• Sonuç bulunamadı

Density search calculations for the siliside fuels

N/A
N/A
Protected

Academic year: 2021

Share "Density search calculations for the siliside fuels"

Copied!
23
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

TURKISH ATOMIC ENERGY AUTHORITY

ÇEKMECE NUCLEAR RESEARCH AND TRAINING CENTER

IS T A N B U L - T U R K E Y

Technical Report No: 37

DENSITY SEARCH CALCULATIONS

FOR THE SILISIDE FUELS

Mehmet Hulusi TURGUT

Nuclear Engineering Departm ent

December 1986

(2)

TURKISH ATOMIC ENERGY AUTHORITY

ÇEKMECE NUCLEAR RESEARCH AND TRAINING CENTER

IS T A N B U L ■ T U R K E Y

Technical

Report

No: 37

DENSITY SEARCH CALCULATIONS

FOR THE SILISIDE FUELS

Mehmet Hulusi TURGUT

Nuclear Engineering Department

December 1986

(3)

A B B R E V I A T I O N S

HEU : Highly Enriched Uranium Fuel (ca, 90% U-235)

LEU : Low Enriched Uranium Fuel (less than 20% U-235)

BOC : Beginning of Cycle

MOC : Middle of Cycle

EOC : End of Cycle

PPF : Power Peaking Factor

FE23 : Fuel Element at core position 23

CE55 : Control Element at core position 55

IE64 : Irradiation Element at core position 64

SR-1 : Safety Rod-1

CR-1 : Control Rod-1

(4)

Ö Z E T S İ L İ S L İ Y A K I T L A R İÇ İ N Y O Ğ U N L U K T E S B İ T İ H E S A P L A R I T R - 2 r e a k t ö r ü n ü n " K a l p D ö n ü ş t ü r m e " h e s a p l a r ı n d a k u l l a ­ n ı l m a k ü z e r e bir d e n g e k oru h e s a p m o d e l i g e l i ş t i r i l m i ş t i r . M o d e l iki b o y u t l u h e s a p l a r ı n b a ş l a n g ı c ı n d a , d ü ş ü n ü l e n y akıt y e r d e ğ i ş t i r m e ş e k l i n e göre, t a h m i n i yanma o r a n l a r ı n ı n v e r i l ­ m e s i e s a s ı n a d a y a n m a k t a d ı r . Bu s u r e t l e d e n g e d u r u m u n a y a k l a - ş m c a y a k a d a r y a p ı l a c a k i t e r a s y o n sayı s ı a z a l m a k t a ve d o l a y ı ­ s ı y l a b i l g i s a y a r z a m a n ı n d a n bü y ü k ö l ç ü d e (% 70 ka d a r ) k a z a n ç s a ğ l a m a k t a d ı r . M o d e l e b i r d e n fazla yakıt y e r d e ğ i ş t i r me ş e m a ­ s ı n ı n v e r i l e b i l m e s i ayrı bir a v a n t a j ı n ı t e ş k i l e t m e k t e d i r . Bu m o d e l k u l l a n ı l a r a k T R - 2 r e a k t ö r ü için a l ı n m a s ı d ü ­ ş ü n ü l e n d ü ş ü k z e n g i n l i k l i s i l i s l i y a k ı t l a r ı n y o ğ u n l u ğ u a r a ş ­ t ı r ı l m ı ş t ı r . B u n u n için k r i t e r o l a r a k y ü k s e k z e n g i n l i k t e k i y a k ı t l a r a yakın bir p e r f o r m a n s s a ğ l a n m a s ı e sas a l ı n m ı ş t ı r . D e n g e k o r u n a i l â v e e d i l e c e k Be y a n s ı t ı c ı l a r ı n k â l b ö mrü ve a t ı l a n y a k ı t l a r d a k i y anma o r a n ı n a olan t e s i r l e r i i n c e l e n m i ş ­ tir.

S U M M A R Y

D E N S I T Y S E A R C H C A L C U L A T I O N S F O R T H E S I L I S I D E F U E L S

An e q u i l i b r i u m core c a l c u l a t i o n a l m o d e l has been d e v e l o p e d and used for the " C o r e C o n v e r s i o n " c a l c u l a t i o n s of the T R - 2 re a c t o r . The m o d e l is based on a b u r n u p g u e s s at the b e g i n n i n g of the 2D c a l c u l a t i o n s a c c o r d i n g to the fuel s h u f f l i n g s t r a t e g y . T h i s r e d u c e s the n u m b e r of i t e r a t i o n s u n t i l the core r e a c h e s to the e q u i l i b r i u m s i t u a t i o n and so the c o m p u t e r time d e c r e a s e s c o n s i d e r a b l y (up to 70%). A n o t h e r a d v a n t a g e of this m o d e l is the p o s s i b i l i t y of g i v i n g m o r e than one fuel s h u f f l i n g s c hemes.

T h i s new m o d e l is used for the d e n s i t y s e a r c h c a l c u l a ­ t i o n s of the LEU s i l i s i d e fuel w h i c h will h ave s i m i l a r p e r ­ f o r m a n c e s as the HEU fuel. The e f f e c t of a d d i t i o n a l Be r e f l e c t o r s on the c ore l i f e t i m e and the d i s c h a r g e b u r n u p l e v e l s h ave been d i s c u s s e d .

(5)

CONTENTS

Page SUMMARY

1. INTRODUCTION 1

2. CALCULATIONAL TOOLS 2

3. EQUILIBRIUM CORE PHILOSOPHY 2

A. CALCULATIONS 4

5. CONCLUSIONS 8

REFERENCES 10

TABLES

Table 1 : Group structure used in 2D calculations H

Table 2 : Fuel shuffling paths for TR-2 studies H

Table 3 : The average deviations in the thermal fluxes 1^

Table 4 : PPF's for different cases 1^

FIGURES

Fig. 1 : X-Y picture of the equilibrium core 13

Fig. 2 : Burnup distribution (%) at the EOC for HEU core 1^

Fig. 3 : Burnup distributions (%) at the EOC for LEU cores 1^

Fig. 4 : EOC excess reactivities for different fuel types 15

Fig. 5 : EOC excess reactivities for Case-2 15

Fig. 6 : EOC excess reactivities for Case-3 16

Fig. 7 : EOC excess reactivities versus U density 16

Fig. 8 : Thermal flux distributions for Case-1 17

Fig. 9 : Thermal flux distributions for Case-2 17

Fig. 10: Thermal flux distributions for Case-3 16

(6)

1. I N T R O D U C T I O N

Th e aim of this s t udy is to find the o p t i m u m d e n s i t y and the d e s i g n of the LEU fuel for the T R - 2 r e a c t o r . F r o m the p r e v i o u s c a l c u l a t i o n s ( l ) and the W o r l d ’s t e n d e n c y ( 2 , 3 , 4 , 5) t o w a r d s the s i l i s i d e fuel, it is c o n c l u d e d that s i l i s i d e w o u l d be the best o p t i o n for the T R-2 r e a c t o r . The ma i n a d v a n t a g e of the s i l i s i d e fuel is the p o s s i b i l i t y of g i v i n g s i m i l a r p e r f o r m a n c e s as the HEU fuels w i t h o u t any m o d i f i c a ­ t i o n in the fuel e l e m e n t d esign. T h i s m e a n s m i n i m u m p r o b l e m s w i l l a r r i s e in t h e r m o h y d r a u l i c s and s a f e t y b e c a u s e of the c h a n g e of fuels.

