• Sonuç bulunamadı

Fuzzy topolojik uzaylarda genelleştirilmiş süreklilikler üzerine bir araştırma

N/A
N/A
Protected

Academic year: 2021

Share "Fuzzy topolojik uzaylarda genelleştirilmiş süreklilikler üzerine bir araştırma"

Copied!
32
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

T.C

SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

FUZZY TOPOLOJİK UZAYLARDA GENELLEŞTİRİLMİŞ SÜREKLİLİKLER ÜZERİNE BİR ARAŞTIRMA

SIDDIKA MERT YÜKSEK LİSANS TEZİ

ORTAÖĞRETİM

FEN VE MATEMATİK ALANLARI EĞİTİMİ ANABİLİM DALI MATEMATİK ÖĞRETMENLİĞİ PROGRAMI

(2)

-ii- T.C

SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

FUZZY TOPOLOJİK UZAYLARDA GENELLEŞTİRİLMİŞ SÜREKLİLİKLER ÜZERİNE BİR ARAŞTIRMA

SIDDIKA MERT

YÜKSEK LİSANS TEZİ ORTAÖĞRETİM

FEN VE MATEMATİK ALANLARI EĞİTİMİ ANABİLİM DALI MATEMATİK ÖĞRETMENLİĞİ PROGRAMI

Bu tez 28 / 08 / 2006 tarihinde aşağıdaki jüri tarafından oybirliği / oyçokluğu ile kabul edilmiştir.

Prof. Dr. Eşref HATIR Yrd. Doç. Dr. Aynur KESKİN Yrd. Doç. Dr. A.Selçuk KURBANLI (Danışman) (Üye) (Üye)

(3)

-iii- ÖZET

Yüksek Lisans Tezi

FUZZY TOPOLOJİK UZAYLARDA GENELLEŞTİRİLMİŞ SÜREKLİLİKLER ÜZERİNE BİR ARAŞTIRMA

Sıddıka MERT

Selçuk Üniversitesi Fen Bilimleri Enstitüsü

Fen Ve Matematik Alanları Eğitimi Anabilim Dalı Matematik Öğretmenliği Programı

Tez Danışmanı : Prof. Dr. Eşref HATIR 2006, 25 Sayfa

Bu çalışma, üç bölümden oluşmuştur. Birinci bölümde, konunun uygulamalarıyla ilgili genel bilgilere değinilmiş, ikinci bölümde konu ile ilgili bilgi ve kavramlar verilmiştir. Son bölümde, fuzzy δ pre açık küme tanımlanarak, fuzy

δ pre açık kümelerin özellikleri incelenip yorumlanmıştır. Ayrıca, fuzzy δ pre − açık kümelerden faydalanarak fuzzy δ pre süreklilik kavramı tanımlanmış, bu − süreklilik kavramı ile diğer genelleştirilmiş süreklilik çeşitleri karşılaştırılıp, yorumlanmıştır.

Anahtar kelimeler: Fuzzy küme, fuzzy δ pre açık (kapalı) küme, fuzzy − −

(4)

-iv- ABSTRACT

The Post Graduate Thesis

A RESEARCH ON GENERALIZED CONTINUITIES IN FUZZY TOPOLOGIC SPACES

Sıddıka MERT

Selcuk University

Graduate School of Natural Applied Sciences Department of Secondary

Science And Mathematics Education Mathematics Education Program Supervisor: Prof. Dr. Esref HATIR

2006, 25 pages

This study includes three sections. In first section, general knowledge about the subject is touched; in second section information and notions about the subject are given. In last section, by defining fuzzy δ pre open set, properties of fuzzy δ pre − open sets are studied and explained. Besides, utilizing fuzzy δ pre open sets fuzzy

δ pre continuity concept is defined; this continuity concept compared by other

generalized continuity types, and explained.

Keywords: Fuzzy set, fuzzy δ pre open (closed) set, fuzzy δ pre continuity, − fuzzy δ pre closure, fuzzy δ pre interior.

(5)

-v- ÖNSÖZ

Bu çalışma, Selçuk Üniversitesi Eğitim Fakültesi Ortaöğretim Matematik Öğretmenliği Öğretim Üyesi Prof. Dr. Eşref HATIR danışmanlığında yapılmış ve Selçuk Üniversitesi Fen Bilimleri Enstitüsü’ne Yüksek Lisans Tezi olarak sunulmuştur.

Yaptığım çalışmalarda bana her türlü desteği veren değerli hocam Prof. Dr. Eşref HATIR’a, tezin hazırlık sürecinde ve yazımında yardımlarını esirgemeyen değerli eşime teşekkürü borç bilirim.

(6)

-vi- İÇİNDEKİLER Sayfa ÖZET... iii ABSTRACT... iv ÖNSÖZ...v İÇİNDEKİLER...vi SİMGELER...vii 1. GİRİŞ... 1 2. TEMEL KAVRAMLAR... 2

2. 1. Fuzzy Küme, Fuzzy Nokta ve Fuzzy Eleman olma kavramları... 2

2. 2. Fuzzy Topolojik Uzaylar... 4

2. 3. Fuzzy regüler açık (kapalı) , Fuzzy δ açık (kapalı), Fuzzy pre açık (kapalı) − kümeler... 8

3. FUZZY δ PRE AÇIK KÜMELER VE FUZZY δ PRE SÜREKLİ − FONKSİYONLAR... 12

3. 1. Fuzzy δ pre açık Kümeler... 12

3. 2. Fuzzy δ pre sürekli Fonksiyonlar...17

4. SONUÇ VE ÖNERİLER... 23

(7)

-vii- SİMGELER

Tez metni içinde geçen küme isimleri ( regüler açık, pre açık, vb.) literatürdeki isimleri ile aynen kullanılmıştır.

Bu çalışmada kullanılmış, fakat tez metni içinde açıklanmamış simgeler, açıklamalarıyla birlikte aşağıda verilmiştir.

