• Sonuç bulunamadı

On smooth manifolds with the homotopy type of a homology sphere

N/A
N/A
Protected

Academic year: 2021

Share "On smooth manifolds with the homotopy type of a homology sphere"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Topology

and

its

Applications

www.elsevier.com/locate/topol

On

smooth

manifolds

with

the

homotopy

type

of

a

homology

sphere

Mehmet Akif Erdal

DepartmentofMathematics,BilkentUniversity,Ankara,06800,Turkey

a r t i c l e i n f o a b s t r a c t

Article history:

Received 4 July 2016

Received in revised form 30 October 2017

Accepted 17 November 2017 Available online 22 November 2017

MSC: 57Q20 55Q45 Keywords: Homology sphere Poincaré duality K-theory Cobordism Spectral sequence

InthispaperwestudyM(X),thesetofdiffeomorphismclassesofsmoothmanifolds withthesimplehomotopytype ofX,viaa mapΨ fromM(X) intothequotient ofK(X)= [X,BSO] bytheactionofthegroupofhomotopyclassesofsimpleself equivalencesofX.ThemapΨ describeswhichbundlesoverX canoccurasnormal bundlesofmanifoldsinM(X).WedeterminetheimageofΨ whenX belongstoa certainclassofhomologyspheres.Inparticular,wefindconditionsonelementsof K(X) thatguaranteetheyarepullbacksofnormalbundlesofmanifoldsinM(X). ©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Unless otherwise stated, by a manifold we mean a smooth, oriented, closed manifold with dimension greater than or equal to 5. Given a simple Poincaré complex X with formal dimension m, a classical problem intopologyis to understandtheset ofdiffeomorphismclasses ofsmooth manifoldsinthesimple homotopy type of X.For suchan aim, afundamental object to study is thesmooth simple structure set

Ss(X) (see[1]page125–126fornotationanddetails).Elementsof Ss(X) areequivalenceclassesofsimple homotopy equivalencesω : M → X fromanm-dimensionalmanifold M .Twosuchhomotopyequivalences

ω1: M1 → X andω2: M2 → X aresaid tobe equivalent ifthere is adiffeomorphism g : M1→ M2 such

that ω1 is homotopic to thecomposition ω2◦ g.An element ofSs(X) is called asimplesmooth manifold

structure onX. Note thatcomposition of an element inSs(X) with asimple self equivalence of X gives another element inSs(X), althoughthemanifold isstill thesame.Hence,we needto quotientoutsimple self equivalences of X inorder toget theset of diffeomorphismclassesof smoothmanifolds inthesimple

E-mailaddress:merdal@fen.bilkent.edu.tr.

https://doi.org/10.1016/j.topol.2017.11.006

(2)

homotopy typeofX. Denote byAuts(X) thegroup ofhomotopy classesof simpleself equivalencesof X. ThenAuts(X) actsonSs(X) bycomposition.Thesetofdiffeomorphismclassesofsmoothmanifoldsinthe simplehomotopy typeofX,M(X), is definedasthe setof orbitsofSs(X) under theactionof Auts(X), i.e.M(X):=Ss(X)/Aut

s(X).

Let K(X) denote the group of homotopy classes of maps [X,BSO] (here,we abandonthe traditional notation KSO(X) forsimplicity). Every simplehomotopy equivalenceX → X induces anautomorphism onK(X). LetAuts(K(X)) denote thesubgroupof Aut(K(X)) thatconsist ofautomorphisms inducedby the simple self equivalences of X. There is a canonical action of Auts(K(X)) on K(X) again given by composition.WedenotebyK(X) theset oforbitsofK(X) undertheactionofAuts(K(X)).

Aspointedoutin[1]computationsofAuts(X) andSs(X) areingeneraldifficult,sodoesthecomputation ofM(X).Ontheotherhand,computationsofK(X) andAuts(K(X)) areeasierinmostcasesasK(−) is a(generalized)cohomologygroup(see[2]).Inthispaper, wecompareK(X) with M(X) whereX belongs

toacertainclassofPoincarécomplexes.

There isamap Ψ:M(X)→ K(X) definedby[ω : M→ X]→ (ω−1)∗(ν) whereν : M → BSO denotes

the normal bundle of M (see Proposition 2.2). For a prime q, by a Z/q-homology m-sphere we mean a simple Poincaré complex X of formal dimension m such that H(X;Z/q) ∼= H∗(Sm;Z/q). For a general reference to Poincaré complexes we refer to [3] and [4]. Our purpose is to determine the image of Ψ for certain such homology spheres. Here we also assume that such a homology sphere admits a degree one normalmap (equivalently theSpivak normalfibrationhasavector bundlereduction), sinceotherwisethe problemis trivial.

Let m be an oddnumber and S be a subset of the set of primes between (m+ 4)/4 and (m+ 2)/2. DenotebyK(X)(S,q1)⊂ K(X) thesetoforbitsinK(X) thatcanberepresentedbyelementsξ suchthatfor

eachp in S the firstmod p Wu classof ξ satisfytheidentity q1p(ξ)+ qp1(X) = 0 (see[5]or [6]).Note that

K(Sm)= 0 form oddandm= 1(mod 8).Themain objectofthispaperis toprovethefollowing:

Theorem1.1. Letm beanoddnumberandS beasubsetofthesetofprimesbetween(m+4)/4 and(m+2)/2.

LetX withagivenmapf : Sm→ X beaZ/q-homologym-sphere,sothatf isaZ/q-homologyisomorphism

foreveryprimeq < (m+ 2)/2 withq /∈ S.Assumefurtherthatπ1(X) isofoddorder.Thentheimage ofΨ

consists of orbits inK(X)(S,q1) that are represented by elements in thekernel of f

: K(X)→ K(Sm). In

particular,ifm= 1(mod 8), thentheimage ofΨ isK(X)(S,q1).Furthermore,ifS =∅,thenΨ issurjective.

