• Sonuç bulunamadı

Deferasirox-induced cytogenetic responses

N/A
N/A
Protected

Academic year: 2021

Share "Deferasirox-induced cytogenetic responses"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

environmental toxicology and pharmacology 39 (2015)787–793

Available

online

at

www.sciencedirect.com

ScienceDirect

j ou rn a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / e t a p

Deferasirox-induced

cytogenetic

responses

Mehmet

Arslan

a,∗

,

Hasan

Basri

Ila

b

aArdahanUniversity,SchoolofHealthSciences,DepartmentofNursing,75000Ardahan,Turkey bCukurovaUniversity,FacultyofScienceandLetters,DepartmentofBiology,01330Adana,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received4November2014

Receivedinrevisedform

4February2015

Accepted5February2015

Availableonline16February2015

Keywords: Deferasirox Ironchelator Genotoxicity Cytotoxicity Invitro Invivo

a

b

s

t

r

a

c

t

Deferasirox(commerciallyformulatedasExjade®)isoneoftheeffectiveironchelatorsused

intreatmentofironoverloaddiseases.Inthisstudytheeffectofthissubstancefor

chromo-someaberration,sisterchromatidexchangeandmitoticindexwasstudiedbyinvitro(by

usinghumanperipherallymphocytes)andinvivo(byusingrat)analysis.

Deferasiroxincreasedthesisterchromatidexchangefrequencyinalltested

concentra-tionsandperiodsinvitro.Also,inthepresenceofmetabolicactivator,thesubstanceledto

astatisticallysignificantincreaseinthesisterchromatidexchangefrequenciesonlyathigh

concentration.Whileininvitroanalysisthesubstancesignificantlyincreasedabnormal

cellpercentagesinallconcentrations,ininvivostudythesubstanceincreased

chromo-someaberrationsonlyintwoconcentrationsat12htreatment.Intheculturedlymphocytes,

deferasiroxshowedcytotoxicitybysignificantlyreducingproliferationindexandmitotic

indexvalues.Whileinthepresenceofmetabolicactivationitdidnotaffectthe

prolifera-tionindexfrequency,ithadastimulanteffectonthemitoticindexfrequency.Deferasirox

reducedsignificantlythemitoticindexvalueinthebonemarrowcellsespeciallyinhigh

concentrationandshorttreatmentperiod(12h).

©2015ElsevierB.V.Allrightsreserved.

1.

Introduction

Theironoverloadinhumantissuesemergesdueto

hered-itary reasons or chronic blood transfusions (transfusional

hemosiderosis).Asaconsequence,lossofcellviabilityand/or

metabolicdysfunctionsoccur(Pietrangelo,2003).Ifthis

con-ditionisnotdiagnosedandtreatedtimely,certainliver,heart

andendocrineglandsdiseasesmaydevelop(Andrews,1999).

Thereductionofironloadinthetissueprotectsindividual

against having heart diseases, diabetes mellitus, or

pre-ventsprematuredeathinthalassemia patients(Brıttenham

etal.,1994).Thephlebotomymethod(AssiandBaz,2014)or

ironchelating agentsare usedfor removingexcessive iron

Correspondingauthor.Tel.:+904782112687/5136;fax:+904782112973.

E-mailaddresses:mehmetarslan@ardahan.edu.tr,marslan76@gmail.com(M.Arslan).

accumulatinginthetissuesofhemochromatosispatients.The

firstoneofthreetypesofchelatorsfrequentlyusedfor

remov-ingironisdeferoxamine(DFO)thatisappliedintravenously.

Deferiprone,whichisanotheragentusedforsamepurpose,

istakenorally.Deferasirox,whichisaneworalchelator,is

thethirdtypetakenorallyandusedeasilyandeffectivelyfor

controllingtheironload.Deferasiroxhashighspecific

affin-ityforiron.Allpatientsabove2yearssufferingfromsevere

chronicironoverloadcanusedeferasiroxfortherapy(Wang

etal.,2010).