Simgeler Açıklamaları x

I X fuzzy uzayındaki fuzzy kümelerin ailesi

Gerektirir Yeterdir

İki yönlü gerektirme

τ

Topoloji

τx

Fuzzy topoloji

µ

λ q

x x fuzzy noktasının λ µ fuzzy kümesi ile çakışığımsı olması

β q µ β fuzzy kümesinin µ fuzzy kümesi ile çakışığımsı olması

β q µ β fuzzy kümesinin µ fuzzy kümesi ile çakışığımsı olmaması

µ

int µ fuzzy kümesinin içi

µ

cl µ fuzzy kümesinin kapanışı

c

µ µ fuzzy kümesinin tümleyeni

) (µ

δ cl µ fuzzy kümesinin δ-kapanışı )

int(µ

δ − µ fuzzy kümesinin δ- içi

N (xλ) x fuzzy noktasının fuzzy komşuluklar sınıfı λ

Nq (xλ) x fuzzy noktasının q- komşuluklar sınıfı λ

) ( X

O

δ Fuzzy δ- açık kümelerin ailesi )

( X

PO

δ Fuzzy δ-pre açık kümelerin ailesi )

int(µ

δ P µ fuzzy kümesinin δ-pre içi )

(µ

δ Pcl µ fuzzy kümesinin δ-pre kapanışı u

τ

U’ ya bağlı fuzzy alt uzay

µ

u

int µ fuzzy kümesinin alt uzaydaki içi

µ

δ clu µ fuzzy kümesinin alt uzaydaki δ-kapanışı U

(8)

1. GİRİŞ

Cantor’un 1879 yılında vermiş olduğu küme tanımı, 1965 yılında Zadeh tarafından fuzzy (belirtisiz) küme olarak genişletilmiştir.

1965 yılına kadar matematikte, incelenen konuların daha önce belirlenmiş olan kurallara, kesin olarak uyup uymadığı araştırılmıştır. Bu incelemede her zaman kesinlik aranmıştır. Araç olarak, düşünce sistemimizde iki değerli mantığı kullandığımızda, örneğin bir önerme için, daha önce belirlenen kurallara uyuyorsa doğru, uymuyorsa yanlış denilmiştir. Buna karşılık yaşadığımız dünyada birçok olaylar vardır ki, bunlarla ilgili önermelerin doğru ya da yanlış olduğunu ayırt etmek bizi güç durumda bırakabilir. Örneğin, bir sınıftaki öğrencilerden yeşil gözlü öğrencilerin kümesinin yapılması istense, bu küme değişik kişiler tarafından değişik biçimde oluşturulacaktır. Çünkü, yeşil ile yeşil olmama arasında bir kesin değerlendirme olmadığından, yeşile benzeyen gözlü bir öğrenci birine göre yeşil gözlü sayılacak, diğerine göre yeşil gözlü sayılmayacaktır. Bu gözlemler ve çeşitli araştırmalar, iki değerli mantığa dayanan bugünkü matematiğin kesinlik göstermeyen birçok olayı, tam olarak açıklayamayacağı düşüncesini doğurmuştur. Bu durumu ilk kez, 1965 yılında Zadeh “ Fuzzy Sets “ adlı makalesi ile ortaya koymuş ve fuzzy (belirtisiz) küme kavramını vermiştir. Fuzzy küme kavramı, kesin olarak tanımlanmış ölçülerin olmadığı fiziksel olaylara da karşılık geldiğinden, fuzzy küme kavramı istatistik, bilgi işlem ve dil bilimi konularında da faydalı uygulamalar vermektedir.

Araştırmacılar bu yeni küme tanımına göre, soyut matematikte kümeler kavramı kullanılarak oluşturulan gelişmelere paralel olarak, fuzzy topolojik uzaylar, fuzzy regüler uzaylar, fuzzy gruplar, fuzzy vektör uzayları, fuzzy topolojik gruplar ve fuzzy ölçümler gibi konularda çalışmaktadırlar.

Ayrıca, fuzzy topoloji, string teori ve ε teori ile bağlantılı olarak kuantum ∞ parçacık fiziğinde de kullanılmaktadır [14] ve [15].

(9)

- 2 -

2. TEMEL KAVRAMLAR

2. 1. Fuzzy Küme, Fuzzy Nokta Ve Fuzzy Eleman Olma Kavramları

2. 1. 1. Tanım

X φ ve I =

[ ]

0,1 kapalı aralık olsun. Tüm α :XI fonksiyonların kümesi I x

olmak üzere I ’ in her elamanına, X’ in bir fuzzy kümesi denir [1]. x

Fuzzy kümeleri α, β, µ, ... gibi latin harflerle göstereceğiz. xX için ) 1 0 ( ) ( =λλλ x

C olmak üzere C ile sabit fuzzy kümesini göstereceğiz. Bir β λ

fuzzy kümesinin xX noktasındaki değerini β (x) ile göstereceğiz.

Kümeler için kullanacağımız kapsama, birleşim ve kesişim sembolleri yerine fuzzy kümeleri için sırası ile; ≤,

,

sembollerini kullanacağız.

X x

∀ için, 1∈I değerini alan sabit fuzzy kümesini “1” ile ∀xX için OI

değerini alan fuzzy kümesini de “O” ile göstereceğiz.

2. 1. 2. Tanım

X’ in α ve β fuzzy kümeleri için aşağıdaki özellikler sağlanır:

a)αβ ⇔∀xX için α(x)≤β(x) b)α =β ⇔∀xX için α(x)=β(x) c)µ =α

β ⇔∀xX için µ(x)=Max

{

α(x),β(x)

}

d)δ =α

β ⇔∀xX için δ(x)=Min

{

α(x),β(x)

}

e)α 1= −β ⇔∀xX için α(x)=1−β(x)[1]. 2. 1. 3. Tanım

X’in fuzzy kümelerinin bir ailesi

{ }

αj jJ olsun. O halde aşağıdaki özellikler sağlanır:

(10)

- 3 - a) x X J j j ⇔∀ ∈ ∈ =

α µ için ( )

{

(x)

}

j Sup J j x α µ ∈ = b) x X J j j⇔∀ ∈ ∈ =

α β için ( ) inf

{

(x)

}

j J j x α β ∈ = [4]. 2. 1. 4. Tanım X

x∈ ve λ

(

0,1

]

olsun. X içindeki x fuzzy noktası, λ

   ≠ = = ise x y ise x y y x , 0 , ) ( λ λ

olarak tanımlanan X içindeki fuzzy kümesidir. x fuzzy noktasının sıfırdan farklı λ

değer aldığı, xX noktasına x ’ın dayanağı ve λ λ

(

0,1

]

sayısına da x ’nın değeri λ

denir [3].

2. 1. 5. Tanım

µ bir fuzzy küme ve x bir fuzzy nokta olmak üzere, λ λµ(x) ise xλµ dır [3]. 2. 1. 6. Teorem

µ , x

I

β ve x bir fuzzy nokta olmak üzere, aşağıdaki özellikler sağlanır: λ

a) xλµ

βxλµ ve xλβ

b) xλµ

βxλµ veya xλβ [5]. 2. 1. 7. Önerme

X ’in bir µ fuzzy kümesi, kendi fuzzy noktalarının birleşimine eşittir [3].

