• Sonuç bulunamadı

A GENERALIZED AND REFINED PERTURBED VERSION OF OSTROWSKI TYPE INEQUALITIES

N/A
N/A
Protected

Academic year: 2021

Share "A GENERALIZED AND REFINED PERTURBED VERSION OF OSTROWSKI TYPE INEQUALITIES"

Copied!
12
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ISSN 2291-8639

Volume 13, Number 1 (2017), 70-81

http://www.etamaths.com

A GENERALIZED AND REFINED PERTURBED VERSION OF OSTROWSKI TYPE INEQUALITIES

M. Z. SARIKAYA1, H. BUDAK1,∗, S. ERDEN2 AND A. QAYYUM3

Abstract. In this paper, we first obtain a new identity for twice differentiable mappings. Then, we establish generalized and improved perturbed version of Ostrowski type inequalities for functions whose derivatives are of bounded variation or second derivatives are either bounded or Lipschitzian.

1. Introduction

In 1938, Ostrowski first declared his inequality for different differentiable mappings. Ostrowski inequalities appear in most of the domains of Mathematics. Its importance has increased remarkably during the past few years and it is now cosidered as an independent branch of Mathematics. The development of the theory of Ostrowski inequality was initiated by Dragomir. In [6], Dragomir et al. obtained Ostrowski type inequalities for functions whose second derivatives are bounded. During the time, the growing interest for the ostrowski inequalities led to the apparition of several research papers in the area. In this sense, we mention ( [6], [8], [16], [17], [19]- [21]). In recent years, modern theory of inequalities is used at large and many efforts devoted to establish several generalizations of the Ostrowski’s inequalities for mappings of bounded variation ( [1]- [5], [7], [9]- [13], [15], [18]). In this study, we establish some perturbed version of Ostrowski type inequalities for twice differentiable functions whose derivatives are of bounded variation or second derivatives are either bounded or Lipschitzian.

Theorem 1.1. [14] Let f : [a, b] → R be a differentiable mapping on (a, b) whose derivative f0 : (a, b) → R is bounded on (a, b) , i.e. kf0k:= sup

t∈(a,b)

|f0(t)| < ∞. Then, we have the inequality

f (x) − 1 b − a b Z a f (t)dt ≤ " 1 4+ x −a+b 2 2 (b − a)2 # (b − a) kf0k, (1.1)

for all x ∈ [a, b].

The constant 14 is the best possible.

In [9], Dragomir proved the following Ostrowski type inequalitiesfor functions of bounded variation: Theorem 1.2. Let f : [a, b] → R be a mapping of bounded variation on [a, b] . Then

b Z a f (t)dt − (b − a) f (x) ≤ 1 2(b − a) + x − a + b 2  b _ a (f ) (1.2)

holds for all x ∈ [a, b] . The constant 12 is the best possible. The following lemma is required to prove the main theorem.

Received 30th July, 2016; accepted 6thOctober, 2016; published 3rdJanuary, 2017.

2010 Mathematics Subject Classification. 26D07, 26D10, 26D15.

Key words and phrases. Ostrowski inequality; function of bounded variation; Lipschitzian mappings.

c

2017 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

(2)

Lemma 1.1. Let f : [a, b] → C be a twice differantiable function on (a, b) . Then for any λi(x),

i = 1, 2, ..5 complex number the following identity holds

(1.3) 1 2 (b − a)      a+x 2 Z a (t − a)2[f 00(t) − λ1(x)] dt + x Z a+x 2  t −3a + b 4 2 [f 00(t) − λ2(x)] dt + a+b−x Z x  t − a + b 2 2 [f 00(t) − λ3(x)] dt + a+2b−x 2 Z a+b−x  t −a + 3b 4 2 [f 00(t) − λ4(x)] dt + b Z a+2b−x 2 (t − b)2[f 00(t) − λ5(x)] dt      = A + 1 48 (b − a) ( x −a + b 2 3 [λ2(x) + 16λ3(x) + λ4(x)] − (x − a)3[λ1(x) + λ5(x)] − 8  x −3a + b 4 3 [λ2(x) + λ4(x)] ) , for all x ∈a,a+b2  , where A is defined by

A (1.4) = 1 b − a b Z a f (t) dt −1 4  f (x) + f (a + b − x) + f a + x 2  + f a + 2b − x 2  +  x −5a + 3b 8  {f 0(a + b − x) − f0(x)} + 1 2  x − 3a + b 4   f 0 a + 2b − x 2  − f 0 a + x 2  .