Our c o n s t r a i n t s for the c o n v e r s i o n of the T R - 2 r e a c t o r f r o m the use of HEU fuel to LEU fuel are:

1. Sa m e c ore c o n f i g u r a t i o n in both cases, 2. No c h a n g e in the fuel e l e m e n t design, 3. S ame fuel s h u f f l i n g s chemes,

4. N e u t r o n i c and t h e r m a l - h y d r a u l i c p a r a m e t e r c h a n g e s (i.e., c h a n g e s in s a f e t y m a r g i n s ) must be w i t h i n a c c e p t a b l e limits.

O b j e c t i v e s of this c o n v e r s i o n s t udy is:

1. To a c h i e v e the same core l i f e t i m e as the HE U fuel,

2. EOC k - e f f e c t i v e va l u e must not be less than the

v a l u e o b t a i n e d in HEU case,

3. To r e a c h the m a x i m u m p e r m i s s a b l e b u r n u p l e v e l s in the d i s c h a r g e d fuel e l e m e n t s ,

4. M i n i m u m p o s s i b l e d e c r e a s e in the t h e r m a l flux w h i c h f u l f i l s the a b o v e r e q u i r e m e n t s .

(7)

?

2. C A L C U L A T I O N AL T O O L S

T w o d i m e n s i o n a l d i f f u s i o n - d e p l e t i o n c o d e G E R E B U S ( 6 ) is used for the c a l c u l a t i o n s . 5 g r o u p c r o s s - s e c t i o n s w h i c h a r e g e n e r a t e d at A N L for H E U and L E U f u e l s are used in the c a l c u l a t i o n s . T h e g r o u p s t r u c t u r e is g i v e n in T a b l e 1. T h r e e

3

d i f f e r e n t fuel d e n s i t i e s , 3.5, 4.0, 4.5 g r / c m , h a v e b e e n us e d in the c r o s s - s e c t i o n g e n e r a t i o n for the U ^ S i2 fuel. T h i s is the d e n s i t y r a n g e for the LE U fuel w h i c h w i l l f u l f i l our r e q u i r e m e n t s a c c o r d i n g to the p r e v i o u s c a l c u l a t i o n s . M O C c r o s s - s e c t i o n s are used for all c a s e s s t u d i e d w h i c h g i v e r e a s o n a b l e v a l u e s for t his t ype of c o m p a r i s o n c a l c u l a t i o n s . S c a t t e r i n g is a s s u m e d to be on l y to one l o w e r g r o u p s i n c e the g r o u p s are q u i t e broad. T h e s a m e e x t r a p o l a t i o n l e n g t h is us e d in all c a s e s , s i n c e it is not v ery s e n s i t i v e to e i t h e r e n r i c h m e n t or u r a n i u m l o a d i n g for the p l a t e - t y p e c o r e s . In L E U fuel it w i l l be a l i t t l e bit h i g h e r than H E U w h i c h w i l l c a u s e a b o u t 2 - 3 % i n c r e a s e in the e x c e s s r e a c t i v i t y . S i n c e we d o n ’t k n o w the e x a c t v a l u e for LE U fuel, the o n e for H E U is used to be on the s a f e r side.

3. E Q U I L I B R I U M C O R E P H I L O S O P H Y

A f t e r the f i r s t few l o a d i n g s of the r e a c t o r s , it is a d v a n t a g e o u s to go to an e q u i l i b r i u m c o r e s i n c e m o s t of the f uel e l e m e n t s r e a c h to c e r t a i n b u r n u p l e v e l s and b e c a u s e of t h a t it is no m o r e p o s s i b l e to a c h i e v e the d e s i r e d c y c l e length by r e f u e l l i n g a few e l e m e n t s in the core. An e q u i l i b ­ r i u m c o r e is d e f i n e d as the c o r e that is r e a c h e d a f t e r i n ­ f i n i t e t ime of l o a d i n g s of the r e a c t o r a c c o r d i n g to a f i x e d s h u f f l i n g s c h e m e . By t h i s way it is p o s s i b l e to fi n d an o p t i ­ m u m l o a d i n g p a t t e r n t hat g i v e s the d e s i r e d c y c l e l e n g t h and d i s c h a r g e b u r n u p level.

(8)

3 T h e s a m e c o r e l o a d i n g and th e s a m e s h u f f l i n g s c h e m e w h i c h is g i v e n in the d e s i g n s t u d i e s ( 7 ) h a v e b e e n u s e d in the c a l c u l a t i o n s . In F i g u r e 1 the 2D r e p r e s e n t a t i o n of th e T R - 2 r e a c t o r is s h o w n . S i d e p l a t e s h a v e b e e n d e f i n e d as s e p a r a t e r e g i o n s in t h i s m o d e l . Al l r o d s a s s u m e d to be o u t in the c a l c u l a t i o n s s i n c e t h i s is a c o m p a r i s o n s t u d y b e t w e e n H E U and LE U . T h e o u t - i n s h u f f l i n g p a t t e r n for the s t a n d a r t f u e l e l e m e n t s is g i v e n in T a b l e 2. A f r e s h f u e l e l e m e n t is p l a c e d at p o s i t i o n F E 3 6 in the B O C and a f u l l y - b u r n e d f u e l e l e m e n t is d i s c h a r g e d f r o m p o s i t i o n F E 5 3 at the E O C . T h e b u r n c y c l e n u m b e r a s s o c i a t e d w i t h a p a r t i c u l a r p o s i t i o n r e p r e s e n t s th e n u m b e r of c y c l e s th a t an e l e m e n t at t h a t p o s i t i o n h a s b e e n b u r n e d at t h e EOC. F o r the c o n t r o l e l e m e n t s the s h u f f l i n g p a t t e r n F r e s h C E 5 5 C E 3 A C E 4 3 + C E 6 3 D i s c h a r g e is u s e d . C o n t r o l e l e m e n t s a r e s h u f f l e d a f t e r e v e r y A c y c l e , t h a t m e a n s o n e f r e s h c o n t r o l e l e m e n t r e m a i n s A c y c l e s in e a c h p o s i t i o n and a f t e r 16 c y c l e s t h e y are d i s c h a r g e d . A l t h o u g h t h e s t a n d a r t f u e l e l e m e n t s r e m a i n 17 c y c l e s in the c o r e b e f o r e t h e y a r e d i s c h a r g e d , t h e y h a v e n e a r l y t h e s a m e burttUp l e v e l w i t h the c o n t r o l e l e m e n t s , s i n c e the c o n t r o l e l e m e n t s a l w a y s r e m a i n in the i n n e r p o s i t i o n s w h e r e the n e u t r o n f l u x is h i g h . F o r the i r r a d i a t i o n e l e m e n t it is a s s u m e d t h a t 3 0 % b u r n e d e l e m e n t is p l a c e d in the b e g i n n i n g of e v e r y c y c l e . By t h i s w a y of h a n d l i n g of the i r r a d i a t i o n e l e m e n t , th e c a l c u l a ­ t i o n t i m e s h o r t e n e d e x t e n s i v e l y . T h i s t y p e of e q u i l i b r i u m c o r e c a l c u l a t i o n s a r e too m u c h t i m e c o n s u m i n g . F o r e x a m p l e , one s u c h c a l c u l a t i o n for t h e T R - 2 r e a c t o r t a k e s a b o u t 1 8 - 2 0 h o u r s c o m p u t e r t i m e s t a r t i n g f r o m the f r e s h l o a d i n g u n t i l it r e a c h e s to e q u i l i b ­ r i u m d i s t r i b u t i o n , in V A X - 1 1 / 7 5 0 w h i c h is a v a i l a b l e at our c e n t e r . T h i s is very i n c o v e n i e n t for our c o m p u t e r , s i n c e m a n y r e s t a r t s a r e n e c e s s a r y , w h i c h w i l l c a u s e a d d i t i o n a l l o s s of