2. 1. 8. Tanım

(11)

- 4 -

noktası ile β fuzzy kümesi çakışığımsıdır (quasi coincident) denir ve xλ ile gösterilir [3]. 2. 1. 9. Önerme J j j  

µ , X’in fuzzy kümelerinin bir ailesi ve

λ

x bir fuzzy nokta olsun.

J j ∈ ∃ 0 için,        ∈ ⇔

j J j q x q xλ µj λ µ 0 dir [3]. 2. 1. 10. Tanım

X içindeki α ve β fuzzy kümeleri için α(x)+β(x)>1 olacak şekilde bir xX

noktası var ise, α ile β çakışığımsıdır denir ve αq ile gösterilir [3]. β 2. 1. 11. Önerme

µ , x

I

β olsun. µβ olması için, gerek ve yeter şart µ ve β fuzzy kümelerinin c

çakışığımsı olmamasıdır. Yani µ q(1−β) olmalıdır. Özellikle, xλµ olması için, gerek ve yeter şart x qλ (1−µ) olmasıdır [3].

2. 2. Fuzzy Topolojik Uzaylar

2. 2. 1. Tanım

X’in fuzzy kümelerinin bir ailesi

τ

x olsun. Eğer aşağıdaki şartlar sağlanıyorsa;

τ

x’e,

X üzerinde bir fuzzy topoloji ve(X,

τ

x) ikilisine de, bir fuzzy topolojik uzay denir.

a) 0,1

τ

x

b) α,β

τ

x ise, bu halde α

β

τ

x

c) jJ için αj

τ

x ise, bu halde j x J

jα

τ

(12)

- 5 -

x

τ

’in her elemanına fuzzy açık küme denir. Bir fuzzy açık kümenin tümleyeni fuzzy kapalı küme olarak tanımlanır [4].

2. 2. 2. Tanım

( X,

τ

x) fuzzy topolojik uzay ve β

τ

x olsun. ∀µ

τ

x için, µ =

{

α αB

}

olacak şekilde Bβ alt ailesi varsa, β ailesine

τ

x için bir tabandır denir [4]. 2. 2. 3. Tanım

( X,

τ

x) fuzzy topolojik uzay ve δ

τ

x olsun. β =

{

A Aψ,ψδ veψsonlu

}

ailesi

τ

x için bir baz ise, δ ailesine

τ

x’ in bir alt tabanı denir [4].

2. 2. 4. Tanım

( X,

τ

x) fuzzy topolojik uzay ve x

I

µ olsun. Bu durumda; intµ =

{

β;βµ,β

τ

x

}

şeklinde tanımlanan int μ fuzzy kümesine, µ fuzzy kümesinin içi denir [4]. 2. 2. 5. Teorem

( X,

τ

x) fuzzy topolojik uzay ve µIx olsun. µ fuzzy kümesinin açık olması için gerek ve yeter şart µ int= µ olmasıdır [4].

2. 2. 6. Sonuç

( X,

τ

x) fuzzy topolojik uzay ve α ,βIx için aşağıdaki özellikler sağlanır:

a) int1=1 ve int0=0

b) intαα

(13)

- 6 -

d) int(α

β)=intα int

β

e) int j int( j) J j J j α α

∈ ≤ ∈ f) αβ ⇒intα ≤intβ [2]. 2. 2. 7. Tanım

( X,

τ

x) fuzzy topolojik uzay ve x

I

β olsun. Bu durumda; clβ =

{

µ βµ,

(

1−µ

)

τ

x

}

şeklinde tanımlanan cl fuzzy kümesine, β β ’nın kapanışı denir [4].

2. 2. 8. Sonuç

( X,

τ

x) fuzzy topolojik uzay ve x

I

β olsun. β fuzzy kümesinin kapalı olması için, gerek ve yeter şart β cl= β olmasıdır [4].

2. 2. 9. Sonuç

( X,

τ

x) fuzzy topolojik uzay ve α ,βIx için aşağıdaki özellikler sağlanır:

a) cl1=1 vecl0=0 b) α clα c) cl(clα)=clα d) cl(α

β)=clα

clβ e) j cl j J j J j cl

α

α ∈ ≤         ∈ f) αβclαclβ [2]. 2. 2. 10. Teorem

( X,

τ

x) fuzzy topolojik uzay ve x

I

(14)

- 7 -

a) 1−intµ =cl

(

1−µ

)

b) 1−clµ =int(1−µ) [2]. 2. 2. 11. Tanım

( X,

τ

x) fuzzy topolojik uzay, µIx ve x bir fuzzy nokta olsun. Eğer λ xλβ ve

µ

β ≤ olacak şekilde bir β fuzzy açık kümesi varsa, µ fuzzy kümesine x ’nın bir λ

fuzzy komşuluğu denir. x ’nın tüm fuzzy komşuluklarının ailesi, λ N(xλ) ile gösterilir [3].

2. 2. 12. Tanım

( X,

τ

x) fuzzy topolojik uzay, µIx ve x bir fuzzy nokta olsun. λ xλ ve βµ (xλµ) olacak şekilde bir βτx varsa, µ fuzzy kümesine x ’nın q-λ

komşuluğu denir [3]. x fuzzy noktasının tüm q-komşuluklarının ailesi λ Nq(xλ)ile gösterilir.

2. 2. 13. Teorem

( X,

τ

x) fuzzy topolojik uzayındaki bir x fuzzy noktasının q-komşuluklarının ailesi, λ

) (xλ

Nq olsun. Bu takdirde aşağıdaki özellikler sağlanır:

a) µNq(xλ) ise xλ dır.

b)µ,βNq(xλ) ise µ

βNq()dır. c) µNq(xλ) ve µβ ise βNq(xλ)dır.

d) µNq(xλ) ise βµ ve ∀xλ için, µNq(xλ) olacak şekilde bir )

( λ

(15)

- 8 -

2. 2. 14. Teorem

( X,

τ

x) fuzzy topolojik uzay ve x

I

µ olsun. µ fuzzy kümesinin açık olması için, gerek ve yeter şart µ ile çakışığımsı olan her x fuzzy noktası için λ µNq(xλ) olmasıdır [3].

2. 2. 15. Önerme

( X,

τ

x) fuzzy topolojik uzay, x

I

µ ve x bir fuzzy nokta olsun. Bu takdirde, λ

) ( λ

µNq x ise, intµNq(xλ) olur [3].