Proof. Integrating the by parts for each integral, we can easily obtain the required result (1.3).  Now with the help of above Lemma, we will prove the following inequalities.

2. Inequalities for Functions Whose Second Derivatives are Bounded Recall the sets of complex-valued functions:

U[a,b](γ, Γ)

: =nf : [a, b] → C| Reh(Γ − f (t))f (t)− γi≥ 0 for almost every t ∈ [a, b]o and ∆[a,b](γ, Γ) :=  f : [a, b] → C| f (t) −γ + Γ 2 ≤ 1

2|Γ − γ| for a.e. t ∈ [a, b] 

.

Proposition 2.1. For any γ, Γ ∈ C, γ 6= Γ, we have that U[a,b](γ, Γ) and ∆[a,b](γ, Γ) are nonempty

and closed sets and

U[a,b](γ, Γ) = ∆[a,b](γ, Γ) .

Let I1=a,a+x2  , I2=a+x2 , x I3= [x, a + b − x] I4=a + b − x,a+2b−x2  and I5=a+2b−x2 , b .

Theorem 2.1. Let f : [a, b] → C be a twice differantiable function on (a, b) and x ∈ (a, b) . Suppose that γi(x), Γi(x) ∈ C, γi(x) 6= Γi(x), i = 1, 2, 3, 4, 5 and f00∈ 5 \ i=1 UIi(γi, Γi)

(3)

then we have the inequality A + 1 96 (b − a) " x −a + b 2 3 × [γ2(x) + Γ2(x) + 16 (γ3(x) + Γ3(x)) + γ4(x) + Γ4(x)] − (x − a)3[γ1(x) + Γ1(x) + γ5(x) + Γ5(x)] −8  x −3a + b 4 3 [γ2(x) + Γ2(x) + γ4(x) + Γ4(x)] # ≤ 1 96 (b − a) n (x − a)3|Γ1(x) − γ1(x)| + " 8  x − 3a + b 4 3 −  x −a + b 2 3# |Γ2(x) − γ2(x)| +16 a + b 2 − x 3 |Γ3(x) − γ3(x)| + " 8  x − 3a + b 4 3 −  x −a + b 2 3# |Γ4(x) − γ4(x)| + (x − a)3|Γ5(x) − γ5(x)| o , where A is defined as in (1.4).

Proof. Taking the modulus identity (1.3) for λi(x) =

γi(x)+Γi(x) 2 , i = 1, 2, ..., 5, since f 00 5 \ i=1 UIi(γi, Γi), we have A + 1 96 (b − a) " x −a + b 2 3 × [γ2(x) + Γ2(x) + 16 (γ3(x) + Γ3(x)) + γ4(x) + Γ4(x)] − (x − a)3[γ1(x) + Γ1(x) + γ5(x) + Γ5(x)] −8  x −3a + b 4 3 [γ2(x) + Γ2(x) + γ4(x) + Γ4(x)] # ≤ 1 2 (b − a)      a+x 2 Z a (t − a)2 f 00(t) −γ1(x) + Γ1(x) 2 dt + x Z a+x 2  t − 3a + b 4 2 f 00(t) −γ2(x) + Γ2(x) 2 dt

(4)

+ a+b−x Z x  t − a + b 2 2 f 00(t) −γ3(x) + Γ3(x) 2 dt + a+2b−x 2 Z a+b−x  t − a + 3b 4 2 f 00(t) −γ4(x) + Γ4(x) 2 dt + b Z a+2b−x 2 (t − b)2 f 00(t) −γ5(x) + Γ5(x) 2 dt      ≤ 1 96 (b − a) n (x − a)3|Γ1(x) − γ1(x)| + " 8  x −3a + b 4 3 −  x − a + b 2 3# |Γ2(x) − γ2(x)| +16 a + b 2 − x 2 |Γ3(x) − γ3(x)| " 8  x −3a + b 4 3 −  x − a + b 2 3# |Γ4(x) − γ4(x)| + (x − a)3|Γ5(x) − γ5(x)| o .

This completes the proof. 

Remark 2.1. If we choose x = a in Theorem2.1, we obtain the inequality 1 b − a b Z a f (t) dt −f (a) + f (b) 2 − (b − a)f 0(b) − f 0(a) 8 − (b − a)2 48 (γ3(x) + Γ3(x)) ≤ (b − a) 48 |Γ3(x) − γ3(x)| which was given by Sarikaya et al. in [15].