ObservethatasS getslarger,theimageofΨ getssmaller.Inparticular,ifT ={q prime : q < m+22 }\S,

thenwedonotneedtomaketheassumptionofTheorem 1.1onthemod q Wuclassesfortheprimesq∈ T .

On the other hand, for an oddprime q, X being a Z/q-homologysphere implies there is no q-torsion in

K(X).Hence,primes inT alsoaffecttheimage ofΨ.

It is well-known, due to [7], that a degree one normal map can be surgered to a simple homotopy equivalence if and only if the associated surgery obstruction vanishes. The main result in [8] states that ifπ1(X) is ofoddorder, then theodddimensionalsurgery obstruction groups,Lsm(Z[π1(X)]), vanish,i.e.

everydegreeonenormal map canbesurgered to asimplehomotopy equivalence. Anessentialstepinthe proofofTheorem 1.1isthat,underthestatedconditions,anelementinK(X) admitsadegreeonenormal mapifanonlyifitisinthekerneloff∗andithasthesamemod p WuclassesastheSpivaknormalfibration of X foreach p∈ S. In particular, ifm= 1(mod 8), thenbundles admitting degreeonenormal mapsare completely determined by theirmod p Wu classes for p∈ S. In the casewhen S = ∅ andm = 1(mod 8)

everystablevectorbundleover X admitsadegreeonenormalmap.Therestistodeterminetheactionof Auts(K(X)) onK(X),whichisgivenbytherestrictionofthecanonicalactionofAut(K(X)).

SomeexamplesofsuchX comefromthesmoothsphericalspaceforms.Someapplicationsofourtheorem arediscussedinSection4.Smiththeorymayalso provideexamples,althoughwedonotmentionanysuch exampleinthis note.

(3)

2. Notationandpreliminaries

Let X be asimplePoincaré complexwith formal dimension m. Given astable vector bundle ξ : X BSO, a ξ-manifold is a manifold whose stable normal bundles lifts to X through ξ, we refer [9] for more details (in [9] such objects are called (B,f )-manifolds). We denote by Ωk(ξ) the cobordism group of k-dimensional ξ-manifolds. An element of Ωk(ξ) is often denoted by : M → X], where M is a

k-dimensional manifold and ρ is a lifting of its stable normal bundle to X through ξ, and brackets de-note thehomotopy class ofsuch liftings(see [10] Proposition 2forthis notation). Such amap ρ is called a normal map, and if degree of ρ is equal to 1,i.e. ρ[M ]= [X] ∈ Hm(X;Z), then it is called a degree

one normal map (see[11] Definition3.46). Due to thePontrjagin–Thom construction,the groupΩk(ξ) is isomorphicto k-thhomotopygroupofM ξ,theThom spectraassociatedto ξ[12].

Our primary tool is theJames spectral sequence, which is avariantof the Atiyah–Hirzebruchspectral sequence(see[10],Section II).Leth beageneralizedhomologytheoryrepresentedbyaconnectivespectrum,

F → X → B bef anh-orientable fibration withfiber F and ξ : X→ BSO be astable vector bundle. The James spectral sequence forh, f andξ has E2-pageEs,t2 = Hs(B;ht(M ξ|F)) and converges to hs+t(M ξ). Inthecasewhenh isthestablehomotopy,theedgehomomorphismofthisspectral sequencecomingfrom thebase lineisas follows:

Proposition 2.1(see[10]Proposition2). The edgehomomorphismof theJamesspectralsequenceforstable homotopy, f : X → B andξ : X → BSO is ahomomorphismed : Ωn(ξ)→ Hn(B,Z) given by

ed[ρ : M→ X] = f∗◦ ρ∗[M ]

forevery element [ρ: M → X]∈ Ωn(ξ).

TheAtiyah–HirzebruchspectralsequencesforM ξ isisomorphictotheJamesspectralsequenceforstable homotopy,id: X → X andξ : X → BSO.ThisfollowsfromthefactthatM ξ|isthespherespectrum.This isomorphismis givenbytheThom isomorphism(seeproofof Proposition1in[10]). Inthispaper,we will onlyusethisedgehomomorphismoftheJamesspectralsequenceforthestablehomotopy,theidentitymap

id: X→ X andagivenstable vectorbundleξ : X→ BSO.Inthiscaseed : Ωn(ξ)→ Hn(X,Z) isthemap givenby[ρ: M → X]→ ρ[M ] foreveryelement[ρ: M → X]∈ Ωn(ξ).Theotheredgehomomorphismfor this spectralsequencewill bedenotedbyed : π¯ (S)→ π∗(M ξ),whereS denotesthespherespectrum.

RecallthatK(X) denotesthequotientK(X)/Auts(K(X)) (seeSection1).LetΦ: K(X)→ K(X) bethe quotient map.Wedefine amap Ψ fromM(X) toK(X) asfollows:LetM beasmooth manifoldequipped withasimplehomotopyequivalenceω : M → X andletν bethestablenormalbundleofM .Letg : X→ M

be thehomotopy inverseof ω.Then the pullbackbundle g∗(ν) definesan element inK(X). If[M ] is the diffeomorphismclassofM inM(X),wedefine Ψ[M ]:= Φ(g∗([ν])).

Proposition 2.2. Ψ iswelldefined.