Despiteoftheworthyadvantagesofchelators,their

muta-genic potentials must not be ignored because someother

chelatorssuchasDFOhasbeen showntohaveheavytoxic

andmutagenicpotential(Whittakeretal.,2001).Also,itwas

http://dx.doi.org/10.1016/j.etap.2015.02.001

(2)

determinedthatDFOwasnotclastogenicbyitself,butalong

withgamma raysincreasedacentricchromosomefragment

and ring chromosome formation frequency (Juckett et al.,

1998).Inanotherstudy,itwasfoundthatdeferipronecause

dchromosomefragment(Marshall etal.,2003).Tothe

con-trary of the above-mentioned findings, it was shown that

deferiproneconsiderablydecreasedtheDNAdamage

result-ingfromironaccumulation(Andersonetal.,2000).

Althoughdeferasiroxhasmanybenefit–costadvantagesin

treatment,thereisonlyourpreviousinvestigationaboutits

genotoxicnature.Deferasiroxhasshowedgenotoxicand

cyto-toxiceffectsinsomecellsystemsaccordingtoresultsofthat

study(Ilaetal.,2014).Therefore,inthecurrentstudy,human

peripherallymphocyteswere exposedtothe testsubstance

indifferentconcentrations inthe absenceand presenceof

metabolicactivator.Itwasattemptedtoinvestigategenotoxic

andcytotoxiceffectofthesubstancebyinvitrosister

chro-matidexchange(SCE)tests,chromosomeaberration(CA)tests,

alongwithinvivochromosomeaberration(CA)testsonrat

bonemarrowcells.

2.

Materials

and

methods

The test substance of the present study was deferasirox

(Exjade®,obtainedfromapharmacyinAdana/Turkey)(CAS

No.:201530-41-8).Nonmedical ingredientsinExjade®tablet

are:lactose, crospovidone,povidone,sodium laurylsulfate,

microcrystallinecellulose,silica-colloidalanhydrous,

magne-siumstearate(Exjade®ConsumerMedicineInformation).In

thestudy,short-termgenotoxicitytestswereperformedon

culturedhumanperipherallymphocytesunderinvitroand

invivoconditionswithrat.Sincethetestsubstancewasnot

absolutelywater-soluble,dimethylsulfoxide(DMSO)(CASNo.:

67-68-5)wasusedasasolvent.Thecellsusedfor

quantita-tiveanalyseswereexposedtothetestsubstanceinvarious

concentrationsindifferentperiods,andtheresultswere

com-paredwiththeirowncontrols.OECDguidelinewasconsidered

todoseselectionforinvitrostudies(OECDTG473,paragraph

21,2012).Deferasiroxconcentrationsforinvivo studywere

selectedbasedonitsoralLD50forrats(≥1000mg/kg).

2.1. Material

This study was approved by the Ethics Committee of

the Cukurova University Medical Sciences, Experimental

Research,andApplicationCentre(no.:11,date:2July2010).In

thepresentstudy,Exjade®(itsactivesubstanceisdeferasirox),

whichisan ironchelatingdrug, wasused asthetest

sub-stance,and peripheralblood takenfrom twonon-smoking,

healthy,andvoluntarywomenandtwonon-smoking,healthy,

and voluntary men ofthe same age (23) was used as the

material for in vitro tests. Four healthy 10 to 12 week

rats (two females+two males) were used in in vivo tests.

Colchicine (SigmaC9754), mitomycin-C MMC(CAS No.:

50-07-7),colchicine(3mg/kgb.w.,SigmaC9754),Urethane(ethyl

carbamate;EC;CASNo.:51-79-6)andchromosomemedium

(Pb-Max,Gibco,cat.no.:12557-013)wereusedinthisstudy.

2.2. Method

2.2.1. InvitroCAandSCEassay

HumanperipherallymphocytesweresubjectedtoCAandSCE

teststoinvestigatethegenotoxiceffectsofdeferasirox(aniron

chelator)anddeferasiroxmetabolite.

Wholeblood(0.2mL)fromfourhealthydonors(twofemale

andtwomale,non-smokers,aged23years,bloodsamplesnot

pooled) wasadded to2.5mLchromosomemedium

supple-mentedwith10␮g/mLsterile5-bromo-2-deoxyuridine(BrdU).

Themediumcontainedphytohaemagglutinin(PHA)for

stim-ulatingofthecellproliferation.Thecultureswereincubated

totaloftime72hat37◦Casfollowing:

The blood culture was treated by 10, 20 and 40mg/kg

concentrationsofdeferasiroxdissolvedindimethylsulfoxide

(DMSO),for24h(deferasiroxwasaddedat48hafterinitiation

timeofincubation)and 48h(deferasiroxwasaddedat24h

afterinitiationtimeofincubation).