Corollary 2.1. Under assumption of Theorem2.1 with x =a+b2 , we have 1 b − a b Z a f (t) dt −1 4  f 3a + b 4  + 2f a + b 2  + f a + 3b 4  + 1 8(b − a)  f 0 a + 3b 4  − f 0 3a + b 4  −(b − a) 2 768 [γ1(x) + Γ1(x) + γ2(x) + Γ2(x) +γ4(x) + Γ4(x) + γ5(x) + Γ5(x)]| ≤ (b − a) 2 768 [|Γ1(x) − γ1(x)| + |Γ2(x) − γ2(x)| + |Γ4(x) − γ4(x)| + |Γ5(x) − γ5(x)|] .

(5)

Corollary 2.2. Under assumption of Theorem2.1 with x =3a+b4 , we have 1 b − a b Z a f (t) dt −1 4  f 3a + b 4  + f a + 3b 4  +f 7a + b 8  + f a + 7b 8  −1 8(b − a)  f 0 a + 3b 4  − f 0 3a + b 4  +(b − a) 2 6144 [γ1(x) + Γ1(x) + γ2(x) + Γ2(x) +16 (γ3(x) + Γ3(x)) + γ4(x) + Γ4(x) + γ5(x) + Γ5(x)]| ≤ (b − a) 2 6144 [|Γ1(x) − γ1(x)| + 8 |Γ2(x) − γ2(x)| + 16 |Γ4(x) − γ4(x)| +8 |Γ4(x) − γ4(x)| + |Γ5(x) − γ5(x)|] .

3. Inequalities for Mappings of Bounded Variation

In this section, we establish some inequalities for function whose second derivatives are of bounded variation.

Let f :[a, b] → C be a twice differentiable function on I◦(I◦is the interior of I) and [a, b] ⊂ I◦.Then, from (1.3), we have for

λ1(x) = f 00(a) , λ2(x) = f00 a+x2  + f 00(x) 2 , λ3(x) = f 00(x) + f00(a + b − x) 2 , λ4(x) = f 00(a + b − x) + f00 a+2b−x2  2 , λ5(x) = f 00(b) , 1 2 (b − a)      a+x 2 Z a (t − a)2[f 00(t) − f00(a)] dt + x Z a+x 2  t −3a + b 4 2 × " f 00(t) − f 00 a+x 2  + f 00(x) 2 # dt + a+b−x Z x  t − a + b 2 2 f 00(t) −f 00(x) + f 00(a + b − x) 2  dt + a+2b−x 2 Z a+b−x  t − a + 3b 4 2" f 00(t) −f 00(a + b − x) + f00 a+2b−x 2  2 # dt + b Z a+2b−x 2 (t − b)2[f 00(t) − f00(b)] dt     

(6)

= A + 1 48 (b − a) " 1 2  x −a + b 2 3 (3.1) ×  f00 a + x 2  + 17 (f00(x) + f 00(a + b − x)) + f 00 a + 2b − x 2  − (x − a)3[f 00(a) + f 00(b)] − 4  x − 3a + b 4 3 ×  f 00 a + x 2  + f 00(x) + f00(a + b − x) + f00 a + 2b − x 2 

for any x ∈a,a+b2  , where A is defined as in (1.4).

Theorem 3.1. Let f : [a, b] → C be a twice differentiable function on I◦(I◦ is the interior of I) and [a, b] ⊂ I◦. If the second derivative f 00 is of bounded variation on [a, b] , then we have

A + 1 48 (b − a) " 1 2  x −a + b 2 3 (3.2) ×  f 00 a + x 2  + 17 (f00(x) + f 00(a + b − x)) + f 00 a + 2b − x 2  − (x − a)3[f 00(a) + f 00(b)] − 4  x − 3a + b 4 3 ×  f 00 a + x 2  + f 00(x) + f 00(a + b − x) + f00 a + 2b − x 2  ≤ 1 48 (b − a)    (x − a)3 a+x 2 _ a (f 00) + " 8  x − 3a + b 4 3 −  x −a + b 2 3# x _ a+x 2 (f 00) +8 a + b 2 − x 3 a+b−x _ x (f 00) + " 8  x − 3a + b 4 3 −  x −a + b 2 3# a+2b−x 2 _ a+b−x (f 00) + (x − a)3 b _ a+2b−x 2 (f 00)    ,

for all x ∈a,a+b2  , where A is defined as in (1.4). Proof. From (3.1), we find that

