• Sonuç bulunamadı

Commutator subgroups of generalized Hecke and extended generalized Hecke groups,II

N/A
N/A
Protected

Academic year: 2021

Share "Commutator subgroups of generalized Hecke and extended generalized Hecke groups,II"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

© TÜBİTAK

doi:10.3906/mat-1911-40 h t t p : / / j o u r n a l s . t u b i t a k . g o v . t r / m a t h /

Research Article

Commutator subgroups of generalized Hecke and extended generalized Hecke

groups,II

Gülşah DOĞRAYICI1, Recep ŞAHİN1,2,∗

1Department of Mathematics, Institute of Science, Balıkesir University, Balıkesir, Turkey 2Department of Mathematics, Faculty of Science and Literature, Balıkesir University, Balıkesir, Turkey

Received: 12.11.2019Accepted/Published Online: 31.08.2020Final Version: 16.11.2020

Abstract: Let p1, · · · , pn be integers where n≥ 2 and each pi≥ 2. Let also H(p1, · · · , pn) be the generalized Hecke group associated to all pi≥ 2. In this paper, we study the commutator subgroups H′(p1, · · · , pn) and H′(p1, · · · , pn) of the generalized Hecke group H(p1, · · · , pn) and the extended generalized Hecke group H(p1, · · · , pn) . We give the generators and the signatures of H′(p1, · · · , pn) and H

(p1, · · · , pn) .

Key words: Generalized Hecke groups, extended generalized Hecke groups, commutator subgroups

1. Introduction

Let p1, · · · , pn be integers where n ≥ 2 and each pi ≥ 2. Let us consider the linear fractional transformations

Xi(z) =−

1 z + λi

,

where λi = 2 cos(pπt) for pi ≥ 2 is an integer. Generalized Hecke groups H(p1, · · · , pn) are generated by

Xi′s and have the presentation

H(p1, · · · , pn) = < Xi: X pi

i = I >≡ Cp1 ∗ · · · ∗ Cpn.

and the signature (0; p1, · · · , pn, ∞), [8] and [9]. Extended generalized Hecke groups H(p1, · · · , pn) can

be defined by adding the reflection R(z) = 1/z to the generators of H(p1, · · · , pn). Hence the extended

generalized Hecke groups H(p1, · · · , pn) have a presentation

H(p1, · · · , pn) = < Xi, R : Xipi = R 2 = I, RX i = Xi−1R >, or H(p1, · · · , pn) = < Xi, R : Xipi = R 2 = (X iR)2 = I >∼= Dp1Z2· · · ∗Z2Dpn,[8].

Notice that the generalized Hecke group H(2, 3) is the modular group Γ = P SL(2,Z). The modular group is the discrete subgroup of P SL(2,R) generated by two linear fractional transformations

T (z) =−1

z and S(z)=−

1 z + 1.

Correspondence: rsahin@balikesir.edu.tr

2010 AMS Mathematics Subject Classification: 20H10, 11F06, 30F35

(2)

Then the modular group Γ has a presentation

Γ= < T, S| T2= S3= I >∼= C2∗ C3.

Also, if q ≥ 3 is an integer, then the generalized Hecke group H(2, q) is the Hecke group H(λq) ([2], [7], [10],

[11], [12]). If p1= p and p2 = q are integers where 2 ≤ p ≤ q and p + q > 4, then generalized Hecke group

H(p, q) is the generalized Hecke group Hp,q ([5], [15], [18]).

On the other hand, the extended generalized Hecke group H(2, 3) is the extended modular group Γ (or Π) ([23], [24]). We know that the extended modular group Π = P GL(2,Z) is defined by adding the reflection R(z) = 1/ z to the generators of the modular group Γ . The extended modular group Π has a presentation

Π =< T, S, R| T2= S3= R2= (RT )2= (RS)2= I >

=

D2Z2D3.