Colchicine (0.06␮g/mL) wasadded to the cultureat the

last 2h (70thh) of incubation time for arrest cell cycle at

metaphase. Thenthe cultures were centrifuged (2000rpm,

5min)andtreatedwithhypotonicsolution(0.4%KCl)for5min

at37◦C,andfixedincoldmethanol:glacialaceticacid(3:1)

for15minatroomtemperature.Treatmentwithfixativewas

repeatedthreetimes,andthenthecellswerespreadonglass

slidesandair-dried.

InordertoCAanalysisthepreparationsweresubjectedto

stainingwith5%Giemsafor24h.Also,forstudyofSCEthe

Flu-orescencePlusGiemsa(FPG)methoddevelopedbySpeit(1984)

andSpeitandHauper(1985)wasused.DMSO(10␮L/2.7mL)

andMitomycin-C(0.25␮g/mL)wasconsideredasanegative

controlandapositivecontrol,respectively.DMSOisagood

solventthatdidnotinduceCA.

InordertostudyofdeferasiroxmetaboliteonCAandSCE,

thecellculturetreatedwithdeferasiroxalongwithS9mix

(3-methylcolanthrene-inducedratliversubcellularenzymes).To

mimicinvivoconditions,exogenousmetabolizingsystemwas

usedforemployingcellswhichhaveinadequateendogenous

metaboliccapacity.Inthisway,thepossiblecontributionof

deferasiroxmetabolismonitsgenotoxicitycanbedisplayed

(MaronandAmes,1983).Forthispurpose,thethree

concen-trationsoftestsubstance(10,20and40mg/kg)togetherwith

S9mix(0.5mL)wereaddedthecultureat48thhofthe

incuba-tiontime.After3htreatment,theculturewaswashedtwice

foreliminatingoftheS9mixfromculture.Followingthelast

washing,BrdU-supplementedfreshmediumwasaddedinto

the cells inthetube, andthe cellswere incubated for19h

at37◦C (untilthe70thhofincubationtime).Afterthatthe

cells were treatedbycolchicine,centrifuged and continued

theprocessmentionedabovetostudyofCAandSCE.

2.2.2. Invivoassay

TheinvivotestwasperformedaccordingtoTopaktasetal.

(1996). Deferasirox concentrations for in vivo study were

selectedbasedonitsoralLD50forrats(≥1000mg/kg).Forthis

purposetwogroupsofrats(twofemales+twomales;fourrats

intotal)were treatedbythreeconcentrationofdeferasirox

(250,500,and1000mg/kg)viaoralgavage.Bonemarrowcells

were taken out from one group after 12h treatment and

(3)

environmental toxicology and pharmacology 39 (2015)787–793

789

colchicine (3mg/kg) was injected intraperitoneally for one

groupat10thtreatmenttimeandforanotherat22nd

treat-menttime(2hbeforetheanimalsweresacrificed).

Afterthat,theanimalsweresacrificedbycervical

disloca-tion,andthefemurswerestrippedproximally,andthebone

marrowcellswereaspiratedin0.9%NaCl(37◦C).Theobtained

suspensionwascentrifuged for5minat2000rpm,and the

bonemarrow pelletwas resuspended in0.4% KCl at 37◦C

for10min,thenthecellswerefixedincoldmethanol:glacial

aceticacid(3:1)for20minatroomtemperature.Thetreatment

withfixativewasrepeatedtwice.Thenthecellswerespread

onglass slidesand air-dried.The slideswere stained with

Giemsa(5%inSorensenbuffer)for15minand100well-spread

metaphasesperanimal(atotalof400metaphasespergroup)

weresubjectedtostudyofstructuralandnumericalCAsby

1000×magnification.MI(mitoticindex)wasalsodetermined

byscoring3000cellsfromeachanimal.

Untreatedanimalgroup(asanegativecontrol),treatedby

DMSO(asasolventgroup),andtreatedbyethylcarbamate(as

positivecontrol)werestudiedinthisresearch.

