• Sonuç bulunamadı

On the behavior of the solutions of the system of rational difference equations

N/A
N/A
Protected

Academic year: 2021

Share "On the behavior of the solutions of the system of rational difference equations"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ISSN 1992 - 1950 ©2013 Academic Journals

Full Length Research Paper

On the behavior of the solutions of the system of

rational difference equations

1 1 1 1 1 1 1 1

,

,

1

1

n n n n n n n n n n n n

x

y

x z

x

y

z

y x

x y

y

       

Abdullah Selcuk Kurbanli

1

*, Ibrahim Yalcinkaya

1

and Ali Gelisken

2 1

Department of Mathematics, Faculty of Education, Necmettin Erbakan University, Konya, Turkey.

2

Department of Mathematics, Faculty of Science, Karamanoglu Mehmetbey University, Karaman, Turkey.

Accepted 14 January, 2013

There has been a great interest in studying difference equations and systems. One of the reasons for this is a necessity for some techniques which can be used in investigating equations arising in mathematical models describing real life situations in population biology, geometry, economics, probability theory, genetics, physics etc. In this paper, we investigate the solutions of the system of

rational difference equations 1 1 1 1 1 1

1 1

,

,

1

1

n n n n n n n n n n n n

x

y

x z

x

y

z

y x

x y

y

       

where the initial values

1

,

0

,

1

,

0

x

x z

z

are real numbers and the initial values

y

1

,

y

0 are non-zero real numbers such that

x y

0 1 and

y x

0 1 are not equal to 1. We give general solutions of the system. Also, we obtain necessary conditions for every solution of the system to be limited or unlimited.

Key words: Difference equation, system of difference equations, solutions.

INTRODUCTION

In this study, we investigate the behavior of the solutions of the difference equation system

1 1 1 1 1 1 1 1 , , 1 1 n n n n n n n n n n n n x y x z x y z y x x y y              (1)

Where

x

1

, ,

x

0

y

1

, ,

y

0

z

1

,

z

0 are real numbers such that

y x

0 1

1,

x y

0 1

1,

y

1

0

and

y

0

0

.

Similar nonlinear systems of rational difference equations were investigated, for examples, Kurbanlı et al. (2011a) studied the behavior of the positive solutions of the system:

*Corresponding author. E-mail: akurbanli@yahoo.com.

1 1 1 1 1 1

,

1

1

n n n n n n n n

x

y

x

y

y x

x y

     

Cinar (2004) studied the solutions of the system:

1 1 1 1 1 , n n n n n n y x y y x y       

Kurbanli (2011b) studied the behavior of the solutions of the system: 1 1 1 1 1 1 1 1 1 , , 1 1 1 n n n n n n n n n n n n x y z x y z y x x y y z                

(2)

investigated the global asymptotic stability of the system: 1

,

1 n n n n n n

x

y

x

y

a

cy

b

dx

Kulenović and Nurkanović (2005) studied the global asymptotic behavior of the solutions of the system:

1

,

1

,

1 n n n n n n n n n

a

x

c

y

e

z

x

y

z

b

y

d

z

f

x

  

Zhang et al. (2006) investigated the behavior of the positive solutions of the system of difference equations:

1 1 1

1

,

n n n n p n r n s

y

x

A

y

A

y

x

y

     

 

 

Zhang et al. (2007) studied the boundedness, the persistence and global asymptotic stability of the positive solutions of the system:

1

,

1 n m n m n n n n

y

x

x

A

y

A

x

y

  

 

 

Yalcinkaya (2008) studied the global asmptotic stability of the system: 1 1 1 1 1 1

,

n n n n n n n n n n

t z

a

z t

a

z

t

t

z

z

t

     

MAIN RESULTS Theorem 1 Let

y

0

a y

,

1

b x

,

0

c x

,

1

d z

,

0

e

, z

1

f

be real numbers such that

ad

1, cb 1,

a

0

,

b

0

and let

( ,

x y z

n n

,

n

)

be a solution of the system of Equation 1. Then all solutions of of Equation 1 are:



,

1

,

1

2 2 1 n n n

cb

c

ad

d

x

even n odd n  

(2)



,

1

,

1

2 2 1 n n n

ad

a

cb

b

y

even n odd n   (3) 1 0 1 0 1 0 ( 1) , ( 1) ( 1) , ( 1) n i n i n i n i i n i n n i n i n c f cb n odd a ad z d e cb n even b ad                   