2. 2. 16. Teorem

( X,

τ

x) fuzzy topolojik uzay, µIx ve x bir fuzzy nokta olsun. λ xλclµ olması için, gerek ve yeter şart x fuzzy noktasının her bir q-komşuluğunun λ µ ile

çakışığımsı olmasıdır [3].

2. 2. 17. Önerme

( X,

τ

x) fuzzy topolojik uzay, µIx ve µ ≠0 olsun. clµ=1 olması için gerek ve yeter şart

τ

x fuzzy topolojisinin her elemanının µ ile çakışığımsı olmasıdır [3]. 2. 3. Fuzzy Regüler Açık (Kapalı), Fuzzy δ - Açık (Kapalı), Fuzzy Pre Açık (Kapalı) Kümeler

2. 3. 1. Tanım

( X,

τ

x) fuzzy topolojik uzay ve µIx olsun. µ =int

(

cl(µ)

)

ise, µ fuzzy kümesine regüler (düzenli) açık küme denir.

(16)

- 9 -

2. 3. 2. Tanım

a) Bir fuzzy açık kümenin kapanışı, fuzzy regüler kapalı kümedir. b) Bir fuzzy kapalı kümenin içi, fuzzy regüler açık kümedir [2].

2. 3. 3. Uyarı

Her fuzzy regüler açık (kapalı) küme, fuzzy açık (kapalı) dır. Tersi her zaman geçerli değildir. İki fuzzy regüler açık (kapalı) kümenin birleşimi (kesişimi), fuzzy regüler açık ( kapalı) olmak zorunda değildir [2].

2. 3. 4. Teorem

( X,

τ

x) fuzzy topolojik uzay, µ ve β fuzzy regüler açık (kapalı) kümeler olsun. Bu takdirde, µ

β (µ

β ) kümesi fuzzy regüler açıktır (kapalıdır) [2].

2. 3. 5. Tanım

( X,

τ

x) fuzzy topolojik uzay ve x fuzzy nokta olsun. λ

a) x ’nın her bir λ µ fuzzy regüler açık q-komşuluğu, β fuzzy kümesi ile çakışığımsı

ise; x fuzzy noktasına, λ β fuzzy kümesinin bir fuzzy δ -kapanış noktası denir.

β fuzzy kümesinin tüm fuzzy δ -değme noktalarının birleşimine, β ’nın fuzzy δ -kapanış kümesi denir ve δ cl− (β) ile gösterilir [5].

b) Eğer β = δ cl− (β) ise, β fuzzy kümesine fuzzy δ -kapalı küme denir. Bir fuzzy

δ -kapalı kümenin tümleyenine, fuzzy δ -açık küme denir [5].

2. 3. 6. Uyarı

Her fuzzy regüler açık küme, fuzzy δ -açık kümedir. Fakat tersi genelde doğru değildir [5]. ( Ters örnek için, [5]’e bakınız.)

(17)

- 10 -

2. 3. 7. Tanım

( X,

τ

x) fuzzy topolojik uzay ve x bir fuzzy nokta olsun. λ βµ olacak şekilde,

λ

x ’nın bir β fuzzy regüler q-komşuluğu varsa; bu takdirde µ fuzzy kümesine x λ

fuzzy noktasının fuzzy δ -komşuluğu denir [5]. 2. 3. 8. Uyarı

( X,

τ

x) fuzzy topolojik uzayındaki herhangi bir µ fuzzy kümesi için,clµδcl(µ)

bağıntısı vardır. Genel olarak; clµδcl(µ)geçerlidir [5]. 2. 3. 9. Teorem

( X,

τ

x) bir fuzzy topolojik uzay olsun. Eğer µτx ise; bu takdirde, clµ =δcl(µ) geçerlidir [5].

2. 3. 10. Uyarı

Her fuzzy regüler kapalı küme, fuzzy δ - kapalı küme olmak zorunda değildir [13]. ( Ters örnek için, [13]’e bakınız.)

2. 3. 11. Tanım

( X,

τ

x) fuzzy topolojik uzay ve x bir fuzzy nokta olsun. λ

λ

x qβ ve βint(clβ)≤µ olacak şekilde x ’nın bir λ β fuzzy açık q-komşuluğu

varsa; bu takdirde, x fuzzy noktasına, λ µ fuzzy kümesinin fuzzy δ -iç noktası denir. µ fuzzy kümesinin tüm fuzzy δ -iç noktalarının birleşimine, µ ’nün fuzzy δ -içi

denir ve δ −int(µ) ile gösterilir.

(18)

- 11 -

2. 3. 12. Tanım

( X,

τ

x) fuzzy topolojik uzay ve x

I

α olsun.

a) α ≤int

(

cl(α)

)

oluyorsa, α fuzzy kümesine fuzzy pre açık küme;

b) α cl

(

int(α)

)

oluyorsa, α fuzzy kümesine fuzzy pre kapalı küme denir [7]. 2. 3. 13. Önerme

(X,

τ

x) fuzzy topolojik uzay olmak üzere;

a) Fuzzy pre açık kümelerin herhangi sayıda birleşimi, yine bir fuzzy pre açık

kümedir.

b) Fuzzy pre kapalı kümelerin sonlu sayıda kesişimi, yine bir fuzzy pre kapalı

kümedir [8].

2. 3. 14. Uyarı

Yukarıda tanımlanan fuzzy küme çeşitleri ve özelliklerinden faydalanarak literatürde, genelleştirilmiş süreklilik çeşitleri aşağıdaki gibi tanımlanmıştır.

2. 3. 15. Tanım

(X,

τ

1) ve (Y,

τ

2) fuzzy topolojik uzaylar olmak üzere; f :(X,

τ

1)→(Y,

τ

2) fonksiyonu verilsin. Eğer ∀β

τ

2 için, f−1(β) (X,

τ

1) uzayında fuzzy açık ( fuzzy pre açık ) küme oluyorsa; bu takdirde f fonksiyonuna fuzzy sürekli ( fuzzy pre sürekli) denir [12].

(19)

- 12 -

3. FUZZY δ -PRE AÇIK KÜMELER VE FUZZY δ -PRE SÜREKLİ FONKSİYONLAR

Bu bölümde, fuzzy pre açık kümelerden daha genel olan ve fuzzy δ - pre açık küme olarak adlandırdığımız yeni bir küme çeşidi tanımladık ve sağladığı çeşitli özellikleri inceledik.

3. 1. Fuzzy δ -Pre açık Kümeler

3. 1. 1. Tanım

( X,

τ

x) fuzzy topolojik uzay ve αIx olsun. Eğer α ≤int

(

δcl(α)

)

ise, bu takdirde α fuzzy kümesine fuzzy δ pre açık küme denir.