2.3. Microscopicinvestigationandstatisticalmethod

TheCAwasclassifiedaccordingtotheinternationalsystem

forhumancytogeneticnomenclature(ISCN)(Paz-y-Minoetal.,

2002).Ahundredwell-spreadmetaphasesperdonor(atotalof

400metaphasesperconcentrations)wereexaminedat1000×

magnificationfortheoccurrencesoftheCA.Gapswere not

countedasCA,accordingtoMaceetal.(1978).SCE scoring

wascarried out accordingtoAlbertiniet al.(2000). For the

numberofSCEs,atotalof100cells(25cellsfromeachdonor)

undersecondmetaphaseswereexamined.Theresultswere

usedtodetermine the mean numberofSCEs (SCE/cell).In

addition,atotalof400cells(100cellsfromeachdonor)were

scoredforthedeterminationofthereplicationindex(RI).The

mitoticindex(MI)wasalsodeterminedbyscoring3000cells

fromeachdonor.TheMIexplainstheeffectsofthe

chemi-calsontheG2stageofthecellcycle,andtheRIreflectsthe

effectsofthechemicalsontheSandG2stagesofthecycle.

TheRI was calculated according tothe followingformula:

RI=[(M1×1)+(M2×2)+(M3×3)]/totalscoredcells,whereM1,

M2,and M3are the fractionofcells undergoingtheir first,

second,andthirdmitosisduringthe72-hcellcultureperiod.

Thesignificanceofdifferencesbetweenthe mean SCEs,

RI, MI, structural, numerical, and total CAsin treated

cul-tures and their controls were determined using the t-test.

Dose–responserelationshipsweredeterminedfromthe

cor-relationandregressioncoefficientsforthemeanSCEs,RIand

MI,structural,numerical,andtotalCAs.

3.

Results

3.1. Invitrosisterchromatidexchange(SCE)

AlthoughallconcentrationsincreasedtheSCEfrequencyin

the24htreatmentofthedeferasirox,theSCEfrequencywas

foundtobesignificantlyhigherincomparisontothecontrol

(P<0.05),onlyinthelowestconcentration(10␮g/mL).

In the48h treatment, allthe usedconcentrations (even

thelowestconcentration)significantlyincreasedtheSCE

fre-quencyincomparisontothecontrol(Table1).

Itwasdeterminedthatwhentheculturedlymphocytecells

wereexposedtothedeferasiroxinthepresenceofmetabolic

activator,onlythehighestconcentrationledtoSCEincreases,

andtheincreasesweresignificantincomparisontothe

nega-tivecontrolandthesolventcontrol(P<0.05)(Table2).

3.2. Invitrochromosomeaberration(CA)

Inthe24happlication,deferasiroxincreasedCAsinallthree

concentrations,buttheabnormalityincreasedeterminedin

highconcentrations(20and40␮g/mL)wasstatistically

signif-icant(Table1).Inthe48happlication,theCAsformationsinall

dosesinvestigatedwerefoundsignificantlyhigherin

compar-isontothenegativecontrol.Inthisapplication,twoincreases

inhighdosewerefoundsignificantlyhigherincomparisonto

thesolventcontrol(P<0.05)(Table1).Thetestsubstanceinthe

presenceofexogenousmetabolicactivator(S9mix)

demon-stratedimportantgenotoxiceffectsinallconcentrations.The

observedCAfindingsweresignificantlyhigherincomparison

tobothcontrols(P<0.01orP<0.001).Theratesof

abnormal-itypercellshowedsimilaritieswiththeabnormalcellrates

(Table2).

3.3. Invivochromosomeaberration(CA)

In in vivo study, two high deferasirox concentrations (500

and 1000mg/kg) used in treatment of rats caused

signifi-cantchromosomeaberrationsat12hoftreatment(Table3),

Whilethelowestconcentrationofthesubstancedidnotshow

anysignificanteffectonchromosomeaberration.The

high-estconcentrationofdeferasiroxcausedtopartialincreaseof

chromosomeaberrationat24htreatment,buttheeffectwas

notstatisticallysignificant.

3.4. EffectofdeferasiroxonDNAreplicationand mitosis

IninvitroteststhedeferasiroxshowedasignificantPI

(pro-liferationindex) reductioninallconcentrations inthe 48h

treatment, though in the 24htreatment, all concentration

exceptthelowestonedecreasedthereplicationrate

signifi-cantlyincomparisontothenegativecontrolandthesolvent

control(P<0.05)(Table1).However,deferasiroxdidnotshow

anysignificantincreaseinthePIvalueswhenitwasusedalong

withmetabolicactivator(S9mix)(Table2).

