• Sonuç bulunamadı

Başlık: ON A NEW SEQUENCE SPACE DEFINED BY ORLICZ FUNCTIONSYazar(lar):KHAN, Vakeel A. Cilt: 57 Sayı: 2 Sayfa: 25-33 DOI: 10.1501/Commua1_0000000181 Yayın Tarihi: 2008 PDF

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: ON A NEW SEQUENCE SPACE DEFINED BY ORLICZ FUNCTIONSYazar(lar):KHAN, Vakeel A. Cilt: 57 Sayı: 2 Sayfa: 25-33 DOI: 10.1501/Commua1_0000000181 Yayın Tarihi: 2008 PDF"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

IS S N 1 3 0 3 — 5 9 9 1

ON A NEW SEQUENCE SPACE DEFINED BY ORLICZ FUNCTIONS

VAKEEL A. KHAN

Abstract. The sequence space EYwas introduced and studied by Mursaleen

[9]. In this paper we extendEY toEY(P> s> u) and study some properties

and inclusion relations on this space.

1. Introduction

Let o4 and f denote the Banach spaces of bounded and convergent sequences { = ({n)4n=1 respectively. Let  be an injection of the set of positive integers L

Q into itself having no finite orbits and W be the operator defined on o4 by W(({q)4q=1) = ({(q))4q=1.

A positive linear functional! , with||!|| = 1 , is called a  - mean or an invariant mean if!({) = !(W {) for all { 5 o4.

A sequence{ is said to be  - convergent , denoted by { 5 Y , if!({) takes the same value, called  lim {, for all - means !. We have (see Schaefer [14])

Y= ( {= ({q) : 4 X p=1 wp>q({) = O uniformly in n> O =   lim { ) > where forp 0, q A 0 wp>q({) = {q+ {(q)+ · · · + {p(q) p+ 1 > and w1>q= 0=

wherep(q) denotes the m th iterate of  at q. In particular, if  is the translation, a  - mean is often called a Banach limit and Y reduces to f , the set of almost

Received by the editors Nov. 01, 2007; Accepted: Sept. 05, 2008. 2000 Mathematics Subject Classification. Primary 40F05, 40C05, 46A45. Key words and phrases. Invariant mean, Paranorm, Orlicz function, Solid space .

c

°2008 A nkara U niversity

(2)

- convergent sequences (see Lorentz [5]). Subsequently invariant means have been studied by Ahmad and Mursaleen [1] , Mursaleen [8], Raimi [12] and many others. The concept of paranorm is closely related to linear metric spaces. It is a gener-alization of that of absolute value. Let[ be a linear space. A function j : [ $ LU is called paranorm, if

[P1] j({)  0> for all { 5 [> [P2] j({) = j({)> for all { 5 [>

[P3] j({ + |)  j({) + j(|)> for all {> | 5 [>

[P4] If(q) is a sequence of scalars with q$ (q $ 4) and ({q) is a sequence of vectors withj({q {) $ 0 (q $ 4)> then j(q{q {) $ 0 (q $ 4)= A paranormj for which j({) = 0 implies { = 0 is called a total paranorm on [, and the pair([> j) is called a totally paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (cf. [15, Theorem 10.4.2, p. 183]).

A map P : LU $ [0> +4] is said to be an Orlicz function if P is even, convex, left continuous onUL+, continuous at zero, P(0) = 0 and P(x) $ 4 as x $ 4. If P takes value zero only at zero we will write P A0 and if P takes only finite values we will writeP ? 4. [2,3,6,7,10,13].

W.Orlicz [11] used the idea of orlicz function to construct the space (OP) . Lindendstrauss and Tzafriri [4] used the idea of Orlicz function to define orlicz sequence space cP := ( { 5 $: 4 X n=1 P μ |{n|  ¶ ? 4 for some  A0 )

in more detail . cP is a Banach space with the norm ||{|| := inf{ A 0 : 4 X n=1 P μ |{n|  ¶ 1}

The spaceoP is closely related to the space os , which is an Orlicz sequence space withP({) = {s i ru1  s ? 4=

The42 - condition is equivalent to

P(O{)  NOP({)> for all values of {  0> and for O A 1= An Orlicz functionP can always be represented in the following integral form

P({) = Z {

0 (w)gw>

where  is known as the kernel of P, is right dierentiable for w  0> (0) = 0> (w) A 0>  is non-decreasing and (w) $ 4 as w $ 4.Note that an Orlicz function

(3)

satisfies the inequality

P({)  P({) for all  with 0 ?  ? 1=

LetH be a sequence space . Then H is called

(i) A sequence spaceH is said to be symmetric if({q) 5 H implies ({(q)) 5 H, where(q) is a permutation of the elements of the elements of LQ.