3. 1. 2. Uyarı

(X,

τ

x) fuzzy topolojik uzayındaki bütün fuzzy δ pre açık kümelerin ailesini − ) ( X POδ ile göstereceğiz. 3. 1. 3. Tanım

( X,

τ

x) fuzzy topolojik uzay ve αIx olsun. α fuzzy δ pre açık kümesinin − tümleyenine, fuzzy δ pre kapalı küme denir.

3. 1. 4. Tanım

( X,

τ

x) fuzzy topolojik uzay ve αIx olsun. α fuzzy kümesinin kapsadığı tüm fuzzy δ pre açık kümelerin birleşimine, α fuzzy kümesinin fuzzy δ pre içi denir − ve δPint(α)=∨

{

αiαiα ve αiδPO(X)

}

şeklinde gösterilir.

(20)

- 13 -

3. 1. 5. Uyarı

Bir α fuzzy kümesinin δ pre içi için, δ P− int(α) ile gösterimini kullanacağız. 3. 1. 6. Tanım

( X,

τ

x) fuzzy topolojik uzay ve x

I

α olsun. α fuzzy kümesini kapsayan bütün fuzzy δ pre kapalı kümelerin kesişimine, α fuzzy kümesinin fuzzy δ pre − kapanışı denir ve δcl(α)=

{

αi ααi; αi δ −pre kapalı küme

}

şeklinde gösterilir.

3. 1. 7. Uyarı

α fuzzy kümesinin δ pre kapanışı için δ Pcl− (α) gösterimini kullanacağız. 3. 1. 8. Önerme

( X,

τ

x) fuzzy topolojik uzay ve x

I

α olsun. Eğer α fuzzy kümesi, fuzzy pre açık küme ise, bu takdirde α , fuzzy δ pre açık kümedir.

İspat:

( X,

τ

x) fuzzy topolojik uzay ve αIx olsun. Her zaman clαδclα bağıntısı sağlandığı için, önermenin doğruluğu açıktır.

3. 1. 9. Uyarı

3. 1. 8. Önerme ve fuzzy kümelerin tanımları gereği aşağıdaki çizelge elde edilir.

Fuzzy açık küme → Fuzzy pre açık küme

Fuzzy δ pre açık küme 3. 1. Çizelge

(21)

- 14 -

3. 1. 10. Uyarı

3. 1. Çizelge’deki gerektirmelerin tersleri genellikle doğru değildir.

3. 1. 11. Örnek

X={a,b,c} ve X üzerindeki fuzzy topoloji

τ

={0,1,A} olsun. Fuzzy kümeleri A(a)= 0,5 ; A(b)=0,7 ; A(c)=0,6

B(a)=0,5 ; B(b)=0,2 ; B(c)=0,4 biçiminde tanımlayalım. Bu takdirde B fuzzy kümesi fuzzy pre açıktır, fakat fuzzy açık değildir.

3. 1. 12. Örnek

{

a b c

}

X = , , kümesi ile üzerinde

τ

=

{

0,1,A,A

C

}

fuzzy topolojisi verilsin. Fuzzy kümeleri; 6 , 0 ) (a = A ; A(b)=0,4; A(c)=0,7 3 , 0 ) (a = B ; B(b)=0,5; B(c)=0,1 5 , 0 ) (a =

C ; C(b)=0,3; C(c)=0,8 olarak tanımlansın. Bu takdirde, B fuzzy kümesi

X üzerindeki

τ

fuzzy topolojisine göre fuzzy δ pre açık kümedir, ama fuzzy pre − açık küme değildir.

3. 1. 13. Önerme

( X,

τ

x) fuzzy topolojik uzay ve αIx olsun. Eğer cl(δ−intα)≤α ise; bu takdirde

α fuzzy kümesi fuzzy δ pre kapalı kümedir. İspat:

α fuzzy kümesi, fuzzy δ pre kapalı küme olsun. Bu takdirde,

(

1−α

)

fuzzy −

δ pre açıktır. Buradan,

(

(1 )

)

int ) 1 ( ) ( ) 1

( −αδPO X ⇔ −αδclα ⇔int(1−

(

δ−intα)

)

=1−cl(δ−intα)≤α olur ki, bu durumda (1−α)≤1−cl

(

δ −intα

)

ve cl

(

δ −intα

)

α elde edilir. Bu ise;

(22)

- 15 -

3. 1. 14. Uyarı

a) Fuzzy δ pre açık kümelerin herhangi sayıda birleşimi yine, bir fuzzy δ pre

açık kümedir.

b) Fuzzy δ pre kapalı kümelerin herhangi sayıda kesişimi yine, bir fuzzy δ pre

kapalı kümedir.

3. 1. 15. Özellik

Bir ( X,

τ

x) fuzzy topolojik uzayındaki fuzzy δ pre kapalı küme için, aşağıdaki − özellikler sağlanır:

a) α =δPcl(α) ise, α fuzzy δ pre kapalı kümedir.

b) αβ ise, δPcl(α)≤δPclβ (δ−pre kapalı küme tanımından açıktır.)

c) δPcl

(

δPcl(α)

)

=δPclα

d) x bir fuzzy nokta olmak üzere;λµδPO(X)∋λ q(1−µ) ise, α

µ ≠0 olduğu anlaşılır ki xλδPcl(α)dır. (x , λ α ’nın bir δ pre kapanış noktasıdır.)

3. 1. 16. Önerme

( X,

τ

x) fuzzy topolojik uzay ve x

I

α olsun.

a)βδO( X)fuzzy kümesi için; (δclα)

βδcl(α

β)

b)βδcl( X)fuzzy kümesi için; δ −int(α

β)≤(δ −intα)

β 3. 1. 17. Teorem

(X,

τ

x) fuzzy topolojik uzay ve αIx olsun. Bu takdirde, δPclα=α

cl(δ−intα)

eşitliği geçerlidir. İspat:

(

)

[

δ−intαcl(δ−int)

]

cl =cl

[

(

δ−intα

)

(

δ−int

(

cl

(

δ−intα

)

)

)

]

cl

(

δ−intα

)

αcl

(

δ−intα

)

(

δ α

)

(23)

- 16 -

O halde, ααcl

(

δ −intα

)

olup, buradan δPclααcl

(

δ −intα

)

bulunur. Diğer yandan, δ Pcl− (α) kümesi δ pre kapalı olduğundan, αδclα ve

(

int( )

)

( )

) int

(δαclδPclαδPcl α olur.