(9)

4

c o m p u t e r and data r e a d j u s t m e n t time. In o rder to s o l v e this p r o b l e m an a c c e l e r a t i o n t e c h n i q u e has been i n t r o d u c e d to the G E R E B U S code. In this m e t h o d a b u r n u p guess has be e n m a d e a c c o r d i n g to the s h u f f l i n g schemes. It is s u f f i c i e n t to give only the n u m b e r d e n s i t y d i s t r i b u t i o n of the U - 2 3 5 i s o t o p e , si n c e it is the d o m i n a t i n g i s o t o p e in our case. Th e n u m b e r d e n s i t i e s of the fresh fuel can be used for the o t h e r i s o ­ topes. Af t e r the first few b u r n u p st e p s all the i s o t o p e s r e a c h to their n o rmal c o n c e n t r a t i o n values. If one has no idea of the b u r n u p d i s t r i b u t i o n of the e q u i l i b r i u m core, a G E R E B U S run for one cy c l e can be made, s t a r t i n g f r o m the fr e s h l o a d i n g and the a v e r a g e b u r n u p level of the co r e d u r i n g one c y c l e can be found. Th i s value, then, can be used in the e s t i m a t i o n of the b u r n u p l e v e l s of e ach e l e m e n t , by m u l t i ­ p l y i n g the n u m b e r of c y c l e s that each e l e m e n t has be e n r e m a i n e d in the core. The b u r n u p l e v e l s are p r o p o r t i o n a l to the cy c l e l e n g t h and the e n r i c h m e n t , so a small p r o g r a m has been w r i t t e n to find the r e a s o n a b l e g u e s s e s for the c a s e s that we have studied. By u s i n g this d e s c r i b e d m e t h o d the c o m p u t a t i o n time r e d u c e s a b out three times, w h i c h e n a b l e s us one run in one day.

4. C A L C U L A T I O N S

The d e t a i l e d core g e o m e t r y w h i c h is used in the c a l c u ­ l a t i o n s is given in F i g u r e 1. The w a t e r r e f l e c t o r t h i c k n e s s was c h o s e n to be 20 cm . 64 x 5 5 m esh p o i n t s w e r e taken. Th e e x t r a p o l a t i o n l e n g t h t a ken to be 7. 7 4 6 cm.

F i r s t HEU p e r f o r m a n c e for e q u i l i b r i u m co r e is i n ­ v e s t i g a t e d . The BOC e x c e s s r e a c t i v i t y is found to be 7273 pern and af t e r 150 M W D 1s o p e r a t i o n EOC e x c e s s r e a c t i v i t y is 50 3 5 pcm. T h e b u r n u p level in the d i s c h a r g e d fuel e l e m e n t is 5 0 . 8 5 % (the limit of the fuel f a b r i c a t o r s is 50%). T h e b u r n u p d i s ­ t r i b u t i o n for the EOC is given in F i g u r e 2. The b u r n u p l e v e l

(10)

5

in th e d i s c h a r g e d c o n t r o l e l e m e n t is h i g h e r t h e n the s t a n d a r t e l e m e n t in t h i s run, but in r e a l i t y it w i l l be l o w e r th a n t h i s v a l u e , s i n c e all r o d s a s s u m e d to be out in t h i s c a l c u l a ­ ti o n . If we s i m u l a t e the CR 2 i n s e r t i o n , t h e n the f lux in p o s i t i o n C E 5 5 w i l l be d e c r e a s e d and the b u r n u p w i l l be l e s s for th e c o n t r o l e l e m e n t in t h i s p o s i t i o n d u r i n g 4 c y c l e s . T h i s w i l l c a u s e a f e w p e r c e n t d e c r e a s e in the b u r n u p l e v e l of th e d i s c h a r g e d c o n t r o l e l e m e n t .

T h e e x c e s s r e a c t i v i t i e s for the L E U f u e l s at the B O C a r e 4 0 1 1 , 64 7 2 , 8 2 4 2 pern and at t h e E O C ar e 2126, 4937, 6 9 3 3 p e m for t h e d e n s i t i e s 3.5, 4.0, 4 . 5 g r / c m , r e s p e c t i v e l y . It c a n be s e e n t h a t the l o s s of r e a c t i v i t y for 15 0 MWDs o p e ­ r a t i o n of th e T R - 2 r e a c t o r d e c r e a s e s in L E U fuel c o m p a r e d to H E U f u e l and t h i s d e c r e a s e is p r o p o r t i o n a l to the fu e l d e n s i t y . T h i s c a n be e x p e c t e d s i n c e the U - 2 3 5 c o n t e n t w i l l be h i g h e r for h i g h e r d e n s i t i e s , so the b u r n u p w i l l be less. T h i s c a n a l s o be s e e n in th e b u r n u p l e v e l s of the d i s c h a r ­ ged L E U f u e l s : 4 5 . 5 5 % for t h e f u e l d e n s i t y 3.5 g r / c m ^ , 4 0 . 0 8 %

^ 3

for 4 . 0 g r / c m , 3 5 . 7 8 % for 4 . 5 g r / c m . T h e b u r n u p d i s t r i b u ­ t i o n s for t h e s e t h r e e c a s e s a r e g i v e n t o g e t h e r in F i g u r e 3.