Also, if q ≥ 3 is an integer, then the extended generalized Hecke group H(2, q) is the extended Hecke group H(λq) , ([4], [26], [27] ). Finally, if p1 = p and p2 = q are integers where 2≤ p ≤ q and p + q > 4, then the

extended generalized Hecke group H(p, q) is the extended generalized Hecke group Hp,q, ([6]).

The motivation of this paper is to study the commutator subgroups of the generalized Hecke groups H(p1, · · · , pn) and the extended generalized Hecke groups H(p1, · · · , pn) . If n = 2, then the commutator

subgroups of H(p1, p2) and H(p1, p2) was studied by many authors in [1], [3], [13], [14], [15], [17], [19], [21],

[22], [25], [29].

Here, our aim is to generalize the results given in [14] in the case p1= p and p2= q where 2≤ p ≤ q and

p+q > 4, to the case p1, · · · , pn are integers where n≥ 2 and each pi≥ 2. To do this, we use the Reidemeister–

Schreier method, the permutation method (see, [28]) and the extended Riemann–Hurwitz condition (see, [16]). Here we give the generators and the signatures of the commutator subgroups of H(p1, · · · , pn) and

H(p1, · · · , pn) . Of course, if we take n = 2 , p1 = p and p2 = q , then our results coincide with the results

given in [14] for Hp,q and Hp,q.

2. Commutator subgroups of H(p1, ..., pn) and H(p1, ..., pn)

First we study the commutator subgroup H′(p1, · · · , pn) of the generalized Hecke group H(p1, · · · , pn). )

Theorem 2.1 Let p1,· · · , pn be integers where n≥ 2 and each pi≥ 2. Then

i) |H(p1,· · · , pn) : H′(p1,· · · , pn)| = p1· p2· · · pn.

ii) The commutator subgroup H′(p1,· · · , pn) of H(p1,· · · , pn) is a free group of rank nP−1 i=1 n P j=i+1 (pi− 1) · (pj− 1) + 2· nP−2 i=1 nP−1 j=i+1 n P k=j+1 (pi− 1)·(pj− 1)·(pk− 1) + · · · + (n−1)· 1 P i=1 2 P j=2 · · · Pn s=n (pi− 1)·(pj− 1) · · · (ps− 1) .

Proof i) To obtain the quotient group H(p1,· · · , pn)/H′(p1,· · · , pn), we add the relations XiXj = XjXi

where i, j = 1,· · · , n for i ̸= j to the relations of H(p1,· · · , pn). Hence we get

(3)

Therefore we find the index as |H(p1,· · · , pn) : H′(p1,· · · , pn)| = p1· p2· · · pn.

ii) Now we can use the Reidemeister–Schreier method for the generators of H′(p1,· · · , pn) . First we

choose a Schreier transversal Σ for H′(p1,· · · , pn). Here Σ consists of the identity element I; n

P

i=1

(pi− 1)

elements of the form Xai

i where 1 ≤ i ≤ n and 1 ≤ ai ≤ pi− 1; nP−1 i=1 n P j=i+1 (pi− 1) (pj− 1) elements of the form Xai i X aj

j where 1≤ i < j ≤ n and for t = i, j, 1 ≤ at≤ pt− 1 ; nP−2 i=1 nP−1 j=i+1 n P k=j+1 (pi− 1) (pj− 1) (pk− 1)

elements of the form Xai

i X

aj

j X

ak

k where 1 ≤ i < j < k ≤ n and for t = i, j, k, 1 ≤ at ≤ pt− 1; · · · ; 1 P i=1 2 P j=2 · · · Pn s=n

(pi− 1) (pj− 1) · · · (ps− 1) elements of the form X1a1X a2

2 · · · X an

n where 1 ≤ t ≤ n, 1 ≤ at

pt− 1.