Buradan, αcl(δ −int) ≤α

(

δPcl(α)

)

=δPclα bulunur. Sonuç olarak,

) int (δ α

α α

δPcl =

cl − eşitliği elde edilir. 3. 1. 18. Teorem

x

I

α olmak üzere, X fuzzy uzayındaki her µ fuzzy regüler (δ açık) kümesi için, − ) ( X PO − ∈

µ δ

α olması için gerek ve yeter şart α fuzzy kümesinin fuzzy δ pre − açık küme olmasıdır.

İspat:

⇐ α: fuzzy kümesi, fuzzy δ pre açık küme olduğundan µαµ

int(δclα)

olur. Buradan, µα ≤intµ∧int

(

δclα

)

=int

(

µ

(

δclα

)

)

bulunur. 3. 1. 16. Önerme gereğince,int

(

(

δcl(α)

)

µ

)

≤int

(

δcl(µα)

)

olur.

Buradan µα ≤int

(

δcl(µα)

)

olup, µαδPO( X) bulunur.

⇒: µ fuzzy kümesi, δ açık küme olduğundan µ

(

δ −intµ

)

yazabiliriz. Her zaman, αδclα olacağından µα

(

δ −intµ

) (

δclα

)

bulunur. Hipotezden, µα

(

δ −intµ

) (

(

δclα

)

≤int

(

δcl(µα

)

)

olur. Dolayısıyla

[ (

δ µ

) (

(

δ α

)

]

(

δ µ α

)

)

α

µ∧ ≤int −int ∧ −cl ≤int −cl( ∧ ifadesi kullanılarak

(

δ µ

)

(

δ α

)

α

µ∧ ≤ −int ∧int −cl elde edilir. Buradan, α ≤intδclα bulunur ki, bu da α fuzzy kümesinin δ pre açık bir küme olduğunu gösterir.

3. 1. 19. Teorem

X fuzzy uzayında bir α fuzzy δ açık kümesi için, δPclα =clα eşitliği sağlanır. İspat:

3. 1. 17. Teorem gereğince, δPclα =α

cl(δ −intα) yazabiliriz. α fuzzy kümesi, fuzzy δ açık küme olduğundan α =δ −intα olup, buradan

(24)

- 17 -

α α α δ

α

cl( −int )=

cl elde edilir. Sonuç olarak, α

( )

clα =clα olup,

α α

δPcl =cl bulunur. 3. 1. 20. Tanım

(X,

τ

x) fuzzy topolojik uzay, x

I

β ve x bir fuzzy nokta olsun. λ x fuzzy λ

noktasının xλUβ olacak şekilde, x ile çakışığımsı olan bir U fuzzy λ δ pre

açık küme varsa, β fuzzy kümesine x fuzzy noktasının λ δ pre komşuluğu denir.

3. 2. Fuzzy δ Pre Sürekli Fonksiyonlar

Tanımladığımız fuzzy δ pre açık küme kavramından yararlanarak aşağıdaki − süreklilik çeşidini tanımlayabiliriz.

3. 2. 1. Tanım → ) , ( : X x

f

τ

(Y,

τ

y) fonksiyonu verilsin. Y fuzzy uzayındaki f() fuzzy noktasının her β fuzzy q-komşuluğu için, δcl

(

f−1(β)

)

kümesi X fuzzy uzayında

λ

x fuzzy noktasının bir q-komşuluğu oluyorsa, f fonksiyonuna fuzzy δ pre

süreklidir denir. 3. 2. 2. Teorem → ) , ( : X x

f

τ

(Y,

τ

y) fonksiyonu için aşağıdakiler denktirler:

a) f fonksiyonu fuzzy δ pre süreklidir. b) β

τ

y için ( ) int

(

( )

)

1

1 β δβ

clf

f dır.

c) Her α fuzzy δ açık kümesi için, f(clα)≤clf(α) dır. İspat:

) ( )

(a b f fonksiyonu, fuzzy δ pre sürekli ve x , bir fuzzy nokta olsun. Fuzzy λ

(25)

- 18 -

λ

x ’nın fuzzy q-komşuluğudur. Bu takdirde xλ ∈int

(

δclf −1(α)

)

olup,

(

( )

)

int ) ( 1 1 α δα clf f bulunur. ) ( )

(b a x fuzzy noktası için, Y fuzzy uzayında λ x

I

α fuzzy kümesi f(xλ) fuzzy noktasının açık bir q-komşuluğu olsun. Buradan ters fonksiyonun tanımından

) ( 1 α

λf

x bulunur. (b gereğince ) xλf−1(α) ≤int

(

δclf−1(α)

)

δclf−1(α) olup, δclf −1(α) x fuzzy noktasının bir q-komşuluğudur. O halde, f fonksiyonu λ

fuzzy δ pre süreklidir. )

( )

(a c x fuzzy noktası ve λ α fuzzy δ açık kümesi verilsin. xλclα fakat, )

( )

(xλ clf α

f ∉ olsun. f(xλ)∉clf(α)ise, kapanış noktası tanımından

( )

( )

λ

β N f x

q

∀ için, β fq (α)dır. O halde, f −1(β q) α olur. α fuzzy kümesi fuzzy

δ açık küme olduğundan,

(

δclf−1(β)

)

olur ki, xλclα dır. Bu ise bir çelişki olup, f(xλ)∈clf(α) bulunur.

) ( )

(c a f fonksiyonunun, fuzzy δ pre sürekli olmadığını varsayalım. Bu − takdirde, ∀βNq

(

f(xλ)

)

için,

(

( )

)

( )

1

λ

β

δclfNq x

elde edilir. Buradan

(

)

(

δ 1(β)

)

λcl X − −clfx ve f(xλ)∈f

(

cl

(

X

(

δclf −1(β)

)

)

)

bulunur. ) (c gereğince,

(

(

(

δ − −1(β)

)

)

)

(

(

(

δ − −1(β)

)

)

)

clf X f cl f cl X cl fcl(Yβ)

(

(

X

(

δclf−1(β)

)

)

fuzzy δ açık küme olduğundan

)

bulunur. Bu ise

(

( λ)

)

βNq f x ile çelişir ki, f fonksiyonu fuzzy δ pre süreklidir.