S i n c e the c y c l e l e n g t h a n d the E O C e x c e s s r e a c t i v i t y a r e the m a i n o b j e c t i v e s , it is no t n e c e s s a r y to m a t c h the B O C e x c e s s r e a c t i v i t y of the H E U fuel.

F r o m t h i s f i r s t s e r i e s of c a l c u l a t i o n s it is s e e n that w i t h t h e L E U f u e l d e n s i t y of 3. 5 g r / c m , it is not p o s s i b l e to m a t c h the s a m e c y c l e l e n g t h and th e s a m e E O C e x c e s s r e a c ­ t i v i t y w i t h th e H E U fuel, w i t h o u t any c h a n g e in the c o r e d e s i g n . 4 . 0 g r / c m d e n s i t y s e e m s to f u l f i l ou r r e q u i r e m e n t s a n d w i t h h i g h e r d e n s i t i e s l o n g e r c y c l e l e n g t h s can be e x p e c t e d . S i n c e we w o u l d a l s o l i k e to r e a c h the l i m i t i n g d i s ­ c h a r g e b u r n u p l e v e l for the L E U fuel, a fe w m o r e c a l c u l a t i o n s h a v e b e e n m a d e for l o n g e r c y c l e l e n g t h s . In F i g u r e 4 the EOC e x c e s s r e a c t i v i t i e s and the d i s c h c a r g e b u r n u p l e v e l s of H E U a n d L E U f u e l s h a v e b e e n c o m p a r e d for d i f f e r e n t c y c l e l e n g t h s .

(11)

6

O n e run has been made for 3.5 g r/cm , since the EOC e x c e s s r e a c t i v i t y is m uch lower then HEU even for 150 M W D1s .

In or d e r to see the e f f e c t of a d d i t i o n a l Be r e f l e c t o r s 2 d i f f e r e n t s e r i e s of c a l c u l a t i o n s have been c a r r i e d out. First, the r e p l a c e m e n t of A1 blocks, w h i c h are d e s i g n e d for i r r a d i a t i o n p u r p o s e s and not used in the small c o r e up to now, w i t h Be b l o c k s is c o n s i d e r e d . T his i n c r e a s e s the B O C e x c e s s r e a c t i v i t y in HEU core 961 pern, in LEU co r e 908, 848,

3

810 pem for the fuel d e n s i t i e s 3.5, 4.0, 4.5 g r / c m , r e s p e c ­ t ively. S i m i l a r c u r v e s like F i g u r e 4 have been o b t a i n e d for EOC excess r e a c t i v i t i e s . T h i s is s h own in F i g u r e 5 w i t h the d i s c h a r g e b u r n u p levels.

A n o t h e r trial is m ade by 4 a d d i t i o n a l Be r e f l e c t o r s

to the core p o s i t i o n s 37, 47, 57, and 67 in a d d i t i o n to

r e p l a c e m e n t of A1 blocks. The a d d i t i o n a l Be r e f l e c t o r s i n ­ c r e a s e d the e x c e s s r e a c t i v i t i e s for HEU and L E U c o r e s by d i f f e r e n t a m o u n t s as e x p e c t e d and e n a b l e d us to go to h i g h e r c y c l e l e n g t h s and to the d e s i r e d d i s c h a r g e b u r n u p l e v e l s (See F i g u r e 6 ). T h i s is e s p e c i a l l y i m p o r t a n t in LEU fuel, s i n c e the d i s c h a r g e b u r n u p l e v e l s for 150 MWDs o p e r a t i o n are q u i t e lo w e r than the limit g iven by the fuel f a b r i c a t o r s .

The v a r i a t i o n of EOC e x c e s s r e a c t i v i t i e s for 150 M W D s o p e r a t i o n a g a i n s t the LEU fuel d e n s i t y are g iven t o g e t h e r for

the 3 ca s e s (2 Al, 2 Be, 6 Be) in F i g u r e 7. No t e that the

c u r v e s for HEU are plotted for fixed fuel d e n s i t y (P = 0 . 6 9 2 2 g r / c m ^ ) in or d e r to see for w h i c h d e n s i t y and for w h i c h ca s e we can r e a c h the HEU p e r f o r m a n c e . It can be s een that the

3 3

fuel d e n s i t i e s 4.0 g r / c m for c a s e -1 , 3.84 g r / c m for case-2 3

and 3.4 g r / c m for c a s e - 3 can f u lfil our o b j e c t i v e s .

T h e t h e r m a l flux d i s t r i b u t i o n s , in the core and in the s u r r o u n d i n g w a t e r boxes, for HEU and LEU f u els are g i v e n in

F i g u r e s 8 , 9, 10 for the 3 cases. It can be seen that the

t h e r m a l flux d e c r e a s e s in g o i n g from HEU c ore to LE U c o r e

(12)

7

and t h i s d e c r e a s e is m o r e for h i g h e r fuel d e n s i t i e s . So it is p r e f e r a b l e to c h o o s e the l o w e s t p o s s i b l e d e n s i t y for the L E U fuel w h i c h will f u l f i l our r e q u i r e m e n t s . T h e d e c r e a s e s ** in t h e r m a l f lux are gi v e n in F i g u r e 1 1 for the c a s e -1 . For the o t h e r c a s e s s i m i l a r d e v i a t i o n s are o b s e r v e d . T h e decreases in t h e r m a l flux is f o r t u n a t e l y m u c h l ess in the w a t e r b o x e s t h e n the core. T h i s is a f a v o r a b l e c o n d i t i o n s i n c e the i r ­ r a d i a t i o n s t a k e p l a c e in wa t e r boxes. T h e a v e r a g e d e v i a t i o n s in the c o r e and in the w a t e r b o x e s are g i v e n t o g e t h e r in T a b l e 3 for the 3 cases.