Using the Reidemeister–Schreier method, after some calculations, we have the generators of H′(p1,· · · , pn)

as follows: There are nP−1 i=1 n P j=i+1

(pi− 1) (pj− 1) generators of the form [Xia, Xjb] where 1 ≤ i < j ≤ n and for

t = i, j, 1≤ at≤ pt− 1. There are 2 nP−2 i=1 nP−1 j=i+1 n P k=j+1

(pi− 1) (pj− 1) (pk− 1) generators of the form [Xiai, X aj j X ak k ] or [X ai i X aj j , X ak k ]

(for the difference, please see the place of the comma) where 1 ≤ i < j < k ≤ n and for t = i, j, k, 1≤ at≤ pt− 1.

If we continue similarly, then we find that there are

(n− 1) 1 X i=1 2 X j=2 · · · n X s=n (pi− 1) (pj− 1) · · · (ps− 1)

generators of the form [Xa1

1 , X a2 2 · · · Xnan] or [X a1 1 X a2 2 ,· · · , Xnan] or [X a1 1 X a2 2 · · · , Xnan] where 1 ≤ t ≤ n,

1≤ at≤ pt− 1. Indeed, from [20], the generators are

1 + p1p2· · · pn{−1 + n X i=1 (1 1 pi )}.

Also, using the Riemann–Hurwitz formula and the permutation method, we find the signature of H′(p1,· · · , pn)

as (1 + ((n− 1) − n P i=1 1 pi)· p1· p2· · · pn− p1·p2···pn lcm(p1,p2,··· ,pn) 2 ; ( p1·p2···pn lcm(p1,p2,··· ,pn))). 2

(4)

Example 2.2 Let us consider the generalized Hecke group H(2, 3, 4). Then we have the index |H(2, 3, 4) : H′(2, 3, 4)| =

24. Now, we set up a Schreier transversal Σ for H′(2, 3, 4) . Σ consists of I;

3 P i=1 (pi− 1) = 6 elements of the form X1, X2, X22, X3, X32, X33; 2 P i=1 3 P j=i+1

(pi− 1) (pj− 1) = 11 elements of the form X1X2, X1X22, X1X3,

X1X32, X1X33, X2X3, X2X32, X2X33, X22X3, X22X32, X22X33 and 1 P i=1 2 P j=2 3 P k=3 (pi− 1) (pj− 1) (pk− 1) = 6

elements of the form X1X2X3, X1X2X32, X1X2X33, X1X22X3, X1X22X 2

3, X1X22X 3

3. Using the Reidemeister–

Schreier method, we find the generators of H′(2, 3, 4) as follows:

2 P i=1 3 P j=i+1 (pi− 1) (pj− 1) = 11

genera-tors of the form [X1, X2] , [X1, X22] , [X1, X3] , [X1, X32] , [X1, X33] , [X2, X3] , [X2, X32] , [X2, X33] , [X22, X3] ,

[X22, X32] , [X22, X33]; 2 1 P i=1 2 P j=2 3 P k=3

(pi− 1) (pj− 1) (pk− 1) = 12 generators of the form [X1X2, X3], [X1X2, X32],

[X1X2, X33], [X1X22, X3], [X1X22, X32], [X1X22, X33] , [X1, X2X3], [X1, X2X32] , [X1, X2X33] , [X1, X22X3], [X1, X22X32],

[X1, X22X 3

3]. Finally, using the Riemann–Hurwitz formula, we find the signature of H′(2, 3, 4) as (11; (2)).

Now, we study the commutator subgroups H′(p1,· · · , pn) of the extended generalized Hecke groups

H(p1,· · · , pn) . To do this, firstly, we rename the generators Xi of the extended generalized Hecke group

H(p1,· · · , pn). Let s, t and u be the number of the generators Xi of order 2, of even order ≥ 4 and of odd

order ≥ 3 in H(p1,· · · , pn), respectively. Let us denote the generators of order 2 by A1, A2,· · · , As; generators

of even order ≥ 4 by B1, B2,· · · , Bt; and generators of odd order ≥ 3 by C1, C2,· · · , Cu. Also, let qk and rl

be the orders of the generators Bk and Cl, respectively, where 0≤ k ≤ t and 0 ≤ l ≤ u. Then, the extended

generalized Hecke group H(p1,· · · , pn) has a presentation

< Aj, Bk, Cl, R : A2j = B qk k = C rl l = R 2= I, RA j= AjR, RBk= Bk−1R, RCl= Cl−1R > .