(4) Proof

From Equation 1, we have

1 1 0 1 1 1 x d x y x ad       , 1 1 0 1 1 1 y b y x y cb       , 0 1 1 0 , x z cf z y a   

cb 1

c 1 c 1 cb b c 1 x y x x 0 1 01 2        ,

ad 1

a 1 a 1 ad d a 1 y x y y 0 1 0 2        ,

1 0 2 1 1 1 1 1 d e de cb x z ad z b y b ad cb        ,

2 1 2 1 3

1

ad

d

1

1

ad

d

1

ad

a

1

ad

d

1

x

y

x

x

,

2 1 2 1 3 1 cb b 1 1 cb b 1 cb c 1 cb b 1 y x y y          ,

2 2 1 3 2 2 1 1 1 1 cf c cb c f cb x z a z y a ad a ad      

So Equations 2, 3 and 4 are true for

n

1, 2,3.

Assume that Equations 2, 3 and 4 are true for

n

4,5,...,

k

. Then

(3)

k 3 k 2 2 k 2 3 k 2 1 k 2 1 ad d 1 x y x x         ,

k 2 k 2 1 k 2 2 k 2 k 2 c cb 1 1 x y x x        ,

k 3 k 2 2 k 2 3 k 2 1 k 2 1 cb b 1 y x y y         ,

k 2 k 2 1 k 2 2 k 2 k 2 aad 1 1 y x y y        and

1 0 1 0 2 2 2 3 2 1 2 2 1 1 k i i k i i k k k k k k c f cb x z z y a ad               ,

1 1 2 1 2 2 2 2 1 1 1 k i i k i i k k k k k k d e cb x z z y b ad            

Now, we must show that Equations 2, 3 and 4 are true for 1

n k . From Equation 1, we have

2 1 2 1 1 2 2 1 1 1 1 1 1 1 k k k k k k k k d ad x d x d y x a ad ad ad            ,

2 1 2 1 1 2 2 1 1 1 1 1 1 1 k k k k k k k k b cb y b y b x y c cb cb cb            and                 1 0 1 1 0 0 0 1 0 0 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 k i i k k k i k i i i i i k k k i i i i k k k k k k k k k k k k c f cb c cb a ad c f cb c f cb x z z y a ad a ad a ad                                      Also, we have

k 1 k k 1 k k 1 k 2 1 k 2 k 2 2 k 2 ccb 1 1 c 1 cb b 1 cb c 1 1 cb c 1 cb b 1 cb c x y x x                          k1 k k 1 k k k 2 1 k 2 k 2 2 k 2 aad 1 1 a 1 ad d 1 ad a 1 1 ad a 1 ad d 1 ad a 1 y x y y                  and                 1 1 (1) 1 1 1 1 (1) 1 1 1 1 1 2 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 k i i k k k i k i i i i i k k k i i i i k k k k k k k k k k k k d e cb d ad b ad d e cb d e cb x z z b y b ad b ad cb                                      

Therefore, the proof is completed by induction.

Corollary 1

Let ( ,x y zn n, n) be a solution of the system of Equation 1 and let a b c d, , , be real numbers such that

1,

1,

0

ad

cb

a

and

b

0

, then the following results hold:

(1) If 0a b c d e f, , , , , 1, then

lim

2n1

lim

2n1 n

x

n

y

 

and lim 2n lim 2n 0

nxny  , (2) If 0a b c d e f, , , , , 1,

c

a

and

cb

ad

or 0a b c d e f, , , , , 1,

c

a

and

b

d

, then 2 1 lim n 0 nz   , (3) If 0a b c d e f, , , , , 1,

c

a

and

cb

ad

or 0a b c d e f, , , , , 1,

c

a

and

d

b

, then 2 1 lim n nz    , (4) If 0a b c d e f, , , , , 1,

c

a

and

b

d

,

then 2 1 lim n nz   f , (5) If 0a b c d e f, , , , , 1,

d

b

and

cb

ad

or 0a b c d e f, , , , , 1,

d

b

and

cb

ad

or 0a b c d e f, , , , , 1,

f

1

,

b

d

and

c

a

,

then 2 lim n 0 nz  , (6) If 0a b c d e f, , , , , 1,

d

b

and

cb

ad

or 0a b c d e f, , , , , 1,

d

b

and

ad

cb

, then 2 lim n nz   , (7) If 0a b c d e f, , , , , 1,

d

b

and

c

a

,

then 2 lim n . nze Proof

(1) From 0a b c d, , , 1, we have  1 ad 1 0 and

1 cb 1 0

    . Hence, we obtain

2 1

, 1

lim lim lim

, ( 1) ( 1) n n n n n n n odd d x d n even ad ad            , 2 1 , 1

lim lim lim

, ( 1) ( 1) n n n n n n n odd b y b n even cb cb                and 2

lim lim ( 1)n lim( 1)n 0

n

(4)

2

lim lim ( 1)n lim( 1)n 0

n

nync ad anad  .