T h e P P F s w h i c h are i m p o r t a n t f r o m the s a f e t y p o i n t of view, are c a l c u l a t e d for the d i f f e r e n t c a s e s and g i v e n t o ­ g e t h e r in T a b l e 4. T h e PPFs d e c r e a s e w h e n we c h a n g e H E U fuel to L E U and they decrease m o r e w i t h the i n c r e a s e in the fuel d e n s i t y for the same c y c l e length. T h e d e c r e a s e , in r e a l i t y , is not b e c a u s e of the c h a n g e of the fuel or the d e n s i t y , but b e c a u s e of the d e c r e a s e in the d i s c h a r g e b u r n u p l e v e l w h e n we c h a n g e to L E U fuel. For the same d i s c h a r g e b u r n u p we h a v e a l m o s t the s ame P P F for b oth H E U and L E U fuels. P P F s increase w h e n the d i f f e r e n c e in the b u r n u p l e v e l s b e t w e e n the l o a d e d and the d i s c h a r g e d fuel is h i g h e r . It a l s o d e p e n d s on the s h u f f l i n g p a t t e r n and the c ore c o n f i g u r a t i o n . T h e a d d i t i o n of Be b l o c k s a l s o r e d u c e s the P P F s since t hey c a u s e a f l a t ­ t e n i n g in the f orm of the flux d i s t r i b u t i o n . F o r the t h i r d c a s e the i n c r e a s e s in P P F s are because of the 30 M W D ' s a d d i ­ t i o n a l o p e r a t i o n of the r e a c t o r w h i c h c a u s e an i n c r e a s e in the d i s c h a r g e b u r n u p levels.

T h i s p r e l i m i n a r y c a l c u l a t i o n s s h o w us the o p t i m u m d e n s i t i e s for LE U fuel lies b e t w e e n 3 . 7 - 4 . 2 g r / c m for the T R - 2 r e a c t o r . A n o t h e r c r i t e r i a to c h o o s e the o p t i m u m d e n s i t y for the L E U fuel is the price. T h i s will d e p e n d on t h e fuel f a b r i c a t o r s and the d e m a n d for a s p e c i f i c d e s i g n . So it w i l l be b e n e f i c i a l to c h o o s e a d e n s i t y in t his range, w h i c h the f u e l f a b r i c a t o r s a l r e a d y p r o d u c e s . A f t e r h a v i n g the p r i c e s for d i f f e r e n t fuel d e n s i t i e s it is p o s s i b l e to m a k e a n o t h e r

set of optimisation calculations depending on TL/MWD.

, HEU , LEU

9 ~ 9

(13)

8

5. C O N C L U S I O N S

The r e s u l t s of these p r e l i m i n a r y c a l c u l a t i o n s can be s u m m a r i s e d as follows:

1. S i n c e this is a c o m p a r i s o n study b e t w e e n HEU and LEU fuels, the r e p r e s e n t a t i o n of the e q u i l i b r i u m c o r e e x p l a i n e d in this r e p o r t is s u f f i c i e n t . But for the f inal c a l c u l a t i o n s it is b e t t e r to s i m u l a t e the c o n t r o l rod i n s e r t i o n and r e p r e s e n t a t i o n of the i r r a d i a t i o n e l e m e n t m u s t be m o d i f i e d .

2 . Th e s h u f f l i n g s c h e m e s for s t a n d a r t and c o n t r o l e l e m e n t s used in this s t udy are qu i t e good, s i n c e P P F fs are low and the d i s c h a r g e b u r n u p l e v e l s for s t a n d a r t and c o n t r o l e l e m e n t s are a l m o s t the same.

3. T h e excess r e a c t i v i t y n e e d e d at BOC for a c e r t a i n c y c l e l e n g t h is less in LE U core than HEU and it d e c r e a s e s by i n c r e a s i n g the fuel densi t y . So it is not n e c e s s a r y to m a t c h the BOC excess r e a c t i v i t y of the HEU core to a c h i e v e the same c y c l e length.

4. T h e d i s c h a r g e b u r n u p l e v e l s d e c r e a s e by the increase in the fuel d e n s i t y for the same c y c l e length, but t hey remain c o n s t a n t for the same fuel type even if one p l a c e s a d d i t i o n a l Be r e f l e c t o r s to the core.

5. T h e b u r n u p l e v e l s in the d i s c h a r g e d L E U f u e l s can be i n c r e a s e d a c c o r d i n g to the f a b r i c a t i o n l i m its. T h i s can be a c h i e v e d by a d d i t i o n a l Be r e f l e c t o r s w i t h o u t any c h a n g e in the core design.

6 . R e p l a c e m e n t of w a t e r bo x e s a n d / o r A1 b l o c k s w i t h Be b l o c k s i n c r e a s e s the c y c l e l e n g t h a n d / o r it a l l o w s us to go to l o wer fuel d e n s i t i e s for the same c y c l e l e n gth.

(14)

9

7. T h e d e c r e a s e in the t h e r m a l f lux i n c r e a s e s w i t h the i n c r e a s e of the f u e l d e n s i t y , so it is p r e f e r a b l e to c h o o s e t h e f u e l d e n s i t y as low as p o s s i b l e w h i c h w i l l f u l f i l our r e q u i r e m e n t s •

8 . F o r t u n a t e l y , the d e c r e a s e in t h e r m a l f l u x is m u c h l e s s in the w a t e r b o x e s t h a n the core.

9. A d d i t i o n a l Be r e f l e c t o r s d o e s n ’t c h a n g e the a v e r a g e d e v i a t i o n s in the t h e r m a l f l u x e s for all the c a s e s .

10. T h i s p r e l i m i n a r y c a l c u l a t i o n s s h o w e d t h a t the d e n s i t y of the L E U fu e l w h i c h g i v e s a b o u t the s a m e performance

3

as the H E U f u e l is a b o u t 4.0 g r / c m w i t h o u t any c h a n g e in the c o r e . 11. A n o t h e r c r i t e r i a to c h o o s e the o p t i m u m d e n s i t y for t h e L E U f u e l is the price. It w i l l be b e n e f i c i a l to c h o o s e 3 a d e n s i t y in the r a n g e 3 . 7 - 4. 2 g r / c m w h i c h the fu e l f a b r i ­ c a t o r s a l r e a d y p r o d u c e s .

12. P P F ’s d o e s not d e p e n d m u c h on the f u e l t y p e or the d e n s i t y of the L E U fuel. It d e p e n d s on the d i s c h a r g e b u r n u p l e v e l , f u e l s h u f f l i n g p a t t e r n and the c o r e c o n f i g u r a t i o n .

13. A d d i t i o n of Be b l o c k s d e c r e a s e s the P P F ’s. In c o n t r a r y , l o n g e r c y c l e l e n g t h s c a u s e i n c r e a s e in P P F ’s.

14. D u e to no c h a n g e in the fuel e l e m e n t d e s i g n t h e r e w i l l a r r i s e no a d d i t i o n a l s a f e t y p r o b l e m s .

(15)

10 R E F E R E N C E S (1) T . A l d e m i r , M . H . T urgut, M . M . B r e t s c h e r , J .L .S n e l g r o v e , "A F e a s i b i l i t y S t u d y C o n c e r n i n g the C o n v e r s i o n of the T R- 2 R e a c t o r f rom U s i n g H i g h l y E n r i c h e d U r a n i u m to L i g h t E n r i c h e d U r a n i u m " , Ç N A E M - R - 2 1 7 (1982). (2) A . T r a v e l l i , "The S t a t u s of the R E R T R P r o g r a m : O v e r v i e w , P r o g r e s s and Plans", ANL, U.S . A . , I n t e r n a t i o n a l M e e t i n g on R e d u c e d E n r i c h m e n t for R e s e a r c h and T e s t R e a c t o r s , O c t o b e r 14-16, 1985, P etten, The N e t h e r l a n d s .

