8)

Proof. From Lemma 2.1 and using the properties of modulus, we obtain that |m0(a, b) m0(c, d) (x − µ (a, b)) (y − µ (c, d)) f (x, y) − m0(c, d) (y − µ (c, d))   x Z a   t Z a w (u) du  f (t, y) dt + b Z x   t Z b w (u) du  f (t, y) dt   − m0(a, b) (x − µ (a, b))   y Z c   s Z c w (v) dv  f (x, s) ds + d Z y   s Z d w (v) dv  f (x, s) ds   +m0(a, b) m0(c, d) b Z a d Z c f (t, s) dsdt ≤ b Z a d Z c |P (x, t)| |Q(y, s)| ∂2f (t, s) ∂t∂s dsdt ≤ ∂2f (t, s) ∂t∂s b Z a d Z c |P (x, t)| |Q(y, s)| dsdt. (2.2)

Now, using the change of order of integration we get

b Z a |P (x, t)| dt = x Z a t Z a (t − u) w (u) dudt + b Z x t Z b (t − u) w (u) dudt = 1 2 b Z a (x − t)2w(t)dt (2.3) = 1 2x 2

m0(a, b) − 2xm1(a, b) + m2(a, b)

 = m0(a, b) 2 (x − µ (a, b)) 2 + σ2(a, b) and similarly, d Z c |Q (y, s)| ds = y Z c   s Z c (s − v) w (v) dv  ds + d Z y   s Z d (s − v) w (v) dv  ds = 1 2 d Z c (y − s)2w(s)ds

(9)

= m0(c, d)

2 (y − µ (c, d))

2

+ σ2(c, d) . (2.4)

Thus, using (2.3) and (2.4) in (2.2), we obtain the first inequality of (2.1). To obtain the second inequality of (2.1) note that

b Z a (x − t)2w(t)dt ≤ sup t∈[a,b] (x − t)2.m0(a, b) = m0(a, b) max(x − a) 2 , (x − b)2 = m0(a, b) 1 2 (x − a) 2 + (x − b)2+ (x − a)2− (x − b)2  = m0(a, b)  x − a + b 2 +b − a 2 2 and similarly d R c (y − s)2w(s)ds ≤ m0(c, d) y −c+d2 + d−c2 2

which upon substitution

into (2.2) the proof is completed. 

Remark 2.1. If we choose (x, y) = (µ(a,b)2 ,µ(c,d)2 ) in Theorem 2.1, then the inequalities (2.1) reduce the following inequalities

m1(a, b) m1(c, d) 4 f  µ (a, b) 2 , µ (c, d) 2  −    µ(a,b) 2 Z a   t Z a w (u) du  f  t,µ (c, d) 2  dt + b Z µ(a,b) 2   t Z b w (u) du  f  t,µ (c, d) 2  dt     m1(c, d) 2 − m1(a, b) 2    µ(c,d) 2 Z c   s Z c w (v) dv  f  µ (a, b) 2 , s  ds + d Z µ(c,d) 2   s Z d w (v) dv  f  µ (a, b) 2 , s  ds     + m0(a, b) m0(c, d) b Z a d Z c f (t, s) dsdt

(10)

≤ m0(a, b)m0(c, d) 4  µ2(a, b) 4 + σ 2(a, b)  µ2(c, d) 4 + σ 2(c, d)  ∂2f (t, s) ∂t∂s ≤ m0(a, b)m0(c, d) 4  µ (a, b) 2 − a + b 2 + b − a 2 2 × (2.5) ×  µ (c, d) 2 − c + d 2 +d − c 2 2 ∂2f (t, s) ∂t∂s ∞ .

Substituting w(u) = 1 in (1.5) and (1.6) it follows that m0(a, b) = b − a,

m1(a, b) = b R a udu = b2−a2 2, µ (a, b) = b R a udu b R a du = a + b 2 and σ 2(a, b) = b R a u2du b R a du = (b − a) 2 12 .

Substituting into (2.5) gives

(b2− a2) (d2− c2) 16 f  a + b 4 , c + d 4  −d 2 − c2 4    a+b 4 Z a (t − a) f  t,c + d 4  dt + b Z a+b 4 (t − b) f  t,c + d 4  dt   − b2− a2 4    c+d 4 Z c (s − c) f a + b 4 , s  ds + d Z c+d 4 (s − d) f a + b 4 , s  ds   + (b − a) (d − c) b Z a d Z c f (t, s) dsdt ≤ (b − a) (d − c) 4 " (a + b)2 16 + (b − a)2 12 # " (c + d)2 16 + (d − c)2 12 # ∂2f (t, s) ∂t∂s ∞ ≤ (b − a) 2 (d − c)2 32 ∂2f (t, s) ∂t∂s .

(11)

Substituting w(u) = ln(u1), a = c = 0, b = d = 1 in (1.5) and (1.6) it follows that m0(0, 1) = 1, m1(0, 1) = 1 R 0 u ln(u1)du = 14 µ (0, 1) = 1 R 0 u ln(u1)du 1 R 0 ln(1u)du = 1 4 and σ 2(0, 1) = 1 R 0 u2ln(1u)du 1 R 0 ln(1u)du − 1 4 2 = 7 144.

