• Sonuç bulunamadı

Başlık: On some subclasses of m-fold symmetric bi-univalent functionsYazar(lar):ALTINKAYA, Şahsene; YALÇIN, SibelCilt: 67 Sayı: 1 Sayfa: 029-036 DOI: 10.1501/Commua1_0000000827 Yayın Tarihi: 2018 PDF

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: On some subclasses of m-fold symmetric bi-univalent functionsYazar(lar):ALTINKAYA, Şahsene; YALÇIN, SibelCilt: 67 Sayı: 1 Sayfa: 029-036 DOI: 10.1501/Commua1_0000000827 Yayın Tarihi: 2018 PDF"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

C om mun.Fac.Sci.U niv.A nk.Series A 1 Volum e 67, N umb er 1, Pages 29–36 (2018) D O I: 10.1501/C om mua1_ 0000000827 ISSN 1303–5991

http://com munications.science.ankara.edu.tr/index.php?series= A 1

ON SOME SUBCLASSES OF M -FOLD SYMMETRIC

BI-UNIVALENT FUNCTIONS

¸

SAHSENE ALTINKAYA AND SIBEL YALÇIN

Abstract. In this work, we introduce two new subclasses S m( ; ) and

S m( ; ) of m consisting of analytic and m -fold symmetric bi-univalent

functions in the open unit disc U . Furthermore, for functions in each of the subclasses introduced in this paper, we obtain the coe¢ cient bounds for jam+1j and ja2m+1j :

1. Introduction

Let A denote the class of functions f which are analytic in the open unit disc U = fz : z 2 C and jzj < 1g ; with in the form

f (z) = z +

1

X

n=2

anzn: (1.1)

Let S be the subclass of A consisting of the form (1.1) which are also univalent in U: It is well known that every function f 2 S has an inverse f 1; satisfying

f 1(f (z)) = z; (z 2 U) and f f 1(w) = w; jwj < r

0(f ) ; r0(f ) 14 ; where

f 1(w) = w a2w2+ 2a22 a3 w3 5a32 5a2a3+ a4 w4+ : (1.2)

A function f 2 A is said to be bi-univalent in U if both f and f 1 are univalent

in U: Let denote the class of bi-univalent functions de…ned in the unit disc U: For a brief history and interesting examples in the class ; see [11], (see also [1], [3], [8], [9], [12], [15], [16], [20], [21]).

For each function f 2 S, the function h(z) = mp

f (zm) (z 2 U; m 2 N) (1.3)

Received by the editors: January 27, 2017; Accepted: March 08, 2017. 2010 Mathematics Subject Classi…cation. Primary 30C45; Secondary 30C50.

Key words and phrases. Analytic functions, m fold symmetric biunivalent functions, coe¢ -cient bounds.

c 2 0 1 8 A n ka ra U n ive rsity C o m m u n ic a tio n s d e la Fa c u lté d e s S c ie n c e s d e l’U n ive rs ité d ’A n ka ra . S é rie s A 1 . M a th e m a t ic s a n d S t a tis tic s .

(2)

is univalent and maps the unit disc U into a region with m-fold symmetry. A func-tion is said to be m-fold symmetric (see [7], [10]) if it has the following normalized form: f (z) = z + 1 X k=1 amk+1zmk+1 (z 2 U; m 2 N): (1.4)

We denote by Smthe class of m-fold symmetric univalent functions in U , which

are normalized by the series expansion (1.4). In fact, the functions in the class S are one-fold symmetric.

Analogous to the concept of m-fold symmetric univalent functions, we here in-troduced the concept of m-fold symmetric bi-univalent functions. Each function f 2 generates an m-fold symmetric bi-univalent function for each integer m 2 N. The normalized form of f is given as in (1.4) and the series expansion for f 1;

which has been recently proven by Srivastava et al. [13], is given as follows: g(w) = w am+1wm+1+ (m + 1)a2m+1 a2m+1 w2m+1 1 2(m + 1)(3m + 2)a 3 m+1 (3m + 2)am+1a2m+1+ a3m+1 w3m+1 + (1.5) where f 1= g: We denote by

mthe class of m-fold symmetric bi-univalent

func-tions in U . For m = 1, the formula (1.5) coincides with the formula (1.2) of the class . Some examples of m-fold symmetric bi-univalent functions are given as follows: zm 1 zm 1 m ; [ log(1 zm)]m1 ; " 1 2log 1 + zm 1 zm 1 m# :

Thus, following Alt¬nkaya and Yalç¬n [3] constructed the subclasses S ( ; ) and S ( ; ) of bi-univalent functions and obtained estimates on the coe¢ cients ja2j and ja3j for functions in these new subclasses. Furthermore, in [4], Alt¬nkaya

and Yalç¬n obtained the second Hankel determinant, for the class S ( ; ): Recently, certain subclasses of m-fold bi-univalent functions class m similar to

subclasses of introduced and investigated by Alt¬nkaya and Yalç¬n [2], (see also [13], [14], [17], [18], [19]).