Proof. LetK beanothermanifoldintheorbit[M ] withnormalbundleκ,withadiffeomorphismt: K → M and withasimplehomotopyequivalenceh: X→ K.Sincet∗([ν])= [κ],wehaveh∗t∗([ν])= h∗([κ]).Since

ω : M → X isthehomotopyinverseof g,wehaveh∗([κ])= h∗t∗([ν]) = h∗t∗ω∗g∗([ν]).Hence,h∗([κ]) and

g∗([ν]) differbyanautomorphisminAuts(K(X)) asthecompositionω◦ t◦ h ishomotopictoasimpleself homotopy equivalenceofX.Bydefinition,inK(X) theyarethesame. 2

Letp= 2b+ 1 beanoddprime.Foravectorbundle,or ingeneralasphericalfibration,ξ overX,there exist cohomologyclassesqpk(ξ) inH4bk(X;Z/p),knownasmod p Wuclasses,introducedin[5].Wewriteq

(4)

insteadof qpk if theprimewe consider is clear from thecontext.These classesare definedby theidentity qk(ξ)= θ−1Pkθ(1).Here,Pn denotestheSteenrod’s reducedp-thpoweroperationand θ : H∗(X;Z/p)→

H∗(T ξ;Z/p) denotestheThomisomorphism.Formoredetailsonmod p Wuclasseswereferto[6],Ch.19. Foreachprimep,letqp1(X) denotethenegativeofthemod p WuclassofνX,theSpivaknormalfibration ofX (which existssinceX isafinitecomplex,see [4]).GivenS aset ofprimes,letK(X)(S,q1)denote the

subsetof K(X) thatconsist of elementsξ such thatforeach p inS the firstmod p Wuclass of ξ satisfies

theidentityqp1(ξ)+ qp1(X)= 0 (orequivalently qp1(ξ)= qp1(νX)).Sincetheclassqp1(X) isahomotopytype

invariant of X (see [6] Ch. 19), the subset K(X)(S,q1) is invariant under the action of Auts(K(X)). We

denotethequotientof thisactionbyK(X)(S,q1).Inparticular, ifS =∅,thenK(X)(S,q1)= K(X).

Notation 2.3.E∗,∗ (ξ) will denote the James spectral sequence for thestable homotopy as the generalized homology theory, identity fibrationid : X → X andthe stable bundle ξ : X→ BSO. Theabbreviations JSS and AHSS willbe usedforthe JamesandAtiyah–HirzebruchSpectralsequencesrespectively.Forany finite spectrumE,Eq∧ will denote theq-nilpotent completionof E attheprimeq (also called localization atZ/q,corresponding tolocalizationattheMoorespectrumMZq ofZ/q),see[13].

3. Mainresults

LetX beasimplePoincarécomplexwithformal dimensionm.Weimpose thefollowingconditionona stablevector bundleξ : X→ BSO:

Condition3.1. Foreachr≤ m the differential dr: Er

m,0(ξ)→ Em−r,r−1r (ξ) intheJames spectralsequence

iszero.

Observe that the image of the edge homomorphism of E∗,∗ (ξ) in Hm(X,Z) is the intersection of the kernelsofallofthedifferentialswithsourceEm,0 (ξ),i.e. im(ed)=rker(dr).Thus,Condition3.1implies thatthegroupE2

m,0(ξ)= Hm(X;Z) isequaltoEm,0∞ (ξ),i.e. edgehomomorphismissurjective.Foragiven class [ρ: M → X] in Ωm(ξ) we haveed[ρ: M → X]= ρ∗[M ].Therefore, wecanfindaclass [ρ: M → X] inΩm(ξ) suchthated[ρ: M → X]= ρ∗[M ] isagenerator ofHm(X;Z) withthepreferred orientation.As aresult,we getadegreeonenormalmap ρ: M → X,i.e.wehaveasurgeryproblem.

IfCondition3.1doesnotholdforξ,i.e.wehaveanon-trivialdifferentialdr: Em,0r (ξ)→ Em−r,r−1r (ξ) for somer, then theedge homomorphismcannotbe surjective. This meansρ[M ] cannotbe ageneratorof

Hm(X;Z),i.e.ρ cannotbeadegreeonemap.Hence,thereisnotadegreeonenormalmapthatrepresents aclassinΩm(ξ).Asaresult,thereisnotamanifoldsimplehomotopyequivalenttoX whosestablenormal bundleliftstoX through ξ.Hence,wehavethefollowing lemma:

Lemma 3.2. A stable vector bundle ξ admits a degree one normal map if and only if Condition 3.1 holds for ξ.

For the JSS for ξ, E∗,∗ (ξ), there is a corresponding (isomorphic) AHSS for the Thom spectrum M ξ,

i.e. the AHSS whose E2-page is H(M ξ,πS(∗)) which converges to π(M ξ), with the isomorphism given by the Thom isomorphism. For a given prime q, it is well known that the q-primary part of πS

k is zero

whenever 0 < k < 2q− 3 (see [14]). We use finiteness of πS

k [15]. On each mod q torsion part, the first non-trivial differentialsof the AHSS are given bythe duals of thestable primary cohomologyoperations. DuetoWuformulas,whenwepasstothe JSS weneedtoknowtheactionofSteenrodalgebraontheThom class. Forp= 2 theactionofSteenrod squaresontheThom classU ∈ H∗(M ξ;Z/2) isdetermined bythe Stiefel–Whitneyclasses.Infactthe(mod 2) WuformulaassertsthatSqi(U )= U∪ w

i (see[6],p. 91). Let S/q denote the homology theory given by Sq. Let E be a spectrum. Consider the AHSS for the homology theory S/q, i.e. the coefficient groups will be π(Sq). Due to naturality of the AHSS, the first

(5)

non-zero differentials have to be stable primary cohomology operations independent of the generalized cohomologytheory,seepp.208[2].Foreachi with0< i< 2q−3 wehaveπi(S∧q)= 0 andπ2q−3(S∧q)=Z/q. Thus, thefirstnon-trivialdifferentialinthis AHSS appearsatthe(2q− 2)-thpage.Thisdifferentialhasto be astable primary cohomologyoperation. Theonlymod q operationsinthis rangeare 0 anddual ofthe mod q Steenrod operationP1.Asintheproof ofLemmain[10,pp.751],lettingE = Σ2q−2HZ/p asatest

case, one cansee that d2q−2 is not always zero.The d2 differential inE∗,∗ (ξ) isgiven by the dual of the map x→ Sq2(x)+ w

2(ξ)∪ x, see [10] Proposition1.Letus writeq1 for qq1, where q isafixedoddprime.