Therefore, we can write as

H(p1,· · · , pn) = H(2, 2,| {z }· · · , 2 s times

, q1, q2,· · · , qt, r1, r2,· · · , ru)

Thus, we can give the following result:

Theorem 2.3 Let p1,· · · , pn be integers for n≥ 2 and pi≥ 2. Then

i) hH(p1,· · · , pn) : H′(p1,· · · , pn)

i

= 2s+t+1.

ii) The commutator subgroup H′(p1,· · · , pn) is a group of generators s P j=2 (j− 1) sj+ t P k=1 (2k− 1) kt+ s P j=1 t P k=1 (2k + j− 1) sj kt+ 2s+tu.

Proof i) The quotient group H(p1,· · · , pn)/H′(p1,· · · , pn) is the group obtained by adding the relations

(5)

group H(p1,· · · , pn)/H′(p1,· · · , pn) is < Aj, Bk, Cl, R : A2j = B qk k = C rl l = R 2= I, RA j= AjR, RBk = Bk−1R, RCl= Cl−1R , RBk = BkR, RCl= ClR > =< Aj, Bk, R : A2j= B qk k = C rl l = R 2= (A jR)2= (BkR)2= (ClR)2= I > .

From the relations RBk = Bk−1R ; RBk = BkR and RCl= Cl−1R; RCl= ClR , we find Bk2= Cl2 = I .

Also from the relations Bqk

k = C rl l = B 2 k = C 2 l = I , we have B 2

k = I and Cl= I since qk is even number and

rl is odd number. Thus, we get

H(p1,· · · , pn)/H (p1,· · · , pn) = < Aj, Bk, R : A2j = Bk2= R2= (AjR)2= (BkR)2= I > = C|2× · · · × C{z 2} s+t times × C2. (2.1)

Therefore, we find the index as h H(p1,· · · , pn) : H (p1,· · · , pn) i = 2s+t+1.

ii) Now, we can determine the Schreier transversal Σ. To do this, we use the set M = {A1,· · · , As,

B1,· · · , Bt}. It is clear that there are 2s+t − 1 subsets of M , except null set. Using the elements of

these subsets, we can obtain the elements of Σ. For example, if {A2, A3, A5, B2, B3} is a subset of M,

then A2A3A5B2B3 is an element of Σ, (since the quotient group is abelian, these elements can be

writ-ten as alphabetically and numerically ordered). Thus, we can obtain 2s+t− 1 elements in Σ. If we

mul-tiply these 2s+t − 1 elements by R (for example, A

2A3A5B2B3R) , then we have 2s+t − 1 new elements

of Σ . Also, the elements I and R are in Σ. Consequently there are 2s+t − 1 + 2s+t − 1 + 2 = 2s+t+1

elements in Σ . Notice that if s = t = 0 , then Σ consists of only the elements I and R. Using the Reidemeister-Schreier method, after required calculations, we get the generators of H′(p1,· · · , pn) as follows:

Notice that A−1j = Aj and B−1k ̸= Bk. If s ≥ 2, then there are

 s 2



generators of the form AdAeAdAe

where 1 ≤ d < e ≤ s; 2 · 

s 3



generators of the form AdAeAfAd(AeAf)−1 or AdAeAfAe(AdAf)−1;

· · · (s − 1) · 

s s



generators of the form A1A2· · · AsA1(A2· · · As)−1, or A1A2· · · AsA2(A1A3· · · As)−1, or