Thedeferasiroxhadaninhibiting effectonmitotic

divi-sion(MI).In24htreatmentofcellculture,themitoticindexes

decrease obviously and significantly. Thebiggestreduction

occurredinthehighestconcentration.AlthoughalloftheMI

reductionsoccurringinthatperiodweresignificantin

com-parison tothe negativecontrol, the MI falling inthe high

concentrationwassignificantincomparisontoboththe

con-trol and the solventcontrol.In the48happlicationin this

test,significantdecreasesoccurredinMIvaluesinallofthe

appliedconcentrationsincomparisontothecontrolandthe

solventcontrol(Table1).Asdistinctfromtheprevioustests,

(4)

e n v i r o n m e n t a l t o x i c o l o g y a n d p h a r m a c o l o g y 3 9 ( 2 0 1 5 ) 787–793

Table1–Theinvitrosisterchromatidexchange,abnormalcellpercentage,CA/cellratio,proliferationindex(PI),andmitoticindex(MI)valuescausedbythedeferasirox inthehumanperipherallymphocytesintheabsenceofmetabolicactivator(S9mix).

Testsubstance Treatment SCE/Cell±SE Chromosomeaberration Cytotoxicity

Period(h) Conc.(␮g/mL) Abnormalcell±SE% CA/cell±SE PI±SE MI±SE

Control – – 5.06±0.23 3.75±0.47 0.037±0.002 2.28±0.10 3.69±0.26 DMSO 24 3.7␮L/mL 5.46±0.36 9.50±0.64 0.095±0.003 2.22±0.10 3.25±0.27 Deferasirox 24 10 6.45±0.34a1 5.00±0.70b2 0.050±0.001b2 2.26±0.04 2.84±0.16a1 24 20 5.62±0.46 16.25±1.18a2b1 0.172±0.004a2b1 2.05±0.03a2b1 2.78±0.19a1 24 40 6.43±0.46 18.75±0.85a3b2 0.190±0.004a2b2 1.90±0.09a1b1 1.83±0.17a2b2 DMSO 48 3.7␮L/mL 4.99±0.23 7.25±0.75 0.070±0.003 2.51±0.08 3.84±0.38 Deferasirox 48 10 6.33±0.21a2b1 10.50±1.32a1 0.105±0.002a1 2.31±0.03b1 2.83±0.22a1b1 48 20 6.56±0.45a1 13.25±1.31a2b1 0.132±0.002a2b1 1.63±0.06a2b2 1.51±0.17a3b3 48 40 8.18±0.66a1 22.00±2.86a2b1 0.270±0.008a2b1 1.37±0.11a2b2 0.99±0.10a3b3

a:significantfromcontrol;b:significantfromsolventcontrol(DMSO).a1b1:P≤0.05;a2b2:P≤0.01;a3b3:P≤0.001.

Table2–Theinvitrosisterchromatidexchange,abnormalcellpercentage,CA/cellratio,proliferationindex(PI),andmitoticindex(MI)valuescausedbythedeferasirox inthehumanperipherallymphocytesinthepresenceofmetabolicactivator(S9mix).

Testsubstance Treatment SCE/cell±SE Abnormalcell±SE% CA/cell±SE Cytotoxicity

Period(h) Conc.(␮g/mL) PI±SE MI±SE Control – – 5.53±0.23 5.50±0.28 0.055±0.003 2.09±0.09 2.91±0.35 DMSO 3 3.7␮L/mL 5.04±0.47 6.25±0.94 0.068±0.008 2.25±0.08 3.82±0.66 Deferasirox+S9mix 3 10 6.04±0.59 10.00±0.70a2b1 0.100±0.004a2b1 2.20±0.06 3.64±0.21a1 3 20 6.81±0.77 12.00±0.40a3b3 0.120±0.002a3b3 2.20±0.04 3.70±0.23a1 3 40 7.50±0.53a1b1 11.75±0.47a3b3 0.138±0.009a3b3 2.19±0.05 3.09±0.20b1

(5)

environmental toxicology and pharmacology 39 (2015)787–793

791

Table3–Theinvivoabnormalcellpercentage,CA/cellratio,andmitoticindex(MI)valuescausedbythedeferasiroxin thebonemarrowcellsofrats.