Weobtainasimilarformulaforthefirstnon-zerodifferentialsinE∗,∗ (ξ) actingonmod q torsionpart.

Lemma 3.3. Foreach n≥ 2q − 2 thedifferential on themod q part d2q−2 : E2q−2

n,0 (ξ)→ E

2q−2

n−2q+2,2q−3(ξ) is

equalto thedual of themap

δ : Hn−2q+2(X;Z/q) → Hn(X;Z/q)

defined asx→ P1(x)+ q

1(ξ)∪ x, composedwithmod q reduction.

Proof. Consider the AHSS forM ξ and S/q.Inthiscasethe coefficientgroupsofthe AHSS willbe π(Sq) and itwillconvergeto π(M ξq).Fromaboveremarks,thedifferentiald2q−2 inthe AHSS forM ξ andS/q, is thedual ofthemod q Steenrodoperation

P1: Hn−2q+2(M ξ,Z/q) → Hn(M ξ,Z/q).

BytheThomisomorphismtheoremanelementofH∗(M ξ,Z/q) isoftheformU∪ σ whereσ∈ H∗(X;Z/q) and U istheThom class.Onthepassagetothe JSS,Cartan’sformulaimplies

P1(U∪ σ) = U ∪ P1(σ) +P1(U )∪ σ = U ∪ P1(σ) + U∪ q

1(ξ)∪ σ

hence inthe Jamesspectral sequence thesedifferentials becomeduals ofthemaps σ→ P1(σ)+ q

1(ξ)∪ σ

composedwith mod q reduction. 2

Wehavethefollowinglemmaforthedifferentialdmwith sourceEm m,0(ξ):

Lemma 3.4.Let q be a prime and m be an odd number. Let X be a Z/q-homology sphere with a given

Z/q-homology isomorphism f : Sm → X.Then for any stable vector bundleξ : X → BSO thatis in the

kernel of f∗: K(X)→ K(Sm),theimage of thedifferentialdm inE0,mm −1(ξ) hastrivialq-torsion.

Proof. Let : Sm→ BSO bethestablevectorbundlegivenbythecompositionξ◦f.Themapf : Sm→ X induces amap of spectra M f : M → Mξ. Since f is a Z/q-homologyisomorphism, the induced map is also Z/q-homologyisomorphism,due toThomisomorphism.BothM ξ and M areconnective spectraand of finite type. The space X is q-good (see Definition I.5.1 in [16]) due to 5.5 of [17]. Thus, the induced map M fq : M ∧q → Mξ∧q is ahomotopy equivalence(see [13]Proposition2.5 andTheorem 3.1).Wehave

f∗(ξ)= 0 inK(Sm).Hence, isatrivialbundle. TheThomspectrumM is thenhomotopyequivalent to the wedgeofspectra S∨ ΣmS,as itisthesuspension spectrumofSm∨ S0. RecallthatE

∗,∗( ) isthe JSS for theidentity fibration Sm → Sm and the trivialstable vector bundle. Hence, E

∗,∗( ) collapses on the second page.Asaresult,q-torsioninE0,mm −1( ) survivestotheE0,m∞ −1( ).Theresultfollowsbycomparing theq-torsion inE0,mm −1( ),viaM f ,withtheq-torsion inE0,mm −1(ξ). 2

(6)

Lemma3.5. Assumeq = 2 andm= 1(mod 8) inLemma 3.4.Then,if ξ /∈ ker(f∗), thenCondition3.1does not holdforE∗,∗ (ξ).

Proof. Suppose thatξ /∈ ker(f∗) and Condition3.1 holds forE∗,∗ (ξ). Letξ◦ f = μ : Sm → BSO be the nontrivial element in K(Sm). Then, by acomparison as in the proof of Lemma 3.4, Condition 3.1 holds for E∗,∗ (μ). Thus, there is a degree one normal map ρ : M → Sm representing a class in Ω

m(μ). Since

Ls

m(Z) = 0, see [18], every such map can be surgered to asimple homotopy equivalence, ρ : ˜˜ M → Sm. However, it is well knownthat everyhomotopy sphere is stably parallelizable(see [18]). Hence,we get a contradiction,asμ◦ ˜ρ isnontrivialinK(Sm). 2

Proof ofTheorem 1.1. Sinceboth1(X)| andm areodd,duetoTheorem1in[8],thesurgeryobstruction

groupsvanish. Hence,every degreeonenormal map canbe surgered to ahomotopy equivalence. We will showthatelementsinK(X)(S,q1)aretheonesthatadmitadegreeonenormalmap.

Let [ξ] beanorbit inK(X)(S,q1) represented byξ : X → BSO.Consider theJames spectral sequence,

E∗,∗ (ξ).Letq beaprimewithq < (m+ 2)/2 andq /∈ S.ThenX isaZ/q-homologysphere.ByLemma 3.4

theimageofdmhastrivialq-torsion.SinceEr

m−r,r−1(ξ)= Hm−r(X;πSr−1) doesnotcontainq-torsionwhen

r < m,imageofthedifferentialsdr: Er

m,0(ξ)→ Em−r,r−1r (ξ) havetrivialq-torsionaswell.Hence,allofthe differentialsbasedatEr

m,0(ξ) havetrivialq-torsion intheirimages.

Now, let p∈ S. Then 2p− 2 < m < 4p− 4. It is well known thatfor t < 4p− 5 the p-torsion in πtS

vanishesexcept when t= 2p− 3 (seefor example[14], III Theorem 3.13,B).Since 2p− 2< m< 4p− 4, Em

0,m−1 hastrivialp-torsion, wehavedm= 0. Hence,theonlydifferentialwhose imagecancontainmod-p torsionappearsat degree2p− 2.ByLemma 3.3,thedifferentiald2p−2 onthep-torsionpartisequaltothe dualofthemap

δ : Hm−2p+2(X;Z/p) → Hm(X;Z/p)

definedasx→ P1(x)+q1(ξ)∪x,composedwith(mod p) reduction.Letx beanelementinHm−2p+2(X;Z/p).