· · · or A1A2· · · AsAs−1(A1· · · As−2As)−1. If t ≥ 1, then there are 1 ·

 t 1



generators of the form B2 g where 1 ≤ g ≤ t; 3 ·  t 2 

generators of the form BgBhBgBh−1, or BgBhBg−1Bh−1 or BgB2hB−1g where

1 ≤ g < h ≤ t; 5 · 

t 3



generators of the form BgBhBmBg(BhBm)−1, or BgBhBmBg−1(BhBm)−1, or

BgBhBmBh(BgBm)−1, or BgBhBmBh−1(BgBm)−1, or BgBhBm2(BgBm)−1 where 1 ≤ g < h < m ≤ t; · · · , (2t − 1) ·  t t 

generators of the form B1B2· · · BtB1(B2· · · Yt)−1 or B1B2· · · BtB1−1(B2· · · Yt)−1 or

(6)

or B1B2· · · BtBt−1−1(B1· · · Bt−2Bt)−1 or B1B2· · · B2t(B1B2· · · Bt−1)−1. If s≥ 1 and t ≥ 1, then there are 2 ·  s 1   t 1 

generators of the form AdBgAdB−1g , or AdBg2Ad where 1≤ d ≤ s and 1 ≤ g ≤ t; 3·

 s 2   t 1  generators of the form AdAeBgAd(AeBg)−1 or AdAeBgAe(AdBg)−1 or AdAeBg2(AdAe)−1 where 1≤ d < e ≤ s

and 1 ≤ g ≤ t; 4 ·  s 1   t 2 

generators of the form AdBgBhAd(BgBh)−1 or AdBgBhBg(AdBh)−1 or

AdBgBhBg−1(AdBh)−1 or AdBgB2h(AdBg)−1 where 1≤ d ≤ s and 1 ≤ g < h ≤ t; · · · ; (2t+s−1)·  s s   t t  generators of the form

A1A2· · · AsB1B2· · · BtA1(A2· · · AsB1B2· · · Bt)−1 or A1A2· · · AsB1B2· · · BtA2(A1A3· · · AsB1B2· · · Bt)−1 or .. . A1A2· · · AsB1B2· · · BtAs(A1A2· · · As−1B1B2· · · Bt)−1 or A1A2· · · AsB1B2· · · BtB1(A1A2· · · AsB2· · · Bt)−1 or A1A2· · · AsB1B2· · · BtB1−1(A1A2· · · AsB2· · · Bt)−1 or A1A2· · · AsB1B2· · · BtB2(A1A2· · · AsB1B3· · · Bt)−1 or A1A2· · · AsB1B2· · · BtB−12 (A1A2· · · AsB1B3· · · Bt)−1 or .. . A1A2· · · AsB1B2· · · BtBt−1(A1A2· · · AsB1· · · Bt−2Bt)−1 or A1A2· · · AsB1B2· · · BtBt−1−1(A1A2· · · AsB1· · · Bt−2Bt)−1 or A1A2· · · AsB1B2· · · B2t(A1A2· · · AsB1· · · Bt−2Bt−1)−1.

Also there are u· 

s + t 0



generators of the form Cl where 1 ≤ l ≤ u; u ·

 s + t

1 

generators of the form AdClAd or BgClBg−1 where 1 ≤ d ≤ s, 1 ≤ g ≤ t and 1 ≤ l ≤ u; u ·

 s + t 2  generators of the form AdAeCl(AdAe)−1 or BgBhCl(BgBh)−1 or AdBgCl(AdBg)−1 where 1 ≤ d(< e) ≤ s, 1 ≤ g(< h) ≤ t and 1 ≤ l ≤ u; u ·  s + t 3 

generators of the form AdAeAfCl(AdAeAf)−1 or AdAeBgCl(AdAeBg)−1 or

AdBgBhCl(AdBgBh)−1 or BgBhBmCl(BgBhBm)−1 where 1≤ d(< e(< f)) ≤ s, 1 ≤ g(< h(< m)) ≤ t and

1 ≤ l ≤ u; · · · ; u · 

s + t s + t



generators of the form A1A2· · · AsB1B2· · · BtCl(A1A2· · · AsB1B2· · · Bt)−1

where 1≤ l ≤ u.