Testsubstance Treatment Abnormalcell±SE% CA/cell±SE MI±SE

Period(h) Conc.(mg/kg) Control – – 2.75±0.25 0.0275±0.001 1.43±0.10 DMSO 12 16mL/kg 1.75±0.25 0.0175±0.001 1.93±0.19 Deferasirox 12 250 2.75±0.47 0.0275±0.001 2.53±0.27a1 12 500 4.75±0.25a2b3 0.0475±0.001a2b2 1.66±0.06a1b1 12 1000 4.75±0.47a1b2 0.0475±0.001a1b2 1.41±0.10b1 DMSO 24 16mL/kg 3.25±0.25 0.0375±0.002 1.48±0.11 Deferasirox 24 250 2.00±0.40 0.0200±0.001 1.93±0.36 24 500 2.75±0.25 0.0275±0.001 1.22±0.06a1b1 24 1000 3.50±0.28 0.0354±0.001 1.67±0.13

a:significantfromcontrol;b:significantfromsolventcontrol(DMSO).a1b1:P≤0.05;a2b2:P≤0.01;a3b3:P≤0.001.

influenceoftheexogenousmetabolicactivator(P<0.05). How-ever,theMI valuedetermined inthe highestconcentration herewasstatisticallylowerincomparisontothesolvent con-trol(P<0.05)(Table2).

In the in vivo tests, the deferasirox had heterogeneous

effectsonmitoticdivisionofbonemarrowcells.Inthe12h

application,thedeferasiroxledtosignificantMIdecreasesin

highdosesincomparisontothesolventcontrol.Inthe24h

application,the testsubstancedecreasedthemitoticindex

significantly incomparison to the control and the solvent

controlonlyinoneconcentration (500mg/kgb.w.)(P<0.05)

(Table3).

Inaddition,itwasdeterminedthatthedifferences

occur-ringincytotoxicityvaluesasaresultofincreaseindosewere

notstatisticallysignificant(P>0.05).

Tosumupthepropertiesofthedeferasiroxregarding

cyto-toxicity,itsloweddownreplicationanddivisionratesinthe

in vitro tests when no metabolic activator was used, but

increasedthem,thoughslightly, incomparisontothe

con-trolintheteststhatcontainedmetabolicactivator.Although

fluctuationswereobservedinMIvaluesintheinvivotests,

thevalueswereparallelwiththeresultsoftheinvitrotests

includingS9mix.

4.

Discussion

4.1. Clastogeniceffectofdeferasirox

There are limited studies about genotoxic effects of iron

chelators. Manystudies based ondifferent testingsystems

reportedthatthedeferoxamin(DFO),amemberofiron

chela-tors including deferasirox, removed the metal in the cell,

and thus had an antigenotoxic effect on the DNA

frag-mentsderiving from hydroxylradical occurringasa result

ofFenton/Haber–Weissreaction(Cooganetal.,1986;Stinson

etal.,1992;Bealletal.,1996;Zhangetal.,1996;Andersonetal., 2000;Witteetal.,2000;Chakrabartietal.,2001).Tothe

con-traryofthesefindings,astudyindicatedthatDFOwerehighly

toxicandmutagenicirrespectiveofthepresenceorabsence

ofS9inL5178Yratlymphomacells (Whittakeretal.,2001).

Itwasfoundthatdeferipronedidnothaveasmuch

clasto-geniceffectasDFOhad,andledtochromosomefractionless

frequentlythandeferoxamine(Marshalletal.,2003).In

addi-tion,itwasdeterminedthatDFOwasnotclastogenicbyitself,

butincreasedacentricfragmentandringchromosome

forma-tionfrequencyalongwithgammarays(Juckettetal.,1998).

In general, iron chelators remove the excessive iron in

the cell, and thus minimize iron-mediated hydroxyl

radi-cal formation reactions, which reduce the DNA fragments

and proliferative effects caused by the said radical.

How-ever, infew studiesit wasreported thatthe ironchelators

were genotoxic (Juckett et al., 1998;Whittaker et al., 2001;

Marshalletal.,2003).Accordingtotheresultsofthecurrent

study,thedeferasiroxgenerallyincreasedtheSCEfrequency.