ByPoincaréduality,thereexistsanelements inH2p−2(X;Z/p) suchthatP1(x)= s∪x (see[19]Section 2).

Bydefinition s = q1(X). Then d2p−2 is trivialon mod-p torsion as ξ is an element in K(X)(S,q1), i.e. as

qp1(X)+ qp1(ξ)= 0.

Now, assume that qp1(X) + qp1(ξ) = 0. Then by Poincaré duality there exist an element a Hm−2p+2(X;Z/p) suchthata∪ (qp1(X)+ q1p(ξ)) isnonzeroinHm(X;Z/p),i.e.d2p−2 = 0.

As a result, Condition 3.1 holds for ξ if and only if ξ ∈ K(X)(S,q1) ∩ ker(f

). By Lemma 3.2 ξ

K(X)(S,q1)∩ ker(f∗) ifandonlyifξ admitsadegreeonenormalmap.Hence,wecandosurgeryandobtain

a smooth manifold M with asimple homotopy equivalence ω : M → X that represent aclass inΩm(ξ) if and only if ξ ∈ K(X)(S,q1)∩ ker(f

). By Lemma 3.4, the image of Ψ consists of orbits in K(X)

(S,q1)

representedbyelementsinthekernel off∗: K(X)→ K(Sm).

Inthecasewhenm= 1(mod 8) wehaveK(Sm)= 0 byBottperiodicity,i.e.imageofΨ isK(X)

(S,q1).If

S =∅,thenK(X)(S,q1)= K(X),i.e.Ψ isasurjection. Thiscompletestheproof. 2

Thefollowingcorollaryisessentiallystrongerthanthemainresult.

Corollary 3.6.Let m and S be as in Theorem 1.1. Suppose that X and X are Z/q-homology m-spheres fitting intoazigzag Sm f→ X g← X,sothat both f andg are Z/q-homology isomorphisms forevery prime q < (m+ 2)/2 with q /∈ S. If π1(X) isafree product of finitely manyodd order groups,then theimage of

Ψ contains allorbits inK(X)(S,q1) whichare represented by elements ing

(ker(f)), where f andg are

theinducedmapsK(Sm)f

← K(X)g∗

(7)

Proof. Assumeq /∈ S withq < (m+ 2)/2.Forabundleξ overX,Condition3.1holds forξ ifandonlyif

ξ∈ K(X)(S,q1)∩ ker(f∗) foreachq. Onecancomparespectralsequencesforξ andg∗(ξ) asintheproof

of Lemma 3.4, andshowthatdmdifferentialistrivialonEm,0r (g∗(ξ)) wheneverξ∈ ker(f∗) foreachsuch primeq.Thus,Condition3.1holdsforg∗(ξ),wheneverξ∈ K(X)(S,q1)∩ker(f∗).Repeatingthearguments

of Lemma 3.5, onecanshow thatif ξ ∈ ker(f/ ), thenCondition 3.1 does nothold for g∗(ξ).The result follows fromTheorem 5in[20],togetherwithLemma 3.2above. 2

Corollary 3.6,forexample,allowsustodosimilarestimationsforconnectedsumsofmanifoldssatisfying theassumptions ofTheorem 1.1.

Remark3.7. ItcanbeseenfromtheproofofTheorem 1.1(resp.Corollary 3.6)thatwedonotneedasingle map f (or g) which is simultaneously aZ/q-homology isomorphism for everyprime q < (m+ 2)/2 with

q /∈ S. Itisenoughthatfor everyprimeq < (m+ 2)/2 withq /∈ S there exist mapsfqand gq (depending on q) whichare Z/q-homologyisomorphisms. Inthis case,we need to replaceker(f∗) (org∗(ker(f∗)))by intersectionoverq ofallker(fq) (orgq∗(ker(fq))).

Let Θm denote thegroup ofhomotopy m-spheres.For anysmooth m-manifold M , thereis asubgroup

I(M ) of Θm called the inertia group of M , defined as ∈ Θm : Σ#M ∼= M}, where = here means diffeomorphic(see[21]).TwomanifoldsM1andM2aresaidtobealmostdiffeomorphicifthereisaΣ∈ Θm such thatM1#Σm∼= M2.It isknownthatalmost diffeomorphicmanifoldshaveisomorphicstable normal

bundles, ashomotopyspheresarestablyparallelizable(see[18]).Thus,theirimagesarethesameunderΨ. InordertodeterminethesetofmanifoldsthatarealmostdiffeomorphictoM ,oneneedstocomputeI(M ).

Hence,todetermineM(X),itisnecessarytoknowI(M ) forevery[M ] inM(X).ItisknownthatI(M ) is

notahomotopytypeinvariant, infactitisnoteven aPL-homeomorphismtypeinvariant,see forexample

[22].Asaresult,completedeterminationofM(X) maynotbe possibleinthisgenerality.

Thefollowing corollarysaysthatframed manifoldsdonotboundinΩm(ξ) forsomeξ : X → BSO. Corollary3.8. UndertheassumptionsofTheorem 1.1togetherwithm= 1(mod 8) andS =∅,theedgemap

¯

ed : π(S)→ π(M ξ) isan inclusionforanystable vector bundleξ : X→ BSO.