Also, using the Riemann–Hurwitz formula and permutation method, the signature of H′(p1,· · · , pn) is

       (1 + 2s+t−1(s+t2 −3); (qk/2)(2 s+t−1) , rl(2 s+t) ,∞(2s+t−1)), if s≥ 1 and t ≥ 1, (0; rl(2),∞), if s = 1 and t = 0, (0; (q1/2), rl(2),∞), if s = 0 and t = 1, (0; rl,∞), if s = 0 and t = 0, (2.2) where 0≤ k ≤ t and 0 ≤ l ≤ u. 2

Example 2.4 Let us consider the generalized Hecke group H(2, 2, 3, 4, 5). Since s = 2 , t = 1 and u = 2, we

(7)

Then the index is 16 and the Schreier transversal Σ is {A1, A2, B1, A1A2, A1B1, A2B1, A1A2B1,

A1R, A2R, B1R, A1A2R, A1B1R, A2B1R, A1A2B1R, I, R}. If we use the Reidemeister–Schreier method

and make the required calculations, then we get one generator of the form A1A2A1A2; one generator of

the form B2

1; four generators of the form A1B1A1B−11 , A1B21A1, A2B1A2B1−1, A2B12A2; three generators

of the form A1A2B1A1(A2B1)−1, A1A2B1A2(A1B1)−1, A1A2B12(A1A2)−1; two generators of the form C1,

C2; six generators of the form A1C1A1, A2C1A2, A1C2A1, A2C2A2, B1C1B1−1, B1C2B1−1; six generators

of the form A1A2C1(A1A2)−1, A1A2C2(A1A2)−1, A1B1C1(A1B1)−1, A1B1C2(A1B1)−1, A2B1C1(A2B1)−1,

A2B1C2(A2B1)−1 and two generators of the form A1A2B1C1(A1A2B1)−1, A1A2B1C2(A1A2B1)−1. Totally,

there are 25 generators of H′(2, 2, 3, 4, 5). Also, the signature of H′(2, 2, 3, 4, 5) is (1; 2(4), 3(8), 5(8),(4)) .

Example 2.5 Let us consider the generalized Hecke group H(5, 5, 7, 8). Since s = 0 , t = 1 and u = 3 , we take

the generators as B1, C1, C2, C3. Thus we have the relations B18= C15= C25= C37. Here the index is 4 . Then

we can determine the Schreier transversal Σ = {B1, B1R, I, R}. If we use the Reidemeister–Schreier method

and make the required calculations, then we find the generators of H′(5, 5, 7, 8) as one generator of the form B2

1; three generators of the form C1, C2, C3; and finally, three generators of the form B1C1B1−1, B1C2B1−1,

B1C2B1−1. Therefore, there are seven generators of H

(5, 5, 7, 8) . Also, we obtain the signature of H′(5, 5, 7, 8) as (0; 5(4), 7(2), 4,∞).

From Eq. (2.1), if s + t ≤ 1, then the commutator subgroup H′(p1,· · · , pn) is isomorphic to the free

product of some finite cyclic groups. Thus, we can study the second commutator subgroup H′′(p1,· · · , pn)

using Theorem 1.1:

Corollary 2.6 i) If s = 0 and t = 0 , then H′′(p1,· · · , pn)(∼= H′(p1,· · · , pn)) is a free group of rank

1 + r1· r2· · · ru{−1 + u P l=1 (1 1 rl)}.

ii) If s = 1 and t = 0 , then H′′(p1,· · · , pn) is a free group of rank 1 + r21· r22· · · r2u{−1 + 2 u

P

l=1

(1 1 rl)}.

iii) If s = 0 and t = 1 , then H′′(p1,· · · , pn) is a free group of rank 1 + (q1/2)r21· r22· · · ru2{− 2 q1+ 2 u P l=1 (1 1 rl)}. References

[1] Ates F, Cangül IN, Çetinalp EK, Çevik AS, Karpuz EG. On commutator and power subgroups of some Coxeter groups. Applied Mathematics and Information Sciences 2016; 10: 1-7.