(3) J .L .S n e l g r o v e , G . L . H o f m a n , and G .L .C o p e l a n d , " I r r a d i a t i o n P e r f o r m a n c e of R e d u c e d - E n r i c h m e n t F u e l s T e s t e d U n d e r the U.S. R E R T R P r o g r a m " , ANL, U .S.A., I n t e r n a t i o n a l M e e t i n g on R e d u c e d E n r i c h m e n t for R e s e a r c h and T e s t R e a c t o r s , O c t o b e r 14-16, 1985, P etten, The N e t h e r l a n d s . (4) M . H r o v a t , H . W . H a s s e l , and E . W e h n e r , " S t a t u s of Development and I r r a d i a t i o n P e r f o r m a n c e of A d v a n c e d P r o l i f e r a t i o n R e s i s t a n t MTR F uel at N U K E M " , N U K E M GmbH, W . G e r m a n y , I n t e r n a t i o n a l M e e t i n g on R e d u c e d E n r i c h m e n t for R e s e a r c h and T e s t R e a c t o r s , O c t o b e r 14-16, 1985, Pe t t e n , N e t h e r ­ l a n d s . (5) Y . F a n j a s , P h . D e w e z , "MTR F uel at C . E . R . C . A . : S t a t u s of D e v e l o p m e n t - O c t o b e r 1985", C . E . R . C . A . , F r a n c e , I n t e r n a ­ t i o n a l M e e t i n g on R e d u c e d E n r i c h m e n t for R e s e a r c h and T e s t R e a c t o r s , O c t o b e r 14-16, 1985, P etten, N e t h e r l a n d s . (6 ) M . C o n s o l e , A . D a n e r i , and E . S a l i n a , "EREB U S : A M u l t i g r o u p D i f f u s i o n D e p l e t i o n P r o g r a m in Two D i m e n s i o n s " , F N - E- 8 8 (FIAT, 1967). (7) Ş.Erk, et al., " P r o j e c t du R e a c t e u r TR-2 5MW de Ç e k m e c e " , C e n t r e d ' E t u d e s de G r e n o b l e R e p o r t C E N - G P i - S E R E G 10 1 2

(16)

11

Ta b l e Is Group s t ructure used in 2D c a l c u l a t i o n s

Gr o u p No Upper Energy of the Group. {eV}

1 l . O O O O x l O7

2 8 . 2 0 8 5 x l 0 5

3 5 . 5 3 0 9 x l 0 3

4 1. 8 5 5 0

5 6 . 2 4 9 3 x l 0 _1

T a b l e 2: Fuel S h u f f l i n g Paths for TR-2 S t u d i e s (Refer to Fig. -1 for Fuel E l e m e n t P o s itions) Burn Cycle (Stage) Nu m b e r s Fuel Elem e n t P o s i t i o n " O u t s i d e - I n " 1 FE36 2 FE25 3 FE7 5 4 F E6 6 5 FE56 6 FE46 7 FE7 3 8 FE74 9 FE24 1 0 FE23 1 1 FE35 1 2 FE65 13 FE33 14 FE45 15 FE44 16 FE54 17 FE53

(17)

12

T a b l e 3: The a v e r a g e d e v i a t i o n s in the t h e r m a l f l u x e s

Average deviations in the thermal fluxes(%)

OPERATION [m w d]

In the core In water boxes

CASE LEU 3.5 gr/cm3 LEU 4.0 gr/cm3 LEU 4.5 gr/cm3 LEU 3.5 gr/cm3 LEU 4.0 gr/cm3 LEU 4.5 gr/cm3 2 A1 150 1 1 . 6 23.3 32.0 0.7 2.9 4.4 2 Be 150 1 1 . 6 23.4 32.1 0 . 8 3.0 4.6 6 Be 180 14.4 26.5 35.3 2 . 1 4.9 6 . 8 T a b l e 4: P P F ' s for d i f f e r e n t c a s e s CASE OPERATION [m w d] HEU LEU 3.5 gr/cm3 LEU 3 4.0 gr/cm LEU 4.5 gr/cm3 2 A1 150 1.972 1.829 1.773 1.734 2 Be 150 1.962 1.820 1.765 1.727 6 Be 180 2.155 1.938 1.859 1.806

(18)

N u m b e r o f m « sh p o in ts 13

(19)

14

m

W7777

/ W . t W . ^

ft////

/ / / / » * / /

W777/

^ fcWt.V’V 4 2 2 / p i B U t V ' . ^ 2 2 / ! P f ^ B l r o W / 73 2.1 3 3 u 2 9 . 0 3 n 3 7 . 9 0

kl.

4? 55 5#.*5 ci 5 6 3 3

Vt

3 2.6 0 «•«f 44. <o sw 47.*1 Pf

Z^-H

74 2J.S9 ts

M

»5 3 2 .1 2 45 4 1 ' H 55 Cl 3 4 .W 75 3 . 2 6

m

3 .4 2 w 1&.92 56 1 s.6 o <4 1 2 .1 9 P i X f c U c V V

Figure 2: Burnup distribution (%) at the EOC for HEU core

y/M

/ *«- - y / H.cW

'/

72 7

/ B t y / V w ic . / [/ / B e / / / , BWc-ln

/

//»<•

//

/////,

1 1 *7

77/7

' 7

“ -• • S 3 2 ^ 1 0

.

or'

3 3 .9 3 2 9 6 4 26 .31 “’ « . 3 1 _ l l i i 45.55" 4o.og 35.79 ‘ *5*.S8 *19.14 16.50 1 4 .5 4 111 2 3 .8 7 2 0 .4 7 1 2 .2 6 2 4 . *9 — 22î_âİL *»w 3 9 .9 2 3 4 .9 3 3 1 . 0 S4 4 2 .8 8 3 7 . 6 2 3 3 .5 3 w 3 3 . 6 5 33 .17 32.31 ’ 4 2 1 .4 9 I t . 5 8 I 6 .4 0 15 5 .7 5 4 .9 5 4 .9 2 55 2 8 .V 0 2 5 .0 1 2 2 .1 4 45 3 6 . 9 3 3 2 .1 6 2 3 . 5 7 551S.7S 1J.4-3 _ M L c$ 3 1 .2 9 2 7 .2 2 Z 4 .1 3 »» 8 .3 0 7 .1 1 6 .2 4 s s l w â o fr 2 .S 9 2 . 2 5 <•< . 1 6 .9 3 4 4 -5 5 1 2 .7 * 56 1 3 9 9 1 2 .0 1 1 0 .5 5 ai « . 9 4 9 - 3 9 8 . 2 5 P I X b u cV \ 1) LEU 3.5 gr/cm3 2) LEU 4.0 gr/cm3 3) LEU 4.5 gr/cm3