The aim of the this paper is to introduce two new subclasses of the function class

mand derive estimates on the initial coe¢ cients jam+1j and ja2m+1j for functions

in these new subclasses of the function class employing the techniques used earlier by Srivastava et al. [11] (see also [6]).

Let P denote the class of functions consisting of p, such that p(z) = 1 + p1z + p2z2+ = 1 +

1

X

n=1

(3)

which are regular in the open unit disc U and satisfy <(p(z)) > 0 for any z 2 U. Here, p(z) is called Caratheodory function [5].

We have to remember the following lemma so as to derive our basic results: Lemma 1. (see [10]) If p 2 P , then

jpnj 2 (n 2 N = f1; 2; : : :g) :

2. Coefficient bounds for the function class S m( ; )

De…nition 1. A function f 2 m is said to be in the class S m( ; ) if the

following conditions are satis…ed: arg 1 2 zf0(z) f (z) + zf0(z) f (z) 1 < 2 (0 < 1; 0 < 1; z 2 U) and arg 1 2 wg0(w) g(w) + wg0(w) g(w) 1 < 2 (0 < 1; 0 < 1; w 2 U) where the function g = f 1:

Theorem 1. Let f given by (1.4) be in the class S m( ; ); 0 < 1: Then

jam+1j 4 mp(1 + ) [4 + (1 + )(1 )] + 2 (1 ) and ja2m+1j 2 m (1 + )+ 8(m + 1) 2 2 m2(1 + )2 :

Proof. Let f 2 S m( ; ): Then

1 2 zf0(z) f (z) + zf0(z) f (z) 1! = [p(z)] (2.1) 1 2 wg0(w) g(w) + wg0(w) g(w) 1! = [q(w)] (2.2)

where g = f 1, p; q in P and have the forms

p(z) = 1 + pmzm+ p2mz2m+

and

q(w) = 1 + qmwm+ q2mw2m+ :

Now, equating the coe¢ cients in (2.1) and (2.2), we get m(1 + ) 2 am+1= pm; (2.3) m(1 + ) 2 2a2m+1 a 2 m+1 + m2(1 ) 4 2 a 2 m+1= p2m+ (2 1)p 2 m; (2.4)

(4)

and m(1 + ) 2 am+1= qm; (2.5) m(1 + ) 2 (2m + 1)a 2 m+1 2a2m+1 + m2(1 ) 4 2 a 2 m+1= q2m+ (2 1)qm2: (2.6)

Making use of (2.3) and (2.5), we obtain

pm= qm: (2.7) and m2(1 + )2 2 2 a 2 m+1= 2(p2m+ q2m): (2.8)

Also from (2.4), (2.6) and (2.8) we have h m2(1+ ) +m22(12 ) i a2m+1= (p2m+ q2m) + (2 1)(p2m+ q2m): = (p2m+ q2m) + (2 1)m 2 (1+ )2 2 2 2 a2m+1: Therefore, we have a2m+1= 4 2 2(p 2m+ q2m) m2f(1 + ) [4 + (1 + )(1 )] + 2 (1 )g: (2.9)

Applying Lemma 1 for the coe¢ cients p2m and q2m, we obtain

jam+1j

4

mp(1 + ) [4 + (1 + )(1 )] + 2 (1 ):

Next, in order to …nd the bound on ja2m+1j ; by subtracting (2.6) from (2.4), we

get

2m(1 + ) a2m+1

m(m + 1)(1 + )

a2m+1= (p2m q2m) + (2 1)(p2m q2m):

Then, in view of (2.7) and (2.8) , and applying Lemma 1 for the coe¢ cients p2m; pm

and q2m; qm; we have ja2m+1j 2 m (1 + )+ 8(m + 1) 2 2 m2(1 + )2 :

which completes the proof of Theorem 1.