[2] Ateş F, ÇevikAS. Knit products of some groups and their applications. Rendiconti del Seminario Matematico della Università di Padova 2009; 121: 1-11. doi: 10.4171/RSMUP/121-1

[3] Cangül IN, Bizim O. Commutator subgroups of Hecke groups. Bulletin of the Institute of Mathematics Academia Sinica 2002; 30 (4): 253-259.

[4] Cevik AS, Özgür NY, Şahin. The extended Hecke groups as semi-direct products and related results. International Journal of Applied Mathematics and Statistics 2008; 13 (8): 63-72.

(8)

[5] Demir B, Koruoğlu Ö, Sahin R. On normal subgroups of generalized Hecke groups. Analele Universitatii ”Ovidius” Constanta - Seria Matematica 2016; 24 (2): 169-184. doi: 10.1515/auom-2016-0035

[6] Demir B, Koruoğlu Ö, Sahin R. Conjugacy classes of extended generalized Hecke groups. Revista de la Unión Matemática Argentina 2016; 57 (1): 49-56.

[7] Hecke E. Über die bestimmung Dirichletscher reihen durch ihre funktionalgleichung. Mathematische Annalen 1936; 112: 664-699. doi: 10.1007/BF01565437

[8] Huang S. Generalized Hecke groups and Hecke polygons. Annales Academiæ Scientiarum Fennicæ Mathematica 1999; 24 (1): 187-214.

[9] Huang S. Realizability of torsion free subgroups with prescribed signatures in Fuchsian groups. Taiwanese Journal of Mathematics 2009; 13 (2A): 441-457. doi: 10.11650/twjm/1500405348

[10] Ikikardes S, Demircioglu ZS, Sahin R. Generalized Pell sequences in some principal congruence subgroups of the Hecke groups. Mathematical Reports 2016; 18 (68): 129-136.

[11] Ikikardes S, Koruoglu Ö, Sahin R. Power subgroups groups of some Hecke groups. Rocky Mountain Journal of Mathematics 2006; 36 (2): 497-508. doi: 10.1216/rmjm/1181069464

[12] Ikikardes S, Sahin R, Cangül IN. Principal congruence subgroups of the Hecke groups and related results. Bulletin of the Brazilian Mathematical Society 2009; 40 (4): 479-494. doi: 10.1007/s00574-009-0023-y

[13] Jones GA, Thornton JS. Automorphisms and congruence subgroups of the extended modular group. Journal of the London Mathematical Society 1986; 34 (2): 26-40. doi: 10.1112/jlms/s2-34.1.26

[14] Kaymak S, Demir B, Koruoğlu Ö, Sahin R. Commutator subgroups of generalized Hecke and extended gener-alized Hecke groups. Analele Universitatii ”Ovidius” Constanta - Seria Matematica 2018; 26 (1): 159-168. doi: 10.2478/auom-2018-0010

[15] Koruoğlu Ö, Meral T, Sahin R. Commutator subgroups of the power subgroups of generalized Hecke groups. Algebra and Discrete Mathematics 2019; 27 (2): 280-291.

[16] Kulkarni RS. A new proof and an extension of a theorem of Millington on the modular group. Bulletin of the London Mathematical Society 1985; 17: 458-462. doi: 10.1112/blms/17.5.458

[17] Lang CL, Lang ML. The commutator subgroup and the index formula of the Hecke group H5. Journal of Group

Theory 2015; 18 (1): 75-92. doi: 10.1515/jgth-2014-0040

[18] Lehner J. Uniqueness of a class of Fuchsian groups. Illinois Journal of Mathematics 1975; 19: 308-315. doi: 10.1215/ijm/1256050818

[19] Newman M. The structure of some subgroups of the modular group, Illinois Journal of Mathematics 1962; 6: 480-487. doi: 10.1215/ijm/1255632506

[20] Nielsen J. Kommutatorgruppen für das freie produkt von zyklischen gruppen (Danish). Mathematisk Tidsskrift 1948; B: 49-56.