(20)

R

O

-E

O

C

C

P

C

M

3

R

O

-E

O

C

CPCM3

15

Figure 4: EOC excess reactivities for different fuel

*) Discharge burnup

types

*) Discharge burnup

(21)

R

O

-E

O

C

C

P

CM

3

16 -*) Discharge burnup

Figure 6: EOC excess reactivities for Case-3

U D E N S I T Y [

c m 3

J

(22)

17 a. 290" 2. 071 2. 3 0 6 ’1 De Be De De De De 2. 124 2. 2İB '' 2. 0 5 0 a. ı s ı ' 1' 2. 0 0 8 3. 6 7 0 2. 60 7 3. 710 4. 6 4 3 4. 604 4. 150 2. 404 3 2 0 5 3. 65 4 2. 376 3. 2 0 0 3. 9 5 6 3 0 3 0 3. 5 3 ? 2. 192 3. 33 7 3. 4 0 5 2. 06 7 2. 76 7 3. 414 3. 20 7 3. 05 5 1. 9 3 0 3. 2 0 6 3. 3 5 0 1. 0 3 6 2. 4 3 ? 3. 0 1 0 2 0 7 9 2. 6 9 3 1. 732 3. 1 0 ? 4. 3 0 5 2. 7 7 5 3. 8 ? 3 4. 764 4. 9 6 0 6. 0 6 6 2. 6 3 0 3. 9 5 2 4. 34 4 2. 461 3. 3 5 6 3. 9 5 0 4. 145 5. 744 2. 3 9 0 3. 9 8 3 4. 121 2. 123 2. 07 7 3. 35 4 3. 527 5. 24 4 2. 0 0 0 3. 804 3. 95 5 1. B73 2. 524 2. 9 1 4 3. 0 7 5 4. 861 1. 0 6 3 3. 6 7 2 3. 95 7 2. 52 0 3. 4 4 2 4. 137 3. 7 9 3 3. 27 7 2. 35 0 3 6 0 2 3. 9 1 0 2. 304 2. 9 5 7 3. 464 3. 36 6 2. 0 5 5 2. 173 3. 61 6 3. 701 2. 01 1 2. 514 2. 9 2 2 2. 90 2 2. 4 3 ? 1. 90 4 3. 43 7 3. 544 1 . 77 4 2. 193 2. 53 2 2. 5 5 ? 2. 136 1. 704 3. 30 7 2. 94 7 2. 6 0 7 3. 0 9 9 3. 051 2. 601 2. 6 9 2 2. 937 A! 2. 4 5 ? 2. 7 5 0 2. 7 5 3 2. 37 2 A1 2. 71 6 2. 7 0 6 2. 141 2 361 2. 3 0 0 2. 0 6 2 2. 592 2. 67 9 1. 90 7 2. 0 7 ? 2. 107 1. 8 3 6 2. 505 1. 271 3. 0 1 6 4. 2 0 0 5. 190 5. 0 0 0 4. 0 3 9 2. 777 1. 160 1. 2 7 2 2. 9 7 0 4. 2 2 0 5. 120 5. 021 4. 0 0 8 2. 79 0 1. 176 1. 21 2 2. 0 3 7 3. 7 6 0 4. 00 4 4. 7 1 0 3. 7 7 3 2. 65 4 1. 127 1. 169 2. 72 3 3. 77 4 4. 577 4. 501 3. 60 5 2. 55 8 1. 09 4 1) HEU 2) LEU 3.5 gr/crn3 3) LEU 4.0 gr/cm3 4) LEU 4.5 gr/cm3

Figure 8: Thermal flux distributions for Case-1

2. 236^ 2. 256*. 2. i 7 2 v 2. 10 0* Be Be De De De De 2. 0 2 6 2. 0 8 2 2. 0 1 0 1 . 9 7 0 3 6 1 2 2. 64 3 3. 64 5 4. 52 6 4 501 4. 061 2. 367 3. 2 3 ? 3. 6 0 2 2. 330 3 147 3. 06 6 3. 756 3. 466 2. 1 5 ? 3. 29 5 3. 4 3 ? 2. 0 3 5 ? . 716 3. 3 3 ? 3. 21 0 2. 99 4 1 . 9 0 2 3 160 3 515 1. 0 0 7 2. 39 4 2. 94 4 2. 0 1 ? 2. 64 0 1. 70 6 3. 0 7 2 4. 410 a. 8 0 9 3. 0 7 0 4. 7 1 0 4. 90 5 6. 0 3 3 2. 64 7 3. 9 0 2 4. 372 a. 4 7 3 3. 3 4 0 3. 9 1 3 4. 100 5. 716 2. 404 4. 0 1 5 4. J 40 P. 134 2. 06 4 3. 31 7 3. 47 0 5. 2 2 0 2. 100 3. 034 3 9 0 2 1. 8 0 2 2. 51 3 2. 0 0 2 3. 0 4 3 4 04 1 1 . 0 73 3. 701 4. 102 2. 544 3. 500 4. 150 3. G05 3. 3 4 0 2. 30 5 3 741 4. 0 5 7 2. 3 1 6 3. 01 1 3. 40 0 3. 37 9 2. 90 6 2. 100 3. 7 5 0 3. 031 2. 0 1 7 560 2. 9 3 6 2. 91 4 2. 40 2 1. 91 2 3 561 3 6 6 5 1 7 9 5 2. 231 2. 543 2. 570 2. 172 1. 706 3. 424 2. 94 3 2. 73 3 3. 162 3. 10 ? 2. 6 4 0 2. 69 6 2. 91 3 Be 2. 4 9 2 2. 0 0 5 2. 0 0 5 2. 4 04 De 2. 700 2 75 0 2. 166 2. 4 0 ? 2. 425 2. 00 6 2. 56 3 2. 63 3 X. 924 2. 121 2. 146 1. 0 5 2 2. 463 1. ? 9 6 3. 0 3 0 4. 4 7 3 5. 3 2 0 5. 194 4. 21 7 2. 004 1. 106 1. 291 3. 0 0 3 4. 40 7 5. 2 4 2 5. 130 4. 102 2. 7 7 ? 1 176 1. 22 4 2. 0 2 ? 4. 135 4. 921 4. 0 3 0 3. 926 2. 6 4 ? 1. 141 1. 170 2. 70 4 3. 9 3 0 4. 6 0 ? 4. 6 0 0 3. 7 5 ? 2. 543 1. 102 1) HEU 2) LEU 3.5 gr/cm3 3) LEU 4.0 gr/cm3 4) LEU 4.5 gr/cm3

(23)

18 7 ^ 7 a. o b<« 3. 005* 1. 947*) B?