Theseincreasesoccurredinthe48htreatmentperiodwithout

metabolicactivatorandathighconcentrationswithmetabolic

activator.Theseresultssuggestthatthetestsubstanceleads

toDNA fragments.ThehighCAfrequenciesemerging

irre-spectiveofthepresenceofmetabolicactivatorsupportthis

theory,too.However,CAvaluesbecameevidentinratbone

marrowcellsinacellcycle(12h),butinthe24hprocess,the

CAsdisappeared.Itcanbeexplainedbyeitherthatthetest

substanceeliminatedfromthebodythroughmetabolization

(thehalf-lifeofthedrugis8–16hfollowingtheoral

applica-tion)orthattheabnormalcellsunderwentselection.

4.2. Cytotoxiceffectofdeferasirox

Accordingtotheproliferationindex(PI)data,thedeferasirox

decreased the replication rate in the absence ofmetabolic

activation most probably as a result of genotoxicity, but

the decrease in the PI value disappeared in the presence

ofthe metabolic activation.Metabolic activation decreased

theantiproliferativeeffectofdeferasirox.Wethinkthatthe

decrease in the replication rate was a slowing down

aris-ing from DNA damage. In connection with this situation,

mitotic index wasdecreased. A similar situation was seen

in thefollowing study (Sedigh-Ardekani et al., 2013). In all

concentrations and application periods of deferasirox, the

mitoticindexesdecreasedconsiderably.Suchslowingdownis

stronglyconsistentwiththeCAresults.However,these

find-ingschangedsomewhatinthetestcarriedoutwithS9mix.In

invivotest,MIvaluesexhibitinverseproportiontotheCA

for-mations.Theseresultsareparallelwiththeresultsofthe

(6)

of chelators. For example, deferiprone functioned as an

antioxidantinastudyonhumanumbilicalveinendothelium

cellsunderinvitroconditions,andthusitwassuggestedthat

itmightreduceatherogenesis(Matthewsetal.,1997).

ItwasfoundthattheapplicationofironsalttotheKaposi

sarcomacell culturesstrongly stimulated the development

inthesaidcells.Thestimulated growthwasinhibitedwith

deferiprone and DFO inthe same culture(Simonart et al.,

1998).

Itwas foundthatsuchchelatorsas1,10-phenanthroline

(OP),desferrioxaminemesylate,and deferipronehada

pro-tectiveeffectagainstthetoxicitycausedbythecompoundof

9,10-phenanthraquinone(PQ)(maincomponentinthediesel

exhaustparticles)inhumanlungepithelialcells.Here,PQled

toiron-mediated oxidative damage(Sugimoto et al., 2005).

Whenthe antiproliferativeeffectsofsuchironchelatorsas

DFXandO-trensoxonhumanhepatocarcinomacelllineand

humanhepatocyteculture were compared, the deferasirox

wasfoundtoplayamoreactiverolethanO-trensoxinthat

itinducedtheDNAfragmentation,inhibitedDNAreplication,

and reduced cell vitality. Itwas reported that these

chela-torsblockaded thecell cycleatthe phasesofG0–G1andS

respectively. Based on theseresults, it was suggestedthat

thedeferasiroxmighthaveaverystrongantitumoraleffect

incancertreatment(Chantrell-Groussardetal.,2006).

Simi-larly,inanotherstudy,itwasstatedthattheprogressofthe

cellcycledependedonintracellularironlevel,andthe

chela-torsreducedcellproliferationthroughremovingiron.Itwas

mentionedthatsuchantiproliferativeeffectcouldbeinhibited

inthe presence ofexogenous iron(Pires et al., 2006). DFO

activatedp53-mediated check points inthe cultured blood

lymphocytes, and stimulated apoptosis in human

periph-eralbloodlymphocytesviamitochondriadamage(Kimetal.,

2007).

Apartfromthat,theHIV-1replicationinducedbyexcessive

ironisinhibitedbyDFObecausethechelatorpreventsthe

pro-liferationofthevirusthroughremovingtheironintheinfected

cells.Itisstronglyrecommendedtofocusonthedevelopment

ofironchelatorsforanti-retroviraldrugsinthefuture(Debebe

etal.,2007).Anotherstudyreportedthatsuchironchelatorsas

DFO,deferasirox,andciclopiroxolamineblockedWntsignal

andcelldevelopmentinthecolorectalcancercellline(Song

etal.,2011).