3. 2. 3. Teorem → ) , ( : X x

f

τ

(Y,

τ

y) fonksiyonu için, aşağıdaki özellikler denktir:

a) f fonksiyonu fuzzy δ pre süreklidir. b) β

τ

y için −1(β)

f , X uzayında δ pre açık kümedir.

c) f(xλ)’nin her β fuzzy açık q-komşuluğu için, f(U)≤β olacak şekilde x ’nın λ

(26)

- 19 -

d)βYfuzzy kapalı kümesi için −1(β)

f , X uzayında fuzzy δ pre kapalı − kümedir.

e) βNq

(

f(xλ)

)

için f −1(β) fuzzy kümesi X uzayında, x fuzzy noktasının bir λ

fuzzy δ pre komşuluğudur.

f) αIx için f(δPclα)≤clf(α)

g) βIy için δPclf−1(β)≤ f−1(clβ)

h) βIy için f−1(intβ)≤δPint f−1(β)

ı) Y fuzzy uzayının her β fuzzy temel açık kümeleri için, f−1(β) X uzayında fuzzy

δ pre açık kümedir.

İspat:

b

a ⇔ 3. 2. 2. Teorem’inin (ab) kısmının ispatı ile aynıdır.

d

bαIy için, f−1(Yα)= Xf−1(α) özelliğinden açıktır.

b

c⇒ , b⇔ , e bı, kısımlarının doğruluğu açıktır.

c

b (b) gereğince f(xλ)’nın her β fuzzy açık q-komşuluğunun ters görüntüsü,

X fuzzy uzayında δ pre açıktır. f−1(β)=U dersek, f(U)= f

(

f−1(β)

)

β olur ki buradan, f(U)≤β elde edilir.

f

d (d) gereğince αIx için, f−1

(

clf(α)

)

, X fuzzy uzayında fuzzy δ pre − kapalıdır ve α fuzzy kümesini kapsar. δ α 1

(

(α)

)

clf f Pcl ≤ − − olduğundan dolayı,

(

)

(

( )

)

( ) ) (δ Pclα f f 1 clf α clf α f − ≤ − ≤ ve f(δPclα)≤clf(α) elde edilir. d

f ⇒ Y fuzzy uzayında herhangi bir α kapalı fuzzy kümesini ele alalım.

(f) gereğince, f

(

δcl

(

f −1(α)

)

)

cl

(

f

(

f −1(α)

)

)

clα =α ve buradan da

(

1(α)

)

1(α)

δ Pcl f f elde edilir. Diğer yandan, δ pre kapanış tanımı gereğince, −1(α)≤δ

(

−1(α)

)

f Pcl f bulunur. Dolayısıyla, −1(α)=δ

(

−1(α)

)

f Pcl f

olup, f−1(α) fuzzy kümesi fuzzy δ pre kapalı kümedir.

g

fµIy fuzzy kümesi verilsin. (f) gereğince, f

(

δPclf−1(µ)

) (

clf f−1(µ)

)

clµ

olup buradan, f

(

δPcl f−1(µ)

)

clµ

bulunur. Her iki tarafın ters görüntüsü alınırsa

( )

µ

( )

µ

(27)

- 20 -

f

gx

I

α kümesi verilsin. f(α)=µ olsun. (g) gereğince,

( )

(

( )

)

) ( 1 1 1 µ µ α δ α δPcl ≤ −Pclf− ≤fcl = fclf olup, buradan, δPclαf−1

(

clf(α)

)

olur. Her iki tarafın f altındaki görüntüsü alınırsa, f(δPclα)≤clf(α) bulunur.

h

bβIy fuzzy kümesi verilsin. (b) gereğince, f−1(intβ), X fuzzy uzayında fuzzy δ pre açık kümedir.f−1int(β)≤δPint f−1(intβ)≤δPint f−1(β)

) ( 1 β

f δ pre açık olduğundan, f −1(intβ)≤δPint f −1(β) bulunur.

b

hα

τ

y fuzzy kümesi verilsin. f−1(α)= f −1(intα)dır. (h) gereğince, ) ( int ) (int ) ( 1 1 1 αα δα= f P f

f bulunur. Bu durumda, f −1(α)≤δPint f −1(α) olur. Diğer taraftan, her zaman δPint f−1(α)≤ f −1(α) olduğundan,

) ( ) ( int 1 α 1 α δ P f= f bulunur. Yani; −1(α)

f fuzzy δ pre açık kümedir. :

b

ı β

τ

y fuzzy açık kümesi verilsin. β , Y fuzzy uzayının tabanına ait α

kümeler olduğundan α

α β

β =

yazılabilir. Hipotez gereğince 1( )

α

β

f , ∀α için X fuzzy uzayında fuzzy δ pre − açık küme olduğundan

) ( ) ( ) ( 1 1 1 α α α α β β β − − − =

=

f f

f olur. Dolayısıyla, fuzzy δ pre açık kümelerin − herhangi sayıda birleşimi de fuzzy δ pre açık olduğundan, f−1(β), X uzayında fuzzy δ pre açık kümedir.

3. 2. 4 . Uyarı

2. bölümde ve 3. bölümde yorumlamaya çalıştığımız süreklilik kavramları arasındaki bağıntılar aşağıdaki çizelgede verilmiştir.

Fuzzy süreklilik → Fuzzy pre süreklilik ↓

Fuzzy δ pre süreklik

3. 2. Çizelge

(28)

- 21 -

3. 2. 5. Uyarı

Çizelge 3. 2.’de verilen gerektirmelerin tersleri genellikle doğru değildir.

3. 2. 6. Örnek

{

a b c

}

X = , , ve X üzerindeki fuzzy topolojiler

τ

=

{

0,1,A,A

C

}

ve ϑ=

{

0,1,B

}

olsun. f :(X,

τ

)→(X,ϑ) birim fonksiyonu tanımlansın. A,B,C fuzzy kümeleri, 3. 1. 12. Örnek’ teki fuzzy kümeler olsun. Bu takdirde, f fonksiyonu fuzzy δ pre − süreklidir, fakat fuzzy pre sürekli değildir.

( Fuzzy pre sürekli olup, fuzzy sürekli olmayan fonksiyon örnekleri için [7]’ ye bakınız.)

3. 2. 7. Tanım

(X,

τ

x) fuzzy topolojik uzay ve U , X fuzzy uzayının bir alt kümesi olsun. Eğer

{

x

U

τ

τ

= αβ β∈ ve u

}

I

α ailesi U kümesi üzerinde bir fuzzy topoloji oluşturuyorsa bu fuzzy topolojiye

τ

xtopolojisinden indirgenen fuzzy topoloji denir ve (U,

τ

u) ikilisine de, X fuzzy uzayının bir alt uzayı denir [16].

3. 2. 8. Önerme

(X,

τ

x) fuzzy topolojik uzay ve U, X fuzzy uzayının δ açık alt kümesi olsun. Eğer − )

(X

PO

− ∈δ

β ise; bu takdirde U

β fuzzy kümesi, (U,

τ

u) fuzzy alt uzayında −

δ pre açık kümedir.

