• Sonuç bulunamadı

Başlık: On weighted Grüss type inequalities for double integralsYazar(lar):BUDAK, Hüseyin; SARIKAYA, Mehmet ZekiCilt: 66 Sayı: 2 Sayfa: 053-061 DOI: 10.1501/Commua1_0000000800 Yayın Tarihi: 2017 PDF

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: On weighted Grüss type inequalities for double integralsYazar(lar):BUDAK, Hüseyin; SARIKAYA, Mehmet ZekiCilt: 66 Sayı: 2 Sayfa: 053-061 DOI: 10.1501/Commua1_0000000800 Yayın Tarihi: 2017 PDF"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

C om mun.Fac.Sci.U niv.A nk.Series A 1 Volum e 66, N umb er 2, Pages 53–61 (2017) D O I: 10.1501/C om mua1_ 0000000800 ISSN 1303–5991

http://com munications.science.ankara.edu.tr/index.php?series= A 1

ON WEIGHTED GRÜSS TYPE INEQUALITIES FOR DOUBLE INTEGRALS

HÜSEYIN BUDAK AND MEHMET ZEKI SARIKAYA

Abstract. In this study, we obtain some new weighted inequalities of Grüss type for functions of two independent variables. Special cases of the results presented here reduce the results given in earlier works.

1. Introduction In 1935, G. Grüss [3] proved the following inequality:

1 b a b Z a f (x)g(x)dx 1 b a b Z a f (x)dx 1 b a b Z a g(x)dx 1 4( ')( ); (1.1)

provided that f and g are two integrable function on [a; b] satisfying the condition

' f (x) and g(x) for all x 2 [a; b]: (1.2)

The constant 1

4 is best possible.

In 1882, P. L. µCebyšev [1] gave the following inequality:

jT (f; g)j 121 (b a)2kf0k1kg0k1; (1.3) where f; g : [a; b] ! R are absolutely continuous function, whose …rst derivatives f0

and g0 are bounded,

T (f; g) = 1 b a b Z a f (x)g(x)dx 0 @ 1 b a b Z a f (x)dx 1 A 0 @ 1 b a b Z a g(x)dx 1 A (1.4) and k:k1 denotes the norm in L1[a; b] de…ned as kpk1= ess sup

t2[a;b] jp(t)j :

The following result of weighted Grüss type was proved by Dragomir [2]: Received by the editors: February 9, 2016; Accepted: October 15, 2016.

2010 Mathematics Subject Classi…cation. Primary 26D15; Secondary 26A51.

Key words and phrases. Weighted Grüss type inequality, double integrals, two independent variables.

c 2 0 1 7 A n ka ra U n ive rsity C o m m u n ic a tio n s d e la Fa c u lté d e s S c ie n c e s d e l’U n ive rs ité d ’A n ka ra . S é rie s A 1 . M a th e m a t ic s a n d S t a tis tic s .

(2)

Theorem 1. Let f and g be two functions de…ned and integrable on [a; b] : If (1.2) holds, where '; ; and are given real constant, and w : [a; b] ! [0; 1) is integrable and b R a w(x)dx > 0; then b Z a w(x)dx: b Z a f (x)g(x)dx b Z a f (x)w(x)dx: b Z a g(x)w(x)dx (1.5) 1 4( ')( ) 0 @ b Z a w(x)dx 1 A 2

and the constant 14 is the best possible.

In the last years, many authors were interested in the generalization of Grüss type inequalities for mapping of one variable, we can mention the works [2], [4]-[8]. Recently, Sarikaya and Kiris have proved the following Grüss type inequality for double integrals in [9]:

Theorem 2. Let f; g : [a; b] [c; d] ! R be two functions de…ned and integrable on [a; b] [c; d] : Then for

' f (x; y) and g(x; y) for all (x; y) 2 [a; b] [c; d] we have 1 (b a) (d c) b Z a d Z c f (x; y)g(x; y)dydx (1.6) 0 @ 1 (b a) (d c) b Z a d Z c f (x; y)dydx 1 A 0 @ 1 (b a) (d c) b Z a d Z c g(x; y)dydx 1 A 1 4( ')( ):

In this study, we establish some new inequalities of weighted Grüss type involving functions of two independent variables for double integrals.