Proof. As intheproof ofTheorem 1.1 foraprimeq thefirst differentialinE∗,∗ (ξ) thatactsnon-trivially onq-torsion appearsindimension2q− 2.SinceS =∅,X isaZ/q-homologysphereforeveryprimeq with

2q− 2< m.Hence,dr= 0 for everyr < m.Asintheproof ofLemma 3.4, bycomparing withE∗,∗ ( ) we get dm= 0 (asE∗,∗ ( ) collapsesat thesecond page,due to degreereasons).Therefore,thefirst nontrivial differential appearswhenr≥ m+ 1.Butthen thetargetof dr shouldbe zero.Hence,E

∗,∗(ξ) collapses at thesecond page,andwegetthated : π¯ (S)→ π(M ξ) isaninclusion. 2

Observe that the degree of f (as in Theorem 1.1) plays the important role here, as it is co-prime to smallerprimes.Onecanaskwhatthenecessaryandsufficientconditionsareonthepair(X,ξ) so thatthe naturalmap ed : π¯ s→ π∗(M ξ) induced bytheinclusionof pointisinjective. Itiswell knownthatsuchis notthecaseforclassicalThomspectra likeM O orM SO (see[12]).Inthecasewhenξ isatrivialbundle, there are examplesfor which this is true. Another possible question is: For which spaces X,this natural mapπs

∗→ π∗(M ξ) isinjectiveforeverystablevectorbundleξ : X→ BSO.Corollary 3.8providesjustone suchexample.

Supposethatq = 2 andm= 1(mod 8) inLemma 3.4.Inthiscasef inducestheidentityoncohomology withcoefficientsZ/2.BottperiodicitytheoremassertsthatK(Sm)= K−m(S0)=Z/2.Themapf induces

a map on the Atiyah–Hirzebruch spectral sequences. At the second page we have f∗ : Hm(X;Z/2)

Hm(Sm;Z/2),whichisan isomorphism.Themod-2 classinHm(Sm;Z/2) survives totheinfinitypage of the Atiyah–Hirzebruchspectralsequence forK(Sm). Hence,f is asurjectionontheinfinitypage bythe

(8)

naturalityofthe AHSS.Itfollowsthatf∗: K(X)→ K(Sm) issurjective(forthecasewhenX isaspherical spaceform,thisfollowsfrom [23],Theorem 1-(b)).Hence,wehavethefollowing remark:

Remark3.9.Inthecasewhenq = 2 andm= 1(mod 8) inLemma 3.4,wehave[K(X): ker(f∗)]= 2.

Since2∈ S in/ Theorem 1.1,wehave[K(X): ker(f∗)]= 2 aswell.Thus,wecandeterminetheimagein thecasewhenm= 1(mod 8) aswell.

4. Examples

LetLk(n) denotethequotientspace S2k+1/Z/n ofthefreelinearactionofZ/n on S2k+1.If (q,n)= 1, then Lk(n) is aZ/q-homologysphere with thecovering projection being theZ/q-homology isomorphism. LetLk(n,μ) denotetheorbitspace ofafreeactionμ of Z/n onS2k+1where μ acts byhomeomorphisms.

SuchLk(n,μ) areoftencalledfakelensspaces(see[24]and[25],[26]formoredetailsontopologicaland[27],

[28]for smoothfakelensspaces).Forany suchactionμ,onecanalwaysfindalensspaceLk(n) homotopy equivalent to Lk(n,μ) (see[26] P. 456). If p is aprimeand k is anintegerwith k ≤ 2p− 3, Theorem 1.1

applies toany fake lensspace Lk(p,μ). Ifk < p− 1, thenS =∅ andif p− 1≤ k ≤ 2p− 3, thenS ={p} (notethatdimensionofLk(p,μ) is2k + 1).Inthiscase,ifT ={q prime : q ≤ k +1}\{p},thenforanyprime

q∈ T , Lk(p,μ) isaZ/q homologysphereandK(Lk(p,μ)) doesnothaveanyelement oforderq forq odd. Ingeneral,ifn isanaturalnumbernotdivisiblebyprimes lessthanorequalto k+2

2 ,μ isanactionofZ/n

onS2k+1,S ={pprime : p|n} andT ={q prime : q ≤ k +1}\S,thenTheorem 1.1appliestoLk(n,μ) where

theimage ofΨ consists oforbitsinK(Lk(n,μ))(S,q1) thatarerepresentedbyelements inker(f∗), wheref

isthecoveringprojection.Again,forq∈ T oddprime,thegroupK(Lk(n,μ)) does nothaveanyq-torsion. Werefer to Theorem 2in[29]for theK-theory of alensspace and to [30]for calculationof thegroupof homotopy classes of self homotopy equivalences of a lens space. For the particular cases when k = p− 3

andk = 2p− 4,wecangetfromTheorem 2.Ain[30] thatAuts(K(Lk(p,μ))) hasonly2-elements,namely theidentityandtheautomorphismmappinganelement toitsalgebraicinverse.Hence,inthesecaseseach orbit(excepttheorbitof0) inK(Lk(p,μ)) hasexactlytwoelements.

Another class of examples can be obtained from spherical space forms. There is a vast literature on classificationof spherical spaceforms, see forexample [31], [32] and [33]. Let Σ bea homotopym-sphere

withm≥ 5.Letπ beagroupthatcanactfreelyandsmoothlyonΣ andletX = Σ/π,sothatf : Σ→ X isa principalπ-bundle.Letp≥ 3 bethesmallestprimedividingtheorderofπ.Thenthereisamapϕ: X → Bπ thatclassifies f .ThegroupofselfequivalencesAut(X) ofX containsanormalsubgroupisomorphicto all innerautomorphismInn(π) ofπ (see[30]Corollary1andTheorem1.4).Notethat,aninnerautomorphism inducestheidentityonall(generalized)cohomologygroupsofBπ,duetothecommutativityincohomology. Letα : X→ X inAut(X) beaself equivalence.Considerthediagram

X

X ϕ

α∗ α

ϕ

sothatα andα∗ inducethesamemaponπ1(X)= π.Byanargumentasin[34]Theorem7.26,thediagram

commutes up to homotopy. It is well-known that ϕ induces a surjection on K (see for example [23]). Thereby,innerautomorphismsofπ induceidentityonK(X) aswell.DenotebyOut(X)= Aut(X)/Inn(π)

thegroupofouterself-equivalencesofX.Then,inordertodetermineAuts(K(X)),weonlyneedtoconsider automorphismsinducedbyselfequivalencesbelongingtoafixedsetofrepresentativesofcosetsinOut(X).