İspat: ) ( X PO − ∈δ

α olduğundan, α ≤int(δclα)dir. 3. 1. 16. Önerme dikkate alınırsa

(

δ α

)

(

δ

(

α

)

)

α δ

α

UclUcl ≤ −clU

(29)

- 22 -

Buradan; U

α ≤intu

(

δcl(U

α)

U

)

=intu

(

δclu(U

α)

)

bulunur ki, bu da )

(U

α fuzzy kümesinin ,(U,

τ

u) fuzzy alt uzayında, bir fuzzy δ pre açık küme − olduğunu gösterir. 3. 2. 9. Teorem → ) , ( : X x

f

τ

(Y,

τ

y) fuzzy δ pre sürekli fonksiyon ve UδO( X)olsun.

Y U

f U : → fonksiyonu da, fuzzy δ pre süreklidir. İspat:

y

τ

α olsun. f fonksiyonu fuzzy δ pre sürekli olduğundan, − ) ( ) ( 1 X PO

fαδ− ’ dir. 3. 2. 8. Önerme gereğince, 1( )

( )

1( ) ( )

U PO f U f U ∈ − = ∧ − − α α δ

bulunur. Dolayısıyla f U :UY kısıtlanmış fonksiyonu, fuzzy δ pre sürekli bir − fonksiyondur.

(30)

- 23 -

4. SONUÇ VE ÖNERİLER

Bu çalışmada, fuzzy δ pre açık kümeler tanımlanıp, özellikleri verilmiş ve − ispatlanmıştır. Bunun yanında, fuzzy δ pre açık kümeler yardımı ile fuzzy δ pre − süreklilik tanımı yapılıp, sağladığı özellikler incelenmiştir.

Bundan sonraki çalışmalarda; elde ettiğimiz fuzzy δ pre açık küme − yardımıyla, fuzzy topolojik uzaylarda ayırma aksiyomları tanımlanıp, bu aksiyomlar arasındaki geçişler ile söz konusu aksiyomların hangi fonksiyonlar altında korunduğu incelenebilir.

(31)

- 24 -

5. KAYNAKLAR

[1]. Zadeh, L.A., 1965 Fuzzy Sets. Informa And Control Studies 8: 338-353.

[2]. Azad, K.K., 1981 Fuzzy Semicontinuity, Fuzzy Pre Contiuity and Fuzzy Weakly Contiuity. J.Math. Anal. Appl.

Studies 82: 14-32.

[3]. Ming, P.P. and Ming,L. Y. , 1980 Fuzzy Topology I. , Neighborhood Structure of a Fuzzy Point and Moore – Smith Conuergence. J.Math. Anal. Appl.

Studies 76: 571-599.

[4]. Chang, C. L., 1968 Fuzzy Topological Space. J.Math. Anal. Appl. Studies 24: 182-190.

[5]. Mukherjee, M. N. and Sinha, S. P., 1990 On Some Near Fuzzy Continuous Functions Beetwen Fuzzy Topological Space. Fuzzy Sets and Systems

Studies 34: 245-254.

[6]. Çoker, D. ve Eş, H., 1990 On Some Strong Forms of Fuzzy Continuity. Doğa Tr. J. of Mathematics

Studies 14: 26-38.

[7]. Shahana, A. S. Bin, 1991 On Fuzzy Strong Semicontinuity and Fuzzy Precontinuity. Fuzzy Sets and Systems

Studies 44: 303-308.

[8]. Singal, M. K. and Prakash, Niti, 1991 On Fuzzy Preopen Sets And Fuzzy Preseparation axioms. Fuzzy Sets and Systems

Studies 44: 273-281.

[9]. Pao-Ming P. and Ying-Ming L., 1980 Fuzzy Topology, II. Product and Quotient Spaces. J. Math. Anal. Appl.

Studies 77: 20-37.

[10]. Supriti, S., 1987 On Fuzzy δ Continuous Mappings. Journal of Mathematical − Analysis and Applications

Studies 126: 130-142.

[11]. Ganguly, S. and Supriti, S., 1988 A note on δ Continuity And δ connected − Sets in Fuzzy Setting. Simon Steuin

(32)

- 25 -

[12]. Krsteska, B., 1998 Fuzzy Strongly Preopen Sets And Fuzzy Strong Precontinuity. Mat. Vesnik

Studies 50: 111-123

[13]. Bhaumik, R. N. and Mukherjee, A., 1993 Fuzzy Completely Continuous Mappings. Fuzzy Sets and Systems

Studies 56: 243-246.

[14]. Elnaschie, M.S. , 1998 On the Uncertanity of Cantorian Geometry and the Two-split Experiment. Chaos, Solitons and Fractals

Studies 9: 517-529.

[15]. Elnaschie, M.S., 2000 On the Unification of the Heterotic Strings, M-Theory and ε Theory. Chaos, Solitons and Fractals

Studies 11: 2397-2408

[16]. Sarkar, Mira, 1981 On Fuzzy Topological Spaces. Journal of Mathematical Analysis And Applications

Referanslar

Benzer Belgeler

Cengiz Han’dan sonra tahta geçmiĢ olan Ögedey Han, kardeĢi Cuci’nin oğlu Batu’yu batı seferine görevlendirmiĢtir.. 1237’de baĢlayan batı seferi aralıklarla

[r]

Turkish version of the HU-DBI was administered to dental students and nursing students of Marmara University, Istanbul at the beginning of the semifinal (fourth year of

Amaç: Bu çalışma ile bir E tipi kapalı ceza infaz kurumunda kalan tutuklu ve hükümlülerin hastaneye sevk ve 112 acil ambulans kullanım nedenlerinin be- lirlenmesi

Aşağıda şekillerin içinde verilen özel isimleri maviye, tür isimlerini kırmızıya

İngiliz Onaylı İsim (BAN), İngiliz Farmakopesinde (BP) tanımlandığı şekliyle farmasötik bir maddeye verilen resmi, tescilli olmayan veya jenerik addır. İngiliz Onaylı

1 Pazar Yom rişon Yevmu’l-ahad Birinci gün 2 Pazartesi Yom şeyni Yevmu isneyni İkinci gün 3 Salı Yom şlişi Yevmu’s-sulesau Üçüncü gün 4 Çarşamba Yom revii

Yetişkin katılımcıların kurslara katılma sebeplerine bakıldığında, kadın katılımcıların, erkek katılımcılardan belirgin olarak daha fazla sosyal ilişki