(ii) Solid (or normal), if (n{n) 5 H, whenever ({n) 5 H for all sequences of scalars (n) with |n|  1 for all n 5 LQ.

Lemma 1.1. . A sequence space H is solid implies H is monotone. Mursaleen [9] defined the sequence space

EY= ( { 5 o4: X p |!p>q({)| ? 4> uniformly in n ) > where !p>q({) = wp>q({)  wp1>q({) assuming that wp>q({) = 0> for m = 1=

A straightforward calculation shows that

!p>q({) = ; A A ? A A = 1 p(p+1) p P m=1m({ m(q) {m1(q)) (p  1) {q> (p = 0)

Note that for any sequence {> | and scalar  we have

(4)

2. Main Results.

LetP be an Orlicz function, s= (sp) be any sequence of strictly positive real numbers and u 0. Now we define the sequence space as follows :

EY(P> s> u) = ; ? = {= ({n) : 4 P p=1 1 pu h P³|!p>q({)|  ´isp ? 4> uniformly in n and for some A0

< @ >= ForP({) = { we get EY(s> u) = ( {= ({n) : 4 X p=1 1 pu|!p>q({)| sp ? 4> uniformly in n ) = Forsp= 1, for all p, we get

EY(P> u) = ; ? = {= ({n) : 4 P p=1 1 pu h P³|!p>q({)|  ´i ? 4> uniformly in n and for some A0

< @ >= Foru= 0 we get EY(P> s) = ; ? = {= ({n) : 4 P p=1 h P³|!p>q({)|  ´isp ? 4> uniformly in n and for some A0

< @ >= ForP({) = { and u = 0 we get

EY(s) = ( {= ({n) : 4 X p=1 |!p>q({)|sp ? 4> uniformly in n ) = Forsp= 1, for all p and u = 0 we get

EY(P) = ; ? = {= ({n) : 4 P p=1 h P³|!p>q({)|  ´i ? 4> u 0> uniformly in n and for some A0

< @ >= ForP({) = {, sp= 1, for all p, and u = 0 we get

EY = ( {= ({n) : 4 X p=1 |!p>q({)| ? 4> uniformly in n ) =

Theorem 2.1. The sequence space EY(P> s> u) is a linear space over the field LF of complex numbers.

(5)

Proof. . Let {> | 5 EY(P> s> u) and >  5 LF. Then there exist positive numbers 1 and2such that

4 X p=1 1 pu  Pμ|!p>q({)| 1 ¶¸sp ? 4 and 4 X p=1 1 pu  Pμ|!p>q(|)| 2 ¶¸sp ? 4> uniformly in n=

Define 3= max(2||1>2||2). Since P is nondecreasing and convex we have 4 X p=1 1 pu  Pμ|!p>q({) + !p>q(|)| 3 ¶¸sp  4 X p=1 1 pu  Pμ|!p>q({)| 3 + |!p>q(|)| 3 ¶¸sp  4 X p=1 1 pu 1 2  P μ! p>q({) 1 ¶ + P μ! p>q(|) 2 ¶¸ ? 4> uniformly in n= This proves thatEY(P> s> u) is a linear space over the field LF of complex numbers.

¤ Theorem 2.2. For any Orlicz function P and a bounded sequence s = (sp) of strictly positive real numbers, EY(P> s> u) is a paranormed(need not be total paranormed) space with

j({) = inf q1 ; ? = sq N : à 4 X p=1 1 pu  Pμ|!p>q({)|  ¶¸sp! 1 N 1> uniformly in n < @ >= whereN= max(1> sup sp).