(9)

For m= 1(mod 8) and m< 2p− 2,Theorem 1.1applies toX,so thatΨ:M(X)→ K(X) issurjective. In this case S =∅. Ifm < 4p− 4 and noother prime betweenp and 2p divides theorder of π, then the image ofΨ is determinedbythefirstmod -p WuclassoftheSpivaknormalbundleofX.Ingeneral,ifS is

thesetofprimesbetweenp and2p whichdividetheorderofπ,thentheimageofΨ isK(X)(S,q1).Werefer

to [23] for the computationofK(X) (for X = Σ/π as above) and the resultsgiven in[35] (andalthough indirectly,in[36])forthecomputationofAut(X).Ofcourseweonlyneedthesecomputationswhenπ1(X)

isofoddorder.TheactionofAuts(K(X)) onK(X) isgivenbytherestrictionoftheusualcanonicalaction of theautomorphism groupAut(K(X)) onK(X),whichcanbeunderstoodonce K(X) isknown.

Let m andS be as inTheorem 1.1. LetX0 and X1 with given maps fi : Sm → Xi fori = 0,1 be two Z/q-homology m-spheres,so thatbothf0 andf1 areZ/q-homologyisomorphismsfor q < (m+ 2)/2 with

q /∈ S,i.e.Theorem 1.1appliestobothX0andX1.Then,X0#X1isalsoaZ/q-homologysphereforprimes

q < (m+ 2)/2 with q /∈ S (whichfollowseasilyfrom Mayer–Vietorissequence)andthefundamentalgroup of X0#X1 isthe freeproductπ1(X0)∗ π1(X1) (which followsfrom asimpleapplicationofVan Kampen’s

Theorem).Thus,Corollary 3.6appliestotheconnectedsumX0#X1.Ifthereexistsamapf : Sm→ X0#X1

satisfying the conditions of Theorem 1.1, then we can choose g as the identity map.In this case, im(Ψ) consists of allorbits in K(X0#X1)(S,q1) which are represented by elements inker(f∗). If we cannot find

such amap f , thenwe canapply Corollary 3.6by using thezigzagsSm fi

→ Xi gi

← X0#X1, where gi’s are theobviouscollapsemaps. Inthiscase,im(Ψ) containsallorbitsinK(X0#X1)(S,q1)whicharerepresented

byelements ing∗(ker(f∗)).

For a given finite CW -complex X, denote by Aut(Ki(X)) the subgroup of Aut(Ki(X)) that consists of automorphisms induced by elements inAut(X) (wesimply write Aut(K(X)) when i= 0). Due to the naturalityofsuspensionisomorphismandBottperiodicity,wecanidentifyAut(K(X)) withAut(K(Σ8iX)).

Hence,thenaturalmapfromAut(X) toAut(K(X)) factorsthroughthegroupofstableselfequivalencesof

X,whichisequaltocolimiAut(Σ8iX) (see forexample[37],[38]and[39]formoredetailsaboutthegroup of stable self equivalences).IfX is aZ/q-homologysphereforaprimeq, then allBettinumbersof X are

lessthan or equalto1.Thus, dueto Theorem 1.1-(a) in[39],thegroupof stable selfequivalences ofX is

finite,whichimpliesthatAuts(K(X)) (whichisasubgroupofAut(K(X)))isfinite. Acknowledgements

IwishtothankÖzgünÜnlüandMatthewGelvinfortheirvaluableadvices.Ialsothanktheanonymous referee for the valuable comments. This research was partially supported by TÜBİTAK-BİDEB-2214/A Programme.

References

[1]M.Kreck,AGuidetotheClassificationofManifolds,Ann.Math.Stud.,vol. 145,PrincetonUniv.Press,Princeton,NJ, 2000,pp. 121–134.

[2]M.F.Atiyah,F.Hirzebruch,Vectorbundlesandhomogeneousspaces,in:Proc.Sympos.PureMath.,Vol.III,American MathematicalSociety,Providence,R.I.,1961,pp. 7–38.

[3]C.T.C.Wall,Poincarécomplexes.I,Ann.Math.(2)86(1967)213–245. [4]M.Spivak,SpacessatisfyingPoincaréduality,Topology6(1967)77–101. [5]W.T.Wu,OnPontrjaginclasses.I,Sci.Sin.3(1954)353–367.

[6]J.W.Milnor,J.D.Stasheff,CharacteristicClasses,vol. 76,PrincetonUniversityPress,1974.

[7]C.T.C.Wall,A.Ranicki,SurgeryonCompactManifolds,vol.69,AmericanMathematicalSoc.,1999. [8]A.Bak,Odddimensionsurgerygroupsofoddtorsiongroupsvanish,Topology14 (4)(1975)367–374. [9]R.E.Stong,NotesonCobordismTheory,vol.536,PrincetonUniversityPress,Princeton,1968.

[10] P. Teichner, On the signature of four-manifolds with universal covering spin, Math. Ann. 295 (4) (1993) 745–759, https://doi.org/10.1007/BF01444915.

[11]W.Lück,Abasicintroductiontosurgerytheory,in:TopologyofHigh-DimensionalManifolds,No.1,2,Trieste,2001,in: ICTPLect.Notes,vol. 9,AbdusSalamInt.Cent.Theoret.Phys.,Trieste,2002,pp. 1–224.

(10)

[13] A.K.Bousfield,Thelocalizationofspectrawithrespecttohomology,Topology18 (4)(1979) 257–281,https://doi.org/ 10.1016/0040-9383(79)90018-1.