2. Main Results

Throughout this work, we assume that the weight function h : [a; b] [c; d] ! [0; 1) is integrable, nonnegative and satis…es

m(a; b; c; d) = b Z a d Z c h(x; y)dydx < 1:

(3)

De…nition 1. Consider a function f : V ! R de…ned on a subset V of Rn; n 2 N.

Let L = (L1; L2; :::; Ln) where Li 0; i = 1; 2; :::; n: We say that f is L-Lipschitzian

function if jf(x) f (y)j n X i=1 Lijxi yij for all x; y 2 V [9]:

Theorem 3. Let h be as above and let f; g : [a; b] ! R be two functions de…ned and integrable on [a; b] [c; d]. If

' f (x; y) and g(x; y) for all x 2 [a; b] [c; d] ; (2.1) then we have b R a d R c h(x; y)dydx ! b R a d R c

f (x; y)g(x; y)h(x; y)dydx

b R a d R c f (x; y)h(x; y)dydx ! b R a d R c g(x; y)h(x; y)dydx ! 1 4( ')( ) b R a d R c h(x; y)dydx !2 : (2.2) The constant1

4 is the best possible in the sense that it cannot be replaced by smaller

one.

Proof. For mappings f; g : [a; b] [c; d] ! R, we have the identity

b R a d R c b R a d R c

[f (x; s) f (t; y)] [g(x; s) g(t; y)] h(t; y)h(x; s)dsdtdydx

= b R a d R c b R a d R c

[f (x; s)g(x; s)h(t; y)h(x; s) f (x; s)g(t; y)h(t; y)h(x; s) f (t; y)g(x; s)h(t; y)h(x; s) + f (t; y)g(t; y)h(t; y)h(x; s)] dsdtdydx

= 2 b R a d R c h(t; y)dydt b R a d R c f (x; s)g(x; s)h(x; s)dsdx 2 b R a d R c f (x; s)h(x; s)dsdx ! b R a d R c g(t; y)h(t; y)dydt ! : (2.3)

(4)

Appling Cauchy-Buniakowski-Schwarz’s inequality, we have the inequality " 1 2[m(a;b;c;d)]2 b R a d R c b R a d R c

[f (x; s) f (t; y)] [g(x; s) g(t; y)] h(t; y)h(x; s)dsdtdydx #2 1 2[m(a;b;c;d)]2 b R a d R c b R a d R c

[f (x; s) f (t; y)]2h(t; y)h(x; s)dsdtdydx ! 1 2[m(a;b;c;d)]2 b R a d R c b R a d R c

[g(x; s) g(t; y)]2h(t; y)h(x; s)dsdtdydx ! = 2 4 1 m(a;b;c;d) b R a d R c f2(x; s)h(x; s)dsdx 1 m(a;b;c;d) b R a d R c f (x; s)h(x; s)dsdx !23 5 2 4 1 m(a;b;c;d) b R a d R c g2(x; s)h(x; s)dsdx m(a;b;c;d)1 b R a d R c g(x; s)h(x; s)dsdx !23 5 : (2.4) It is easy to observe that

1 m(a;b;c;d) b R a d R c f2(x; s)h(x; s)dsdx 1 m(a;b;c;d) b R a d R c f (x; s)h(x; s)dsdx !2 = m(a;b;c;d)1 b R a d R c f (x; s)h(x; s)dsdx ! 1 m(a;b;c;d) b R a d R c f (x; s)h(x; s)dsdx ' ! 1 m(a;b;c;d) b R a d R c [ f (x; s)] [f (x; s) '] h(x; s)dsdx:

(5)

Since [ f (x; s)] [f (x; s) '] 0 for each (x; s) 2 [a; b] [c; d] ; then we get 1 m(a;b;c;d) b R a d R c f2(x; s)h(x; s)dsdx 1 m(a;b;c;d) b R a d R c f (x; s)h(x; s)dsdx !2 1 m(a;b;c;d) b R a d R c f (x; s)h(x; s)dsdx ! 1 m(a;b;c;d) b R a d R c f (x; s)h(x; s)dsdx ' ! : (2.5) Similarly, we obtain 1 m(a;b;c;d) b R a d R c g2(x; s)h(x; s)dsdx 1 m(a;b;c;d) b R a d R c g(x; s)h(x; s)dsdx !2 1 m(a;b;c;d) b R a d R c g(x; s)h(x; s)dsdx ! 1 m(a;b;c;d) b R a d R c g(x; s)h(x; s)dsdx ! : (2.6)