[21] Sahin R, Bizim O. Some subgroups of the extended Hecke groups H ( λq) . Acta Mathematica Scientia 2003; 23 (4): 497-502. doi: 10.1016/S0252-9602(17)30493-9

[22] Sahin R, Bizim O, Cangül IN. Commutator subgroups of the extended Hecke groups. Czechoslovak Mathematical Journal 2004; 54 (1): 253-259. doi: 10.1023/B:CMAJ.0000027265.81403.8d

[23] Sahin R, Ikikardes S. Squares of congruence subgroups of the extended modular group. Miskolc Mathematical Notes 2013; 14 (3): 1031-1035. doi: 10.18514/MMN.2013.780

[24] Sahin R, Ikikardes S, Koruoğlu Ö. On the power subgroups of the extended modular group Γ . Turkish Journal of Mathematics 2004; 28 (2): 143-151.

(9)

[25] Şahin R, İkikardes S, Koruoğlu Ö. Some normal subgroups of the extended Hecke groups H(λp) . Rocky Mountain Journal of Mathematics 2006; 36 (3): 1033-1048. doi: 10.1216/rmjm/1181069444

[26] Sahin R, Koruoğlu Ö, Ikikardes S. On the extended Hecke groups H ( λ5). Algebra Colloquium 2006; 13 (1): 17-23.

doi: 10.1142/S1005386706000046

[27] Sarıgedik Z, Ikikardes S, Sahin, R. Power subgroups of the extended Hecke groups. Miskolc Mathematical Notes 2015; 16 (1): 483-490. doi: 10.18514/MMN.2015.1214

[28] Singerman D. Subgroups of Fuschian groups and finite permutation groups. Bulletin of the London Mathematical Society 1970; 2: 319-323. doi: 10.1112/blms/2.3.319

[29] Tsanov VV. Triangle groups, automorphic forms, and torus knots. L’Enseignement Mathématique 2013; 59 (1-2): 73-113. doi: 10.4171/LEM/59-1-3

Referanslar

Benzer Belgeler

Turkey ratified the European Convention on Human Rights and Fundamental Freedoms in 1954, recognized the jurisdiction of the European Commission of Human Rights in 1987, approved the

Since the acceleration of the heart activity is much faster than breathing the second derivative of the PIR sensor signal monitoring the chest of the subject is used to estimate

Cambridge Journal of Regions, Economy &amp; Society, 3(1), 11–25. Cities and consumption. Spatial resilience and urban planning: Addressing the interdependence of urban retail

Tokat İli Merkez İlçede Toptancı Halindeki Komisyoncuların Yeni Hal Yasası Hakkındaki Görüşleri kurallarına uygun olarak ve serbest rekabet.. sistemi içinde

Bu katıldığınız çalışma bilimsel bir araştırma olup, araştırmanın adı ‘14-16 Yaş Grubu Erkek Basketbolcularda Uygulanan 8 Haftalık Direnç

Bu çerçevede Saruhan (Manisa) Sancağı’nda 1912 seçimlerinde İttihat ve Terakki Fırkası’ndan mebus adayı olan Yusuf Rıza Bey, genelde yaşanan siyasal kavga

Bu çalışmada amaç Dikkat eksikliği hiperaktivite bozukluğu tanılı ergenlerde yeme davranışı ve yaşam kalitesi ilişkisinin değerlendirilmesidir. Bu

Bu konuyu içeren bir çalışmada; otizm ve DEHB tanılı hastaların bulunduğu grupta vitamin B12 düzeyleri kontrol grubuna göre anlamlı düşük saptanmış ancak