Proof. It is clear thatj({) = j({). Since P(0) = 0, we get infnsqN

o

= 0> for { = 0= By using Theorem 1, for=  = 1> we get

j({ + |)  j({) + j(|)=

For the continuity of scalar multiplication let o 6= 0 be any complex number. Then by the definition we have

j(o{) = inf q1 ; ? = sq N : à 4 X p=1 1 pu  Pμ|!p>q(o{)|  ¶¸sp!N1 1> uniformly in n < @ >

(6)

j(o{) = inf q1 ; ? = (|o|v) sq N : μP4 p=1 1 pu h P³|!p>q(o{)| v|o| ´isp¶ 1 N 1> uniformly in n < @ > where v=|o|. Since|o|sqmax(1> |o|K), we have

j(o{)  max(1> |o|K) inf q1 ; ? = vsqN : μP4 p=1 1 pu h P³|!p>q({)| v ´isp¶ 1 N 1> uniformly in n < @ > = max(1> |o|K)j({)

and thereforej(o{) converges to zero when j({) converges to zero in EY(P> s> u) . ¤ Now let{ be fixed element in EY(P> s> u) . There exists  A 0 such that j({) = inf q1 ; ? = sq N : à 4 X p=1 1 pu  Pμ|!p>q({)|  ¶¸sp!N1 1> uniformly in n < @ >= Now j(o{) = inf q1 ; ? = sq N : à 4 X p=1 1 pu  Pμ|!p>q(o{)|  ¶¸sp!N1 1> uniformly in n < @ >$0> aso $ 0=

This completes the proof.

Theorem 2.3. Suppose that 0 ? sp wp? 4 for each p 5 LQ and u 0. Then (l) EY(P> s)  EY(P> w)>

(ll) EY(P)  EY(P> u).

Proof. . [i] Suppose that { 5 EYh (P> s). This implies that P³|!l>q({)|



´isp

1for su!ciently large values of l , say l  p0for some fixed p05 LQ . Since P is non decreasing, we have

4 X p=p0  Pμ|!l>q({)|  ¶¸wp  4 X p=p0  Pμ|!l>q({)|  ¶¸sp ? 4= Hence { 5 EY(P> w).

The proof of [ii] is trivial.

(7)

The following result is a consequence of the above result.

Corollary 1. If 0 ? sp1 for each p , then EY(P> s)  EY(P). Ifsp1 for all p , then EY(P)  EY(P> s).

Theorem 2.4. . The sequence space EY(P> s> u) is solid. Proof. Let{ 5 EY(P> s> u). This implies that

4 X p=1 pu  Pμ|!n>q({)|  ¶¸sp ? 4=

Let(p) be sequence of scalars such that |p|  1 for all p 5 LQ. Then the result follows from the following inequality

4 X p=1 pu  Pμ|p!n>q({)|  ¶¸sp  4 X p=1 pu  Pμ|!n>q({)|  ¶¸sp ? 4= Hence{ 5 EY(P> s> u) for all sequences of scalars (p) with |p|  1 for all p 5 L

Q whenever { 5 EY(P> s> u).

¤ From Theorem 4 and Lemma we have :

Corollary 2. . The sequence space EY(P> s> u) is monotone.

Theorem 2.5. . Let P1, P2 be Orlicz functions satisfying 42 - condition and u> u1> u20. Then we have

(l) If u A 1 then EY(P1> s> u)  EY(P0P1> s> u), (ll) EY(P1> s> u) _ EY(P2> s> u)  EY(P1+ P2> s> u), (lll) If u1 u2 thenEY(P> s> u1)  EY(P> s> u2).

Proof. [i] SinceP is continuous at 0 from right , for  A 0 there exists 0 ?  ? 1 such that0  f   implies P(f) ? . If we define

L1= ½ p 5 LQ : P1μ|!p>q({)|  ¶   for some  A0 ¾ >

(8)

L2= ½ p 5 LQ : P1μ|!p>q({)|  ¶ A  for some  A0 ¾ > then , whenP1 ³|! p>q({)|  ´ A  we get P μ P1μ|!p>q({)|  ¶¶ {2P(1)@}P1μ|!p>q({)|  ¶ = Hence for { 5 EY(P1> s> u) and u A 1

4 P p=1p uhP0P 1 ³|! p>q({)|  ´isp = P p5L1 puhP0P 1 ³|! p>q({)|  ´isp + P p5L2 puhP0P 1 ³|! p>q({)|  ´isp  P p5L1 pu[]sp + P p5L2 puh{2P(1)@}P 1 ³|! p>q({)|  ´isp  max(k> K) P4 p=1p u + max¡{2P(1)@}k>{2P(1)@}K¢ (where 0 ? k = inf sp sp K= sup

p sp? 4)=

[ii] The proof follows from the following inequality pu  (P1+ P2)μ|!p>q({)| ¶¸sp  Fpu  P1μ|!p>q({)| ¶¸sp +Fpu  P2μ|!p>q({)| ¶¸sp = [iii ]The proof is straightforward.