Using (2.5) and (2.6) in (2.4), we get the following inequality " 1 2[m(a;b;c;d)]2 b R a d R c b R a d R c

[f (x; s) f (t; y)] [g(x; s) g(t; y)] dsdtdydx #2 1 m(a;b;c;d) b R a d R c f (x; s)h(x; s)dsdx ! 1 m(a;b;c;d) b R a d R c f (x; s)h(x; s)dsdx ' ! 1 m(a;b;c;d) b R a d R c g(x; s)h(x; s)dsdx ! 1 m(a;b;c;d) b R a d R c g(x; s)h(x; s)dsdx ! : (2.7) Now, using the elementary inequality for real numbers

(6)

we get " 1 2[m(a;b;c;d)]2 b R a d R c b R a d R c

[f (x; s) f (t; y)] [g(x; s) g(t; y)] h(t; y)h(x; s)dsdtdydx #2

1

16( ')2( )2

which completes the proof. To prove the sharpness of (2.2), let choose h(x; y) = 1 and f (x; y) = g(x; y) = 8 > > < > > : 1; a x < a+b2 ; c y < c+d2 1; a x < a+b2 ; c+d2 y d 1; a+b2 x b; c y <c+d2 1; a+b2 x b; c+d2 y d then b Z a d Z c h(x; y)dydx = (b a)(d c); b Z a d Z c

f (x; y)g(x; y)h(x; y)dydx = (b a) (d c) ,

b Z a d Z c f (x; y)h(x; y)dydx = b Z a d Z c g(x; y)h(x; y)dydx = 0 and ( ') = ( ) = 2

which the equality (2.2) is realized. This implies the constant 14 is the best possible.

Remark 1. If we choose h(x; y) = 1 in (2.2), then the inequality (2.2) reduces the inequality (1.6).

The following inequality of weighted Gruss type for Lipschitzian mappings holds: Theorem 4. Let f; g : R2 ! R satis…es L-Lipschitzian conditions. That is,

for (x; s) and (t; y) belong to := [a; b] [c; d] ; then we have jf(x; s) f (t; y)j L1jx tj + L2js yj

(7)

where L1; L2; L3 and L4 are nonnegative constants. Then, we have the following inequality: b R a d R c h(x; y)dydx ! b R a d R c f (x; y)g(x; y)dydx b R a d R c f (x; y)h(x; y)dydx ! b R a d R c g(x; y)h(x; y)dydx ! L1L3 2 4m(a; b; c; d)Rb a d R c x2h(x; y)dydx Rb a d R c xh(x; y)dydx !23 5 +L2L4 2 4m(a; b; c; d)Rb a d R c y2h(x; y)dydx Rb a d R c yh(x; y)dydx !23 5 +L1L4+L2L3 2 b R a d R c A(x; y)dxdy (2.8) where A(x; y) = b Z a d Z c jx tj jy sj h(t; y)h(x; s)dsdt:

Proof. Since f; g are L-Lipschitzian, we have

j[f(x; s) f (t; y)] [g(x; s) g(t; y)]j

(8)

for all (x; s), (t; y) 2 := [a; b] [c; d] : Then, we have 1 2 b R a d R c b R a d R c

[f (x; s) f (t; y)] [g(x; s) g(t; y)] h(t; y)h(x; s)dsdtdydx

1 2 b R a d R c b R a d R c j[f(x; s)

f (t; y)] [g(x; s) g(t; y)]j h(t; y)h(x; s)dsdtdydx

1 2 b R a d R c b R a d R c L1L3(x t)2+ L2L4(s y)2

+(L1L4+ L2L3) jx tj js yj] h(t; y)h(x; s)dsdtdydx

= L1L3 2 4m(a; b; c; d)Rb a d R c x2h(x; y)dydx Rb a d R c xh(x; y)dydx !23 5 +L2L4 2 4m(a; b; c; d)Rb a d R c y2h(x; y)dydx Rb a d R c yh(x; y)dydx !23 5 +L1L4+L2L3 2 b R a d R c A(x; y)dxdy which completes the proof.