I

f t p Be B e Be Be 1 . 0 7 4 1. 931 1 . 0 7 2 1. 0 2 0 3. 39 5 5. 6 U 3. 7 3 2 4. 63 6 4. 73 9 4. 1 72 2 3 6 0 3 0 6 5 3. ^79 5. 2£}7 -3 1 19 3. 03 6 3 001 3 461 2. 107 3. 1 1 1 3. 2 2 2 1. 97 6 2. 6 6 0 3. 2 0 6 3. 221 2. 96 5 1 0 4 3 2. 905 3. 105 1. 74 6 2. 3 3 7 2. 0 0 0 2. 0 0 0 2. 590 1 . 6 4 5 2. 091 4. 31 0 2. ^35 4. 0 9 0 5. 100 5. 4 12 6. 106 2. 76 5 3 92 7 4. 5 4 0 2. 50 5 3. 4 10 4. 1 16 4. 329 5. 69 5 2 44 1 3. 92 / 4. 00 9 2. 139 2. 901 3. 441 3. 63 5 5. 160 2 111 3 732 3. 041 1. 0 7 5 2. 52 7 2. 96 2 3. 140 4. 77 3 1. 0 70 3. 592 A. 221 *9. 73 9 4. 0 4 0 4. 9 5 3 4. 310 3. 061 2. 6 0 9 3. 0 0 0 A. I P B 2. 4*;:? 3. 331 3. 95 4 3. 72 3 3. 2 3 0 2. 33 7 3 0 5 0 3 074 2. JOB P. 795 3. 2 0 5 3. 175 2. 72 0 2. 021 3. 63 0 3. <73 1 . 0 * 6 7. 41 5 2. 01 7 2. 70 0 2. 35 9 1. 79 3 3. 47 5 3. 2 6 2 3. 2 2 5 3. 0 0 7 3. 79 0 3. 20 7 3 014 3. 179 Be 2. 0 6 3 3. 3 0 3 3. 291 2. 0 1 5 Be 2. 971 2. 9 7 8 2. 4 50 2. 771 2. 00 2 2. 40 0 2. 77 6 2. 0 3 7 2. 167 2. 42 9 2. 453 2. 110 2. 67 5 1. 569 3 e e o 3. 6 3 0 1. 44 5 1 . 53 5 3. 7 4 5 Be Be Be Be 3. 531 1. 43 2 1. 44 3 3. J)8? 3. 2 9 5 1 . 3 5 3 1. 300 3. 2 ? 8 3. 131 1. 3 0 0 1) HEU 2) LEU 3.5 gr/cm3 3) LEU 4.0 gr/cm3 4) LEU 4.5 gr/cm3

Figure 10: Thermal flux distributions for Case-3

- 0 . 70 7 1 2 3 3. 136?> 6. 079'1 Be Be Be Be Be Be - 2. 56 9 0. 6 1 0 3. 0 4 2 0. 431 5. 0 2 7 9. 51 0 11. 567 23. 0 0 2 31. 6 7 9 13. 67 7 25. 55 7 3 4 . 3 0 1 1 4 . 7 9 0 26. 47 5 35. 183 16. 63 0 20. 601 37. 45 9 14. 07 0 26. 534 35. 244 0. 034 17. 72 3 27. 767 - 1 . 562 2. 39 9 5 37 6 0. 9 3 3 6. 0 2 5 7. 0 0 6 11. 7 2 3 24. 0 43 32. 97 4 13. 7 7 2 26. 107 35. 167 16. 9 2 5 29. 6 0 2 30. 0 2 5 16. 43 7 2 8 . 9 0 0 30. 0 0 2 5. 31 7 13. 560 19. 0 6 2 7. 143 20. 6 2 0 27. 100 - 0 70 4 3. 75 5 7. 0 9 0 0. 9 9 6 6. 457 1 0 . 4 4 5 0. 563 20. 106 20. DOG 14. 0 7 6 26. 7 6 2 36. 3 0 2 16. 2 7 2 27. 371 30. 00 7 11. 2 4 3 23. 495 32. 534 12. 0 0 7 25. 576 34. 03 7 7. 00 7 17. 241 2 7. 73 3 - 0 . 40 0 4 504 0. 102 0. >424 5. 517 9. 140 A1 0. 461 20. 2 7 0 29. 0 2 7 11. 2 5 7 23. 7 0 7 32. 9 0 7 9. 7 4 8 21. 907 30. 9 5 2 0. 0 1 0 20. 67 5 27. 41 2 A 1 - 0 . 8 7 5 3. 703 6. 9 3 9 - 0 . 0 5 5 4. 6 0 0 8. 0 0 0 0. 62 7 5. 761 9. 7 4 0 1. 3 7 7 7. 467 11. 0 2 3 1. 51 0 7. 50 5 11. 94 6 Î . 163 7. 129 11. 40 5 0. 77 2 6. 573 10. 74 0 - 0 . 4 43 4. 457 7. 0 7 6 - 1 . 3 0 0 2. 0 3 6 5. 74 0 1) LEU 3.5 gr/cm3 2) LEU 4.0 gr/cm3 3) LEU 4.5 gr/cm3

Referanslar

Benzer Belgeler

1-3 The European Paediatric Association-Union of National European Paediatric Societies and Associations (EPA/UNEPSA), through the working group on social pediatrics, supported by

The national interests and driving forces behind the EU member states, the main variations in the perspectives among key EU member states in the defense and security field, the

Abstract— We consider precoder and artificial noise (AN) design for multi-antenna wiretap channels under the finite- alphabet input assumption. We assume that the transmitter has

Çalışma sonucu, ahlaki değerlere uygun İKY’nin hem bireysel hem de örgütsel performans üzerinde olumlu etkisi olduğu, çalışma ilişkileri- ni insanileştirdiği

Geleneksel bir depo ortamında sipariĢ toplama problemi, bir tur veya gruba ait olan sipariĢlerin içerisinde bulunan parçaların depolandığı noktalardan alınırken

Research on public opinion has recently sought to reassess what we know about the consequences of religion for democracy by distinguishing among various aspects of individual

Sekiz hafta sonunda, tretinoin daha çok noninflamatuvar lezyonlarda, eritromisin inflamatuvar lezyonlarda daha etkili bulundu; etkinlik ve yan etkiler bakımından aralarında

Bulgular: Bu çalışmada da hem fiziksel hem cinsel şiddete maruz kalan bireylerde travma sonrası stres belirti şiddeti ile somatizasyon düzeyleri arasında anlamlı derecede