Substituting into (2.5) gives 1 43f  1 8, 1 8  + 1 Z 0 1 Z 0 f (t, s) dsdt −1 8    1 8 Z 0  t ln(1 t) + t  f  t,1 8  dt + 1 Z 1 8  t ln(1 t) + t − 1  f  t,1 8  dt    −1 8    1 8 Z 0  s ln(1 s) + s  f 1 8, s  ds + 1 Z 1 8  s ln(1 s) + s − 1  f 1 8, s  ds    ≤ 1 45  1 + 1 36 2 ∂2f (t, s) ∂t∂s ≤ 81 45 ∂2f (t, s) ∂t∂s . References

[1] F. Ahmad, N. S. Barnett and S. S. Dragomir, New Weighted Ostrowski and Cebysev Type Inequalities, Nonlinear Analysis: Theory, Methods & Appl., 71(12) (2009), 1408–1412.

[2] F. Ahmad, A. Rafiq, N. A. Mir, Weighted Ostrowski type inequality for twice differentiable mappings, Global Journal of Research in Pure and Applied Math., 2(2) (2006), 147–154. [3] N. S. Barnett and S. S. Dragomir, An Ostrowski type inequality for double integrals and

appli-cations for cubature formulae, Soochow J. Math., 27(1) (2001), 109–114.

[4] N. S. Barnett, S. S. Dragomir and C. E. M. Pearce, A Quasi-trapezoid inequality for double integrals, ANZIAM J., 44 (2003), 355–364.

[5] S. S. Dragomir, P. Cerone, N. S. Barnett and J. Roumeliotis, An inequlity of the Ostrowski type for double integrals and applications for cubature formulae, Tamsui Oxf. J. Math., 16(1), (2000), 1–16.

[6] S. S. Dragomir, N. S. Barnett and P. Cerone, An n-dimensional version of Ostrowski’s inequality for mappings of H¨older type, RGMIA Res. Pep. Coll., 2(2), (1999), 169–180.

[7] S. Hussain, M. A. Latif and M. Alomari, Generalized duble-integral Ostrowski type inequalities on time scales, Appl. Math. Letters, 24 (2011), 1461–1467.

[8] A. M. Ostrowski, ¨Uber die absolutabweichung einer differentiebaren funktion von ihrem inte-gralmitelwert, Comment. Math. Helv. 10 (1938), 226-227.

[9] B. G. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249 (2000), 583–591.

(12)

[10] B. G. Pachpatte, On a new Ostrowski type inequality in two independent variables, Tamkang J. Math., 32(1), (2001), 45–49

[11] B. G. Pachpatte, A new Ostrowski type inequality for double integrals, Soochow J. Math., 32(2), (2006), 317–322.

[12] J. Pecaric and A. Vukelic, Montgomery’s identities for function of two variables, J. Math. Anal. Appl. 332 (2007), 617–630.

[13] A. Qayyum, A weighted Ostrowski-Gr¨uss type inequality and applications, Proceeding of the World Cong. on Engineering, 2 (2009), 1–9.

[14] A. Rafiq and F. Ahmad, Another weighted Ostrowski-Gr¨uss type inequality for twice differen-tiable mappings, Kragujevac Journal of Mathematics, 31 (2008), 43–51.

[15] U. M. Ozkan and H. Yıldırım, Ostrowski type inequality for double integrals on time scales, Acta Appl. Math., 110 (2010) 283–288.

[16] U. M. Ozkan and H. Yıldırım, The Gr¨uss type inequalities for double integrals on time scales, Comp.Math. with Appl., 57(3), (2009), 436–444.

[17] M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, Vol. LXXIX(1), (2010), 129–134.

[18] M. Z. Sarikaya On the Ostrowski type integral inequality for double integrals, Demonstratio Mathematica, Vol. XLV No 3 (2012)

[19] M. Z. Sarikaya and H. Ogunmez, On the weighted Ostrowski type integral inequality for dou-ble integrals, The Arabian Journal for Science and Engineering (AJSE)-Mathematics, (2011) 36:1153–1160.

[20] N. Ujevi´c, Some double integral inequalities and applications, Appl. Math. E-Notes, 7 (2007), 93–101.

1,2

Department of Mathematics, Faculty of Science and Arts,

D¨uzce University, Konuralp Campus, D¨uzce-TURKEY

E-mail address: 1sarikayamz@gmail.com E-mail address: 2yaldizhatice@gmail.com 3

Department of Mathematics, Faculty of Science,

Bartın University, BARTIN-TURKEY

Referanslar

Benzer Belgeler

sondiirdii. Biri gelip, geceleri babam cam!, kaptlarm kepenklerini takttktan sonra, etraftnda bahtiyar bir aile halinde topland1g1m1z lambayt sondiirdii. Bu gelen, mumu

Bulgular gözlemleri de içerecek şekilde görüş- melerdeki alıntılardan örnekler verile- rek yorumlanmış ve öne çıkan beş ana tema başlığı (boşanmalar için

İşletmenin yabancı sermaye ile ortaklık yapıp yapmama durumuna göre örgüt- çevre etkileşimi arasında anlamlı bir fark olup olmadığını belirlemek amacıyla

türlerinin bulunduğu su örneklerindeki klor miktarlarına bakıldığında sadece iki örneğin klor miktarı 0.3ppm’den yüksek (0.4 ppm) çıkmıştır. Klor miktarı

Aim: Evaluation of the effect of Ramadan fasting on circadian variation of acute ST-elevation myocardial infarction (STEMI) in Turkish patients.. Material and methods: This

After the use of sugammadex as a reversal agent and rocu- ronium as a neuromuscular blocking agent, the time to reach TOF 0.7, 0.8 and 0.9 in relation to intubation time and the

Benzer şekilde bu ünite sonrası uygulanan hatırlama testi sonuçlarına bakıldığında işbirlikli öğrenme yönteminin uygulandığı deney grubu ile geleneksel yöntemin

and Yükler A.I., “Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets”, Materials