¤ Corollary 3. . Let P be an Orlicz function satisfying 42 - condition. Then we have

(1) Ifu A1, then EY(s> u)  EY(P> s> u), (2) EY(P> s)  EY(P> s> u),

(3) EY(s)  EY(s> u), (4) EY(P)  EY(P> u), The proof is straightforward.

(9)

ÖZET: EYdizi uzayı, Mursaleem tarafından tanımlanmı¸s ve in-celenmi¸stir[9]. Bu çalı¸smada EY uzayını,EY(P> s> u) uzayına geni¸sleterek bu uzaya ili¸skin bazı özelikleri ve kapsama ba˘ gın-tılarını elde ettik.

References

[1] Z.U. Ahmad and M. Mursaleen , An application of banach limits, Proc. Amer. Math.Soc. 103 (1983), 244 - 246.

[ 2] S.T. Chen, Geometry of Orlicz Spaces, Dissertationes Math. (The Institute of Mathematics, Polish Academy of Sciences) (1996).

[3] M. A. Krasnoselskii, and Rutickii, Ya. B, Convex Functions and Orlicz Spaces, (Gooningen: P. Nordho Ltd.) (1961) (translation).

[4] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces,Israel J. Math., 10 : 379-390 (1971).

[5] G.G. Lorentz, A contribution to the theory of divergent series, Acta Math. 80(1948) 167-190.

[6] W. A. Luxemburg, Banach Function Spaces, Thesis (Delft) (1955)

[7] L. Maligranda, Orlicz spaces and interpolation, Seminar in Math. 5, Camp-inas (1989)

[8] M.Mursaleen , Matrix transformations between some new sequence spaces, Houston J. Math., 9 (1983), 505- 509.

[9] M.Mursaleen ,On some new invariant matrix methods of summability, Quart. J. Math., Oxford (2) 34 (1983), 77-86 .

[10] J. Musielak , Orlicz Spaces and Modular spaces, Lecture Notes in Math. 1034 (Springer- Verlag) (1983).

[11] W. Orlicz, Ü ber Raume(OP), Bulletin International de l’ Académie Polon-aise des Sciences et des Letters, Série A, 93 - 107 (1936).

[12] R. A. Raimi, Invariant means and invariant matrix method of summability, Duke Math. J. ., 30 (1963), 81- 94.

[13] M. M . Rao and Z. D. Ren, Theory of Orlicz spaces (New York, Basel, Hong Kong: Marcel Dekker Inc.) (1991).

[14] P. Schafer , Infinite matrices and invariant means, Proc. Amer. Math.Soc. 36 (1972), 104 - 110.

[15] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematical Studies 85, 1984.

Current address : Department of Mathematics, A. M. U. Aligarh-202002 INDIA, E-mail address : vakhan@math.com,

Referanslar

Benzer Belgeler

  They  were  asked  to  rate  the  importance  of  factors  in  influencing  their  choice  of  career,  and  then  the   extent  to  which  they  thought

Çalışmada, Atatürk Üniversitesi, Atatürk Üniversitesi Edebiyat Fakültesi ve Atatürk Üniversitesi Merkez Kütüphanesi hakkında kısaca bilgi verildikten sonra, Atatürk

Ode15s, sayısal farklılaşma formüllerine (NDF) dayanan değişken sıralı bir çözücüdür. Deney 39 değişkenleri.. Deney 39 değişkenleri. Deney 39 çıkış

Sistem, reel kısmı pozitif olan bir özdeğere 1 sahip olduğu için (0,0) denge noktası kararsız yapıdadır. Grobman – Hartman teoremine göre denge noktası hiperbolik

Jirotropik metamateryal yüklü, kapalı, üniform, kayıpsız dalga kılavuzları için de geriye doğru dalgaların varlığı için gerek ve yeter koşullar iletim hattı

Serbest Ağırlık Çalışma Grubu ile Smith Machine Çalışma Grubu bench press hareketi kuvvet ölçümü ön test ve son test değerleri arasındaki fark sonuçlarına bakacak olursak,

Beklenti düzeyini incelediğimizde empati özelliklerinde yaş, cinsiyet, eğitim durumu, gelir, geliş sıklığı ve geliş vasıtasının yetenek boyutlarında beklenti düzeyi

Kalp ekstraselüler matriksindeki farklılaşma neticesinde elde edilen immünfloresan analizlerin verilerini doğrulamak ve matriks içinde standart besiyeri ve kardiyomiyojenik