(2) From 0a b c d, , , 1,

c

a

and

cb

ad

, we have 1 1 1 cb ad  . Hence, we obtain 1 1 0 0 1 0 2 1 ( 1) 1

lim lim lim 0.

1 ( 1) n n i i n i i n i n n n n i n n c f cb c cb z f a ad a ad                              

Similarly, from 0a b c d, , , 1,

c

a

and

b

d

, we

have 1 1 1 cb ad  . Hence, we obtain 1 1 0 0 1 0 2 1 ( 1) 1

lim lim lim 0.

1 ( 1) n n i i n i i n i n n n n i n n c f cb c cb z f a ad a ad                              

(3) From 0a b c d, , , 1,

c

a

and

cb

ad

, we have 1 1 1 cb ad    . Hence, we obtain 1 1 0 0 1 0 2 1 ( 1) 1

lim lim lim .

1 ( 1) n n i i n i i n i n n n n i n n c f cb c cb z f a ad a ad                               

Similarly, from 0a b c d, , , 1,

c

a

and

d

b

, we

have 1 1 1 cb ad  . Hence, we obtain 1 1 0 0 1 0 2 1 ( 1) 1

lim lim lim .

1 ( 1) n n i i n i i n i n n n n i n n c f cb c cb z f a ad a ad                               

(4) From 0a b c d, , , 1,

c

a

and

b d

, we have 1 1 1 cb ad  . Hence, we obtain 1 1 0 0 1 0 2 1 ( 1) 1

lim lim lim .

1 ( 1) n n i i n i i n i n n n n i n n c f cb c cb z f f a ad a ad                              

(5) From 0a b c d, , , 1,

d

b

and

bc

da

, we have 1 1 1 cb ad  . Hence, we obtain 1 1 1 2 ( 1) 1

lim lim lim 0.

1 ( 1) n n i i n i i n i n n n n i n n d e cb d cb z e b ad b ad                          

Similarly, from 0a b c d, , , 1,

d

b

and

bc

da

, we

have 1 1 1 cb ad  . Hence, we obtain 1 1 1 2 ( 1) 1

lim lim lim 0.

1 ( 1) n n i i n i i n i n n n n i n n d e cb d cb z e b ad b ad                          

Similarly, from 0a b c d, , , 1,

d

b

and

c

a

, we

have 1 1 1 cb ad  . Hence, we obtain 1 1 1 2 ( 1) 1

lim lim lim 0.

1 ( 1) n n i i n i i n i n n n n i n n d e cb d cb z e b ad b ad                          

(6) From 0a b c d, , , 1,

d

b

and

bc da

, we have 1 1 1 cb ad  . Hence, we obtain 1 1 1 2 ( 1) 1

lim lim lim .

1 ( 1) n n i i n i i n i n n n n i n n d e cb d cb z e b ad b ad                           

Similarly, from 0a b c d, , , 1,

d

b

and

bc da

, we

have 1 1 1 cb ad  . Hence, we obtain 1 1 1 2 ( 1) 1

lim lim lim .

1 ( 1) n n i i n i i n i n n n n i n n d e cb d cb z e b ad b ad                           

(7) From 0a,b,c,d1,

d

b

and

c a

, we have 1 1 1 cb ad  . Hence, we obtain 1 1 1 2 ( 1) 1

lim lim lim .

1 ( 1) n n i i n i i n i n n n n i n n d e cb d cb z e e b ad b ad                           Corollary 2

(5)

and let a b c d, , ,  

1,

and

a

  

d

c

b

.

If

1, 1 (1, )

adcb   , then

2 1 2 1 2 1

lim n lim n lim n 0

nx  ny  nz   , and 2 2 lim n lim n nxny  . Proof From a b c d, , ,  

1,

,

a

  

d

c

b

and 1, 1 (1, ) adcb   , we have 1 1 1 cb ad    . Hence, we have

lim 1n n cb   and lim

1

n n ad  . Also, we have

2 1 1

lim lim .lim 0

1 1 n n n n n n d x d ad ad        ,

2 1 1

lim lim .lim 0

1 1 n n n n n n b y b cb cb        and 1 1 0 0 1 0 2 1 ( 1) 1

lim lim lim 0.

1 ( 1) n n i i n i i n i n n n n n i n c f cb c cb z f a ad a ad                               Similarly, we have

2

lim n lim 1n lim 1n

nxnc cb cn cb   and

2

lim n lim 1n lim 1n

nyna ad an ad  

.