A + 1 48 (b − a) " 1 2  x −a + b 2 3 ×  f 00 a + x 2  + 17 (f 00(x) + f00(a + b − x)) + f 00 a + 2b − x 2  − (x − a)3[f 00(a) + f 00(b)] − 4  x −3a + b 4 3 ×  f 00 a + x 2  + f 00(x) + f00(a + b − x) + f00 a + 2b − x 2 

(7)

≤ 1 2 (b − a)      a+x 2 Z a (t − a)2|f 00(t) − f00(a)| dt + x Z a+x 2  t −3a + b 4 2" f 00(t) −f 00 a+x 2  + f 00(x) 2 # dt + a+b−x Z x  t −a + b 2 2 f 00(t) −f 00(x) + f00(a + b − x) 2  dt + a+2b−x 2 Z a+b−x  t −a + 3b 4 2 f 00(t) −f 00(a + b − x) + f 00 a+2b−x 2  2 dt + b Z a+2b−x 2 (t − b)2|f 00(t) − f00(b)| dt      .

Since f 00is of bounded variation on [a, b] , we get

|f 00(t) − f00(a)| ≤

t

_

a

(f 00)

for t ∈a,a+x 2  f00(t) −f 00 a+x 2  + f 00(x) 2 ≤1 2 x _ a+x 2 (f00) < x _ a+x 2 (f 00) for t ∈a+x2 , x f 00(t) −f 00(x) + f00(a + b − x) 2 ≤ 1 2 a+b−x _ x (f 00) for t ∈ [x, a + b − x] f 00(t) −f 00(a + b − x) + f00 a+2b−x 2  2 ≤1 2 a+2b−x 2 _ a+b−x (f 00) < a+2b−x 2 _ a+b−x (f 00) for t ∈a + b − x,a+2b−x2  |f 00(t) − f00(b)| ≤ b _ t (f 00) for t ∈a+2b−x 2 , b .

Thus, using the elementary analysis operations, we deduce desired inequality (3.2) which completes

the proof. 

(8)

Corollary 3.1. Under assumption of Theorem3.1 with x =a+b2 , we have the inequality 1 b − a b Z a f (t) dt −1 4  f 3a + b 4  + 2f a + b 2  + f a + 3b 4  + 1 8(b − a)  f 0 a + 3b 4  − f 0 3a + b 4  −(b − a) 384  f00(a) + f00(b) + f00 a + b 2  +1 2  f00 a + 3b 4  + f00 3a + b 4  ≤ 1 384 b _ a (f 00) .

4. Inequalities for Lipschitzian Mappings

In this section we obtain some inequalities for function whose second derivatives are Lipschitzian. We say that the function g : [a, b] → C is Lipschitzian with the constant L > 0 if

|g(t) − g(s)| ≤ L |t − s|

for any t, s ∈ [a, b] .

Theorem 4.1. Let f : [a, b] → C be a twice differantiable function on (a, b) . If the second derivative f00 is a Lipschitzian mapping with the constant L > 0,then we have the inequality

A + 1 48 (b − a) "  x − a + b 2 3 (4.1) ×  f 00 3a + b 4  + 16f 00 a + b 2  + f 00 a + 3b 4  − (x − a)3[f 00(a) + f 00(b)] −8  x − 3a + b 4 3 f 00 3a + b 4  + f 00 a + 3b 4 # ≤ L 128 (b − a)  2 (x − a)4+ sgn 3a + b 4 − x  × " 16  x − 3a + b 4 4 −  x −a + b 2 4# +31  x − a + b 2 4 + 16  x − 3a + b 4 4# ,

for all x ∈a,a+b

(9)

Proof. If we take the λ1= f 00(a) , λ2= f 00 3a+b4  , λ3= f 00 a+b2  , λ4= f 00 a+3b4  and λ5= f00(b) in equality (1.3), we have 1 2 (b − a)      a+x 2 Z a (t − a)2[f 00(t) − f00(a)] dt+ (4.2) x Z a+x 2  t −3a + b 4 2 f 00(t) − f 00 3a + b 4  dt + a+b−x Z x  t − a + b 2 2 f 00(t) − f00 a + b 2  dt + a+2b−x 2 Z a+b−x  t −a + 3b 4 2 f 00(t) − f 00 a + 3b 4  dt + b Z a+2b−x 2 (t − b)2[f 00(t) − f00(b)] dt      = 1 b − a b Z a f (t) dt −1 4  f (x) + f (a + b − x) + f a + x 2  + f a + 2b − x 2  +  x −5a + 3b 8  {f0(a + b − x) − f0(x)} + 1 2  x − 3a + b 4   f 0 a + 2b − x 2  − f 0 a + x 2  + 1 48 (b − a) " x −a + b 2 3 ×  f 00 3a + b 4  + 16f00 a + b 2  + f 00 a + 3b 4  − (x − a)3[f 00(a) + f 00(b)] −8  x −3a + b 4 3 f 00 3a + b 4  + f 00 a + 3b 4 #