Remark 2. If we choose h(x; y) = 1 in the inequality (2.8), then we have the inequality 1 (b a)(d c) b R a d R c f (x; y)g(x; y)dydx 1 (b a)(d c) b R a d R c f (x; y)dydx ! 1 (b a)(d c) b R a d R c g(x; y)dydx ! (b a)2 12 L1L3+ (d c)2 12 L2L4+ (b a)(d c) 18 (L1L4+ L2L3)

which was given by Sarikaya and Kiri¸s in [9]. References

[1] P. L. µCebyšev, Sur less expressions approximatives des integrales de…nies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov, 2, 93-98, 1882.

[2] S. S. Dragomir , Some integral inequalities of Grüss type, Indian J. Pure Appl. Math., 31(4), 397-415, April 2000.

(9)

[3] G. Grüss, Über das maximum des absoluten Betrages von 1 b a b R a f (x)g(x)dx 1 (b a)2 b R a f (x)dx b R a g(x)dx;Math. Z., 39, 215-226, 1935.

[4] D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Inequalities involving functions and their integrals and derivatives, Kluwer Academic Publishers, Dordrecht, 1991.

[5] B. G. Pachpatte, On µCebyšev-Grüss type inequalities via Pecaric’s extention of the Mont-gomery identity, J. Inequal. Pure and Appl. Math. 7(1), Art 108, 2006.

[6] J. E. Pecaric and B. Tebes, On Grüss type inequalities Dragomir and Fedotov, J. Inequal. Pure and Appl. Math. 4(5), Art 91, 2003.

[7] M. Z. Sarikaya, N. Aktan, H. Y¬ld¬r¬m, Weighted µCebyšev-Grüss type inequalities on time scales, J. Math. Inequal. 2, 2 (2008), 185–195.

[8] M. Z. Sarikaya, A Note on Grüss type inequalities on time scales, Dynamic Systems and Applications, 17 (2008), 663-666.

[9] M. Z. Sarikaya and M. E. Kiris, On µCebysev-Grüss type inequalities for double integrals, TJMM, 7(2015), No.1, 75-83.

Current address : H. Budak: Düzce University, Faculty of Science and Arts, Department of Mathematics, Konuralp Campus, Düzce, Turkey.

E-mail address : hsyn.budak@gmail.com

Current address : M. Z. Sar¬kaya: Düzce University, Faculty of Science and Arts, Department of Mathematics, Konuralp Campus, Düzce, Turkey.

Referanslar

Benzer Belgeler

Keşifsel inovasyon faktörü öğrenim durumu bazında incelendiğinde sırası ile yüksek lisans veya doktora düzeyinde eğitim almış olanların keşifsel inovasyon

Katılımcıdan soruyu aşağıdakilerden birini seçerek yanıtlaması istenmiştir. A) Zamana bırakılır, kendi kendine çözülmesi beklenir. B) Çatışmada taraflar bir

İşletmenin stratejisiyle uygun yönetilmesi açõsõndan performans ölçütleri doğru, zamanõnda anlaşõlabilir ve güvenilir veri sağlar iken, sürekli iyileştirme

Dengesiz veri kümesi ile 10-kat çapraz doğrulama yöntem kullanılarak yapılan deneylerde Rastgele Orman (RF) ağırlıklandırma algoritması tüm özelliklerin eklendiği

Stevens [1] defines a logistic chain as a system whose constituent parts include suppliers of materials, production facilities, distribution services and customers, all linked

Kitapta, günümüzde bilinen bedensel engel olarak bilinen görme, işitme, konuşma ve ortopedik engellerden hareketle, İslâm hukukundaki ilgili hükümleri tespit

Varoluşçu yaklaşım bireyin kendi kendini sorgulayarak doğrulama süreci üzerine yoğunlaşmaktadır. Seçim yapma kaygısıyla karşılaşınca otantik olabilmek

Bu çalışmada amaç Dikkat eksikliği hiperaktivite bozukluğu tanılı ergenlerde yeme davranışı ve yaşam kalitesi ilişkisinin değerlendirilmesidir. Bu