[14] H.Toda,p-primarycomponentsofhomotopygroupsiii.stablegroupsofthesphere,Mem.Coll.Sci.,Univ.Kyoto,Ser. A:Math.31 (3)(1958)191–210,http://projecteuclid.org/euclid.kjm/1250776856.

[15]J.-P.Serre,Groupesd’homotopieetclassesdegroupesabéliens,Ann.Math.,1953,pp. 258–294.

[16]A.K.Bousfield,D.M.Kan,HomotopyLimits,CompletionsandLocalizations,vol.304,SpringerScience&BusinessMedia, 1987.

[17]A.K.Bousfield,D.M.Kan,Localizationandcompletioninhomotopytheory,Bull.Am.Math.Soc.77 (6)(1971)1006–1010. [18]M.A.Kervaire,J.W.Milnor,Groupsofhomotopyspheres:I,Ann.Math.(1963)504–537.

[19]F.Hirzebruch,OnSteenrod’sreducedpowers,theindexofinertia,andtheToddgenus,Proc.Natl.Acad.Sci.USA39 (1953)951–956.

[20]S.Cappell,Mayer–VietorissequencesinHermitianK-theory,HermitianK-TheoryGeom.Appl.(1973)478–512. [21]W.Browder,OntheactionofΘn(∂π),in:DifferentialandCombinatorialTopology(ASymposiuminHonorofMarston

Morse),PrincetonUniv.Press,Princeton,N.J.,1965,pp. 23–36.

[22] R.DeSapio,Differentialstructuresonaproductofspheres,Comment.Math.Helv.44 (1)(1969)61–69,https://doi.org/ 10.1007/BF02564512.

[23]P.B.Gilkey,M.Karoubi,K-theoryforsphericalspaceforms,Topol.Appl.25 (2)(1987)179–184.

[24] T.Macko,Fakelensspaces,BulletinoftheManifoldAtlas,http://www.map.mpim-bonn.mpg.de/Fake_lens_spaces. [25]T.Macko,C.Wegner,Ontheclassificationoffakelensspaces,in:ForumMathematicum,vol. 23,2011,pp. 1053–1091. [26]W.Browder,T.Petrie,C.T.C.Wall,Theclassificationoffreeactionsofcyclicgroupsofoddorderonhomotopyspheres,

Bull.Am.Math.Soc.77(1971)455–459.

[27]T.Petrie,TheAtiyah–Singerinvariant,theWallgroupsLn(π,1),andthefunction(tex+ 1)/(tex− 1),Ann.Math.(1970)

174–187.

[28]P.Orlik,Smoothhomotopylensspaces,Mich.Math.J.16 (3)(1969)245–255.

[29]T.Kambe,Thestructureof-ringsofthelensspaceandtheirapplications,J.Math.Soc.Jpn.18(1966)135–146. [30]D.Smallen,Thegroupofself-equivalencesofcertaincomplexes,Pac.J.Math.54 (1)(1974)269–276.

[31]C.B.Thomas,C.T.C.Wall,Thetopologicalsphericalspaceformproblemi,Compos.Math.23 (1)(1971)101–114. [32]I.Madsen,C.B.Thomas,C.T.C.Wall,Thetopologicalsphericalspaceformproblem—iiexistenceoffreeactions,Topology

15 (4)(1976)375–382.

[33]I.Madsen,C.B.Thomas,C.T.C.Wall,Topologicalsphericalspaceformproblem.iii.dimensionalboundsandsmoothing, Pac.J.Math.106 (1)(1983)135–143.

[34]J.F.Davis,P.Kirk,LectureNotesinAlgebraicTopology,Grad.Stud.Math.,vol. 35, AmericanMathematicalSociety, Providence,RI,2001.

[35]M. Golasiński,D.L.Gonçalves,Sphericalspaceforms—Homotopytypesandself-equivalencesfor thegroupsZ/a Z/b andZ/a (Z/b× Q2i),Topol.Appl.146/147(2005)451–470.

[36]M.Golasiński,D.L.Gonçalves,Sphericalspaceforms:Homotopytypesandself-equivalencesforthegroup(Z/a Z/b)× SL2(Fp),Can.Math.Bull.50 (2)(2007)206–214.

[37]D.W.Kahn,Thegroupofstableself-equivalences,Topology11 (1)(1972)133–140. [38]P.Pavešić,Stableself-homotopyequivalences,Topol.Appl.157 (17)(2010)2757–2767. [39]P.T.Johnston,Thestablegroupofhomotopyequivalences,Q.J.Math.23 (2)(1972)213–219.

Referanslar

Benzer Belgeler

Members of the Growth Hormone Research Society Workshop on Adult Growth Hormone Deficiency: Consensus guidelines for the diagnosis and treatment of adults with growth

This logic of reasoning further leads to the assumption that the difference in the work of the consciousness of a linguist-translator and a specialist in the translation process is

Doğru, ya da yanlış, dinleyen­ lerin düşünce doğrultusuna ters jönden koyuyordu savlarını Ko­ nuklardan biri, «Kemal Tahir, bir antitezdir» demeye getirdi

Kadın öğretmenlerin varoluşçuluk, erkek öğretmenlerin ise esasicilik eğitim inançlarında daha yüksek puan ortalamaları elde ettikleri ve bu puanları arasındaki farkların

While it opposes collective and one-off regularization programs, which are common practice in many member states, the Commission proposes a type of regulariza- tion scheme which aims

We contribute to the existing lit­ erature in this area by (1) explicitly controlling for the effects of one type of diver­ sification (i.e., geographic or business segment)

yfihutta(idarei hususiyelerin teadül cetveli) gibi ömrümde bir defa bir yaprağına göz atmiyacağua ciltlerden başliyarak bütün bir kısmından ayrılmak zarurî,

Önce- den belirli sınırlara dayanarak kredi verebilen bankalar, kredi türev ürünlerinin çeşitlenmesiyle uygulamada verilen kredi sınırının ötesinde kredi verebilmekte-