for all x ∈a,a+b 2  .

Since f00 is Lipschitzian, taking the madulus in (4.2), we have

A + 1 48 (b − a) " x −a + b 2 3 ×  f 00 3a + b 4  + 16f 00 a + b 2  + f 00 a + 3b 4  − (x − a)3[f 00(a) + f00(b)]

(10)

−8  x −3a + b 4 3 f 00 3a + b 4  + f 00 a + 3b 4 # ≤ L 128 (b − a)  2 (x − a)4+ sgn 3a + b 4 − x  × " 16  x − 3a + b 4 4 −  x − a + b 2 4# +31  x −a + b 2 4 + 16  x − 3a + b 4 4# ≤ L 2 (b − a)      a+x 2 Z a (t − a)3dt + x Z a+x 2 t −3a + b 4 3 dt + a+b−x Z x a + b 2 − t 3 dt + a+2b−x 2 Z a+b−x  a + 3b 4 − t 3 dt + b Z a+2b−x 2 (b − t)3dt      .

If we calculate the above five integrals, then we obtain the inequality (4.1). Thus proof is completed. 

Corollary 4.1. Under assumption of Theorem4.1 with x = a, we get the inequality

1 b − a b Z a f (t) dt −f (a) + f (b) 2 − (b − a)f 0(b) − f 0(a) 8 − (b − a)2 24 f 00 a + b 2  ≤ 1 64(b − a) 3 L.

Corollary 4.2. Under assumption of Theorem4.1 with x =a+b2 , we get the inequality

1 b − a b Z a f (t) dt −1 4  f 3a + b 4  + 2f a + b 2  + f a + 3b 4  + 1 8(b − a)  f 0 a + 3b 4  − f 0 3a + b 4  +(b − a) 2 384  f 00(a) + f 00(b) + f00 3a + b 4  + f 00 a + 3b 4  ≤ 1 512(b − a) 3 L.

(11)

Corollary 4.3. Under assumption of Theorem4.1 with x =3a+b4 , we get the inequality 1 b − a b Z a f (t) dt −1 4  f 3a + b 4  + f a + 3b 4  + f 7a + b 8  + f a + 7b 8  −1 8(b − a)  f 0 a + 3b 4  − f 0 3a + b 4  − 1 3072(b − a) 2 f 00(a) + f 00 3a + b 4  + 16f 00 a + b 2  +f 00 a + 3b 4  + f 00(b)  ≤ 17 214(b − a) 3 L. References

[1] H. Budak and M. Z. Sarikaya, A new Ostrowski type inequality for functions whose first derivatives are of bounded variation, Moroccan J. Pure Appl. Anal., 2(1)(2016), 1–11.

[2] H. Budak and M.Z. Sarikaya, A companion of Ostrowski type inequalities for mappings of bounded variation and some applications, RGMIA Research Report Collection, 19(2016), Article ID 24.

[3] H. Budak, M.Z. Sarikaya and A. Qayyum, Improvement in companion of Ostrowski type inequalities for mappings whose first derivatives are of bounded variation and application, RGMIA Research Report Collection, 19(2016), Article ID 25.

[4] H. Budak, M.Z. Sarikaya and S.S. Dragomir, Some perturbed Ostrowski type inequality for twice differentiable functions, RGMIA Research Report Collection, 19(2016), Article ID 47.

[5] H. Budak and M. Z. Sarikaya, Some perturbed Ostrowski type inequality for functions whose first derivatives are of bounded variation, RGMIA Research Report Collection, 19 (2016), Article ID 54.

[6] S. S. Dragomir and N.S. Barnett, An Ostrowski type inequality for mappings whose second derivatives are bounded and applications, RGMIA Research Report Collection, 1(2)(1998) , 69 − 77.

[7] S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation, Bulletin of the Australian Mathematical Society, 60(1) (1999), 495-508.