3. Coefficient bounds for the function class S m( ; )

De…nition 2. A function f 2 mgiven by (1.4) is said to be in the class S m( ; )

if the following conditions are satis…ed: < ( 1 2 zf0(z) f (z) + zf0(z) f (z) 1!) > ; (0 < 1; 0 < 1; z 2 U) (3.1)

(5)

and < ( 1 2 wg0(w) g(w) + wg0(w) g(w) 1!) > ; (0 < 1; 0 < 1; w 2 U) : (3.2) where the function g = f 1:

Theorem 2. Let f given by (1.4) be in the class S m( ; ); 0 < 1. Then

jam+1j 2 m s 2 (1 ) 2 2+ + 1 and ja2m+1j 8(m + 1) 2(1 )2 m2(1 + )2 + 2 (1 ) m (1 + ): Proof. Let f 2 S m( ; ): Then

1 2 zf0(z) f (z) + zf0(z) f (z) 1! = + (1 )p(z) (3.3) 1 2 wg0(w) g(w) + wg0(w) g(w) 1! = + (1 )q(w) (3.4) where p; q 2 P and g = f 1:

It follows from (3.3) and (3.4) that m(1 + ) 2 am+1= (1 )pm; (3.5) m(1 + ) 2 2a2m+1 a 2 m+1 + m2(1 ) 4 2 a 2 m+1= (1 )p2m; (3.6) and m(1 + ) 2 am+1= (1 )qm; (3.7) m(1 + ) 2 (2m + 1)a 2 m+1 2a2m+1 + m2(1 ) 4 2 a 2 m+1= (1 )q2m: (3.8)

Then, by making use of (3.5) and (3.7), we get

pm= qm: (3.9) and m2(1 + )2 2 2 a 2 m+1= (1 )2(p2m+ qm2): (3.10)

Adding (3.6) and (3.8), we have m2(1 + ) +m 2(1 ) 2 2 a 2 m+1= (1 ) (p2m+ q2m) :

(6)

Therefore, we obtain

a2m+1=

2 2(1 ) (p2m+ q2m)

m2(2 2+ + 1) :

Applying Lemma 1 for the coe¢ cients p2m and q2m, we obtain

jam+1j 2 m s 2 (1 ) 2 2+ + 1:

Next, in order to …nd the bound on ja2m+1j ; by subtracting (3.8) from (3.6), we

obtain

2m(1 + ) a2m+1

m(m + 1)(1 + )

a2m+1= (1 ) (p2m q2m) :

Then, in view of (3.9) and (3.10) , applying Lemma 1 for the coe¢ cients p2m; pm

and q2m; qm; we have ja2m+1j 8(m + 1) 2(1 )2 m2(1 + )2 + 2 (1 ) m (1 + ): which completes the proof of Theorem 2.

If we set = 1 in Theorems 1 and 2, then the classes S m( ; ) and S m( ; )

reduce to the classes S m and S mand thus, we obtain the following corollaries: Corollary 1. (see [2]) Let f given by (1.4) be in the class S m (0 < 1). Then jam+1j 2 mp + 1 and ja2m+1j m+ 2(m + 1) 2 m2 :

Corollary 2. (see [2]) Let f given by (1.4) be in the class S m (0 < 1). Then jam+1j p 2 (1 ) m and ja2m+1j 2(m + 1)(1 )2 m2 + 1 m :

Remark 1. For one-fold symmetric bi-univalent functions, if we put = 1 in our Theorems, then we obtain the Corollary 1 and Corollary 2 which were proven earlier by Murugunsundaramoorthy et al. [9].

(7)

References

[1] Alt¬nkaya, ¸S. and Yalç¬n, S., Coe¢ cient Estimates for Two New Subclasses of Bi-univalent Functions with respect to Symmetric Points, Journal of Function Spaces Article ID 145242, (2015), 5 pp.

[2] Alt¬nkaya, ¸S. and Yalç¬n, S., Coe¢ cient bounds for certain subclasses of m -fold symmetric bi-univalent functions, Journal of Mathematics Article ID 241683, (2015), 5 pp.

[3] Alt¬nkaya, ¸S. and Yalç¬n, S., Coe¢ cient bounds for certain subclasses of bi-univalent func-tions, Creat. Math. Inform. 24 (2015), 101-106.

[4] Alt¬nkaya, ¸S. and Yalç¬n, S., Construction of second Hankel determinant for a new subclass of bi-univalent functions, Turk. J. Math. (2017), to appear.

[5] Duren, P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 259, 1983.

[6] Frasin, B. A. and Aouf, M. K., New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573.

[7] Koepf, W., Coe¢ cient of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc. 105 (1989), 324-329.