Corollary 3

Let ( ,x y zn n, n)be a solution of the system of Equation 1 and let a b c d, , ,  

1,

and

a

c b

,

d

. If

1, 1 (0, 1)

adcb  , then

2 1 2 1 2 1

lim

n

lim

n

lim

n

n

x

n

y

n

z

 

, and 2 2

lim

n

lim

n

0

n

x

n

y

. Proof From a b c d, , ,  

1,

,

a

c b

,

d

and 1, 1 (0,1) adcb  , we have

1

1

1

cb

ad

. Hence, we have lim

1

n 0 n cb  and

lim

1

n

0

n

ad

. Also, we have

2 1 1

lim lim .lim

1 1 n n n n n n d x d ad ad        ,

2 1 1

lim lim .lim

1 1 n n n n n n b y b cb cb         and 1 1 0 0 1 0 2 1 ( 1) 1

lim lim lim

1 ( 1) n n i i n i i n i n n n n i n n c f cb c cb z f a ad a ad                                Similarly, we have

2 lim n lim 1n .0 0 nxnc cb c  and

2 lim n lim 1n .0 0 nyna ad a  . REFERENCES

Cinar C (2004). On the positive solutions of the difference equation system 1 1 1 1 1 , n n n n n n y x y y x y    

  . Appl. Math. Comput. 158:303-305.

Clark D, Kulenović MRS (2002). A coupled system of rational difference equations. Comput. Math. Appl. 43:849-867.

Clark D, Kulenović MRS, Selgrade JF (2003). Global asymptotic behavior of a two-dimensional difference equation modelling competition. Nonlinear Anal. Teor. 52:1765-1776.

Kulenović MRS, Nurkanović Z (2005). Global behavior of a three-dimensional linear fractional system of difference equations. J. Math. Anal. Appl. 310:673-689.

Kurbanli AS (2011b). On the behavior of solutions of the system of

rational difference equations

1 1 1 1 1 1 1 1 1 , , 1 1 1 n n n n n n n n n n n n x y z x y z y x x y y z                

Discrete Dyn. Nat. Soc. 2011:1-12.

(6)

Kurbanlı AS, Cinar C and Yalcinkaya I (2011a). On the behavior of positive solutions of the system of rational difference equations

1 1 1 1 1 1 , 1 1 n n n n n n n n x y x y y x x y         

  Math. Comput. Model.

53:1261-1267.

Yalcinkaya I (2008). On the global asymptotic stability of a second-order system of difference equations. Discrete Dyn. Nat. Soc. 2008:1-12. Zhang Y, Yang X, Evans DJ, Zhu C (2007). On the nonlinear difference

equation system 1 , 1 n m n m n n n n y x x A y A x y          Comput. Math. Appl. 53:1561-1566.

Zhang Y, Yang X, Megson GM, Evans DJ (2006). On the system of rational difference equations 1 1

, n n n n p n r n s y x A y A y x y          Appl. Math. Comput. 176:403-408.

Referanslar

Benzer Belgeler

I argue that regardless of the newly introduced supranational channels into the EU policy process, the collective organizational experience at the national level locks in a certain

kapsamında, yerel medya çalıĢanları açısından medya etiğinin algılanıĢı, yerel medya iĢleyiĢi, yerel medyada görev ve sorumluluk olguları gibi temel baĢlıklar

To cite this article: Fatih Sonmez, Cigdem Bilen, Sinem Sumersan, Nahit Gencer, Semra Isik, Oktay Arslan & Mustafa Kucukislamoglu (2014) In�vitro inhibition effect

Alevîlik meselesini kendine konu edinen kimi romanlarda, tarihsel süreç içe- risinde yaşanan önemli olaylar da ele alınır.. Bunlardan biri Tunceli (Dersim) bölge- sinde

Yatırım teşvik belgesi çerçevesinde stratejik yatırımlar, büyük ölçekli yatırımlar ve bölgesel yatırımlar kapsamında yapılan yatırım ile sağlanan ilave istihdam

Baseline scores on the QLQ-C30 functioning scales from patients in both treat- ment arms were comparable to available reference values for patients with ES-SCLC; however, baseline

Rehberlikle ilgili hizmet içi eğitime katılmış sınıf rehber öğretmenlerinin, katılmayanlara kıyasla sadece psikolojik danışma ve rehberliğe yönelik tutumlarının

Þimdiye dek bir anksiyete bozukluðu sayýlan travma sonrasý stres bozukluðu (TSSB) ve akut stres bozukluðu yanýsýra dissosiyatif bozukluklar ve uyum bozukluklarý bu bölümde