[8] S. S. Dragomir and A. Sofo, An integral inequality for twice differentiable mappings and application, Tamkang J. Math., 31(4) 2000, 257-266.

[9] S. S. Dragomir, On the Ostrowski’s integral inequality for mappings with bounded variation and applications, Mathematical Inequalities & Applications, 4(1) (2001), 59–66.

[10] S. S. Dragomir, A companion of Ostrowski’s inequality for functions of bounded variation and applications, Inter-national Journal of Nonlinear Analysis and Applications, 5(1) (2014), 89-97.

[11] S. S. Dragomir, Some perturbed Ostrowski type inequalities for functions of bounded variation, Asian-European Journal of Mathematics, 8(4)(2015, ), Article ID 1550069. DOI:10.1142/S1793557115500692

[12] S. S. Dragomir, Perturbed Companions of Ostrowski’s Inequality for Functions of Bounded Variation, RGMIA Research Report Collection, 17(2014), Article ID 1.

[13] W. Liu and Y. Sun, A Refinement of the Companion of Ostrowski inequality for functions of bounded variation and Applications, arXiv:1207.3861v1, (2012).

[14] A. M. Ostrowski, ¨Uber die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv. 10(1938), 226-227.

[15] M. Z. Sarikaya, H. Budak, T. Tunc, S. Erden and H. Yaldiz, Perturbed companion of Ostrowski type inequality for twice differentiable functions, RGMIA Research Report Collection, 19 (2016), Article ID 59.

[16] E. Set and M. Z. Sarikaya, On a new Ostrowski-type inequality and related results, Kyungpook Mathematical Journal, 54(2014), 545-554.

[17] J. Park, Some Companions of an Ostrowski-like Type Inequality for Twice Differentiable Functions, Applied Math-ematical Sciences, 8 (47) (2014), 2339 - 2351.

[18] M. Liu, Y. Zhu and J. Park, Some companions of perturbed Ostrowski-type inequalities based on the quadratic kernel function with three sections and applications, J. of Ineq. and Applications, 2013 (2013), Article ID 226.

[19] A. Qayyum, M. Shoaib and I. Faye, Companion of Ostrowski-type inequality based on 5-step quadratic kernel and applications, Journal of Nonlinear Science and Applications, 9 (2016), 537–552.

[20] A. Qayyum, I. Faye and M. Shoaib, A companion of Ostrowski Type Integral Inequality using a 5-step kernel With Some Applications, Filomat, in Press.

[21] A. Qayyum, M. Shoaib and I. Faye, Derivation and applications of inequalities of Ostrowski type for n-times dif-ferentiable mappings for cumulative distribution function and some quadrature rules, Journal of Nonlinear Sciences and Applications, 9 (2016), 1844-1857.

1

(12)

2

Department of Mathematics, Faculty of Science, Bartin University, Bartin,Turkey.

3

Department of Mathematics, University of Hail, P. O. Box 2440, Saudi Arabia.

Referanslar

Benzer Belgeler

 Düzce ili Çiftlik Köyü’nde kalp ve damar hastalıkları için risk faktörleri olan sağlıksız beslenme, yetersiz fizik aktivite, tütün ve alkol kullanımı sıklığı ve

türlerinin bulunduğu su örneklerindeki klor miktarlarına bakıldığında sadece iki örneğin klor miktarı 0.3ppm’den yüksek (0.4 ppm) çıkmıştır. Klor miktarı

The pretreatment of straw particles with a chemical agent, such as acetic anhydride or a soapy solution, was found to be more effective at improving the physical

ECoG recordings from the experiments were analyzed using the PowerLab Chart v.7.2.1 software package (ADInstruments Pty Ltd, Castle Hill, NSW, Australia).

In this study, AISI D2 cold work tool steel was used as the workpiece, along with CVD- and PVD-coated tungsten carbide cutting tools The main purpose of this study investigated

The Effects of Densification and Heat Post-Treatment on Hardness and Morphological Properties of Wood Materials Mehmet Budakçı,a,* Hüseyin Pelit,a Abdullah Sönmez,b and Mustafa

In this work, a metal-ferroelectric-semiconductor (MFS) type capacitor was fabricated and admittance measurements were held in a wide frequency range of 1 kHz-5 MHz at room

The mini- open carpal tunnel release surgery, which can be performed proximal or distal to the distal wrist crease, is a preferable method, however, the reliability of mini