[8] Magesh, N. and Yamini, J., Coe¢ cient bounds for certain subclasses of bi-univalent functions, Int. Math. Forum, 8 (27) (2013), 1337-1344.

[9] Murugusundaramoorty, G., Magesh N., Prameela, V., Coe¢ cient bounds for certain classes of bi-univalent function, Abstr. Appl. Anal. Article ID 573017, (2013), 3 pp.

[10] Pommerenke, Ch., Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975. [11] Srivastava, H. M., Mishra, A. K. and Gochhayat, P., Certain subclasses of analytic and

bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.

[12] Srivastava, H. M., Bulut, S., Ça¼glar, M., Ya¼gmur, N., Coe¢ cient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (2013), 831–842.

[13] Srivastava, H. M., Sivasubramanian, S., Sivakumar, R., Initial coe¢ cient bounds for a sub-class of m -fold symmetric bi-univalent functions, Tbilisi Math. J. 7 (2014), 1-10.

[14] Srivastava, H. M., Gaboury, S., Ghanim, F., Coe¢ cient estimates for some subclasses of m -fold symmetric bi-univalent functions, Acta Universitatis Apulensis 41 (2015), 153-164. [15] Srivastava, H. M., Sümer Eker, S., Ali, R. M., Coe¢ cient bounds for a certain class of analytic

and bi-univalent functions, Filomat 29 (2015), 1839-1845.

[16] Srivastava, H. M., Bansal, D., Coe¢ cient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015), 242–246.

[17] Srivastava, H. M., Gaboury, S., Ghanim, F., Initial coe¢ cient estimates for some subclasses of m -fold symmetric bi-univalent functions, Acta Mathematica Scientia 36B (2016), 863–871. [18] Sümer Eker, S., Coe¢ cient bounds for subclasses of m -fold symmetric bi-univalent functions,

Turk. J. Math. 40 (2016), 641–646.

[19] Tang, H., Srivastava, H. M., Sivasubramanian, S., Gurusamy, P., The Fekete-Szegö func-tional problems for some subclasses of m -fold symmetric bi-univalent functions, Journal of Mathematical Inequalities 10 (2016), 1063-1092.

[20] Xu, Q.-H., Gui, Y.-C., Srivastava, H. M., Coe¢ cient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990-994.

[21] Xu, Q.-H., Xiao, H.-G., Srivastava, H. M., A certain general subclass of analytic and bi-univalent functions and associated coe¢ cient estimates problems, Appl. Math. Comput. 218 (2012), 11461-11465.

(8)

Current address : ¸Sahsene Alt¬nkaya: Department of Mathematics, Faculty of Arts and Science, Uludag University, 16059 Bursa, Turkey.

E-mail address : sahsene@uludag.edu.tr

Current address : Sibel Yalç¬n: Department of Mathematics, Faculty of Arts and Science, Uludag University, 16059 Bursa, Turkey.

Referanslar

Benzer Belgeler

İkinci Abdülhamit Hanın ma­ ruf sadrâzamlarından Sait paşa, ınazııl bulunduğu bir sırada ve 22 kasını 311 tarihine rastlıyan çar­ şamba günü

Asiklovirin IV olarak 3x10 mg/kg (30mg/gün) dozunda 21 gün süreyle kullanımın herpetik ensefalitte en iyi seçenek olduğu kabul edilmektedir (9,10). Olgumuz da 3x10 mg/kg dozunda

kümeleri Jordan anlamında ölçülebilirse, bu kümelerin sa­ yılabilir sayıdasının bileşim, kesişim, ikişer ikişer fark ve simetrik fark işlemlerine göre kapalı

Kamu Eğitim Harcamalarında Etkinlik ve Etkenlik Analizi: OECD Ülkeleri Özerine Bir

Toplumsal eşitliğe karşıtlık ile adil dünya inancı arasında bir ilişki bulunmamasının olası sebeplerinden biri, Türkiye bağlamında toplumsal eşitliğe

Geliştirdiğimiz akıllı sistem, sahibini kamera yardımı ile takip etmekte, hareketlerini iki adet dc motor ve mikroişlemcisi yardımıyla otonom

Tipik laktas- yon eğrisine sahip ineklerin oranının yüksek, atipik laktasyon eğrisine sahip ineklerin oranının düşük olması süt verim düzeyinde de artış sağlayacağından

Çünkü hem benim için çok büyük yorgunluk oluyor, hem de yaptığım işin iyi olduğuna inanmıyorum.” &#34;Sinemacılıktan kaçışımın en büyük sebebi: Terlik