Accordingtoliterature,DFXismostprominentiron

chela-torascomparedwithotherones.However,thereisnotenough

informationonthegenotoxicprofileofthedeferasirox.Tofill

thisgap,thesetestswereperformedandimportantfindings

wereobtained.Amongsuchfindings,themostimportantone

isthatthedeferasiroxhasaclastogeniccharacter.Apartfrom

that,theagentledtoevidentreductionsinPIandMIvaluesin

parallelwiththegenotoxicityvalues.Basedontheseresults,it

canbesaidthatthetestsubstanceexhibitedan

antiprolifera-tivecharacterassociatedwithgenotoxicity.Thischaracterwas

similarwithsomechemicalagents(mitomycinC,bleomycin,

etc.)usedinthecancertreatment.Itmustberememberedthat

adrugmaytreatthetargetdiseaseononehand,butstimulate

genotoxiceffectsontheotherhand.Althoughsomeimportant

findingswereobtainedinthepresentstudy,thedeferasirox

shouldalsobetestedthroughothertestingsystemsandalong

withtumorcellsinparticular.

Whiledeferasiroxisusedasachelator,owingto

antipro-liferativeeffect, it canbeagoodcandidatetotreatmentof

tumors.

Conflict

of

interest

Theauthorsdeclarethattherearenoconflictsofinterest.

Transparency

document

TheTransparencydocumentassociatedwiththisarticlecan

befoundintheonlineversion.

Acknowledgements

WewishtothanktheCukurovaUniversityScientificResearch

Commissionforsupportingourstudythroughprojectgrants

no.FEF2010D11.WewouldliketothankEbrahimValipourfor

helpingtoeditourmanuscriptlanguagecarefully.

r

e

f

e

r

e

n

c

e

s

Albertini,R.J.,Anderson,D.,Douglas,G.R.,Hagmar,L.,Hemminki,

K.,Merlo,F.,Natarajan,A.T.,Norppa,H.,Shuker,D.E.G.,Tice,

R.,Waters,M.D.,Aitio,A.,2000.IPCSguidelinesforthe

monitoringofgenotoxiceffectsofcarcinogensinhumans. Mutat.Res.463,111–172.

Anderson,D.,Yardley-Jones,A.,Vives-Bauza,C.,Chua-Nusorn,

W.,Cole,C.,Webb,J.,2000.Effectofironsalts,haemosiderins,

andchelatingagentsonthelymphocytesofathalassaemia patientwithoutchelationtherapyasmeasuredinthecomet assay.Teratog.Carcinog.Mutagen.20,251–264.

Andrews,N.,1999.Disordersofironmetabolism.N.Engl.J.Med.

342,364.

Assi,T.B.,Baz,E.,2014.Currentapplicationsoftherapeutic

phlebotomy.BloodTransfus.12,75–83.

Beall,H.D.,Liu,Y.,Siegel,D.,Bolton,E.M.,Gibson,N.W.,Ross,D.,

1996.RoleofNAD(P)H:quinoneoxidoreductase

(DT-diaphorase)incytotoxicityandinductionofDNAdamage bystreptonigrin.Biochem.Pharmacol.51,645–652.

Brıttenham,G.M.,Griffith,P.M.,Nienhuis,A.W.,Mclaren,C.E.,

Young,N.S.,Tucker,E.E.,Allen,C.J.,Farrell,D.E.,Harris,J.W.,

1994.Efficacyofdeferoxamineinpreventingcomplicationsof

ironoverloadinpatientswiththalassemiamajor.N.Engl.J. Med.331,567–573.

Chakrabarti,S.K.,Bai,C.,Subramanian,K.S.,2001.DNA–protein

crosslinksinducedbynickelcompoundsinisolatedrat lymphocytes:roleofreactiveoxygenspeciesandspecific aminoacids.Toxicol.Appl.Pharmacol.170,153–165.

Chantrell-Groussard,K.,Gaboriau,F.,Pasdeloup,N.,Havouıs,R.,

Nick,H.,Pierre,J.L.,Brissot,P.,Lescoat,G.,2006.Thenew

orallyactiveironchelatorICL670Aexhibitsahigher antiproliferativeeffectinhumanhepatocyteculturesthan

O-trensox.Eur.J.Pharmacol.541,129–137.

Coogan,T.P.,Osenblum,I.Y.,Barsotti,D.A.,1986.

Bleomycin-inducedDNA-stranddamageinisolatedmale germcells.Mutat.Res.162,215–218.

Debebe,Z.,Amosova,T.,Jerebtsova,M.,Kurantsin-mılls,J.,Nıu,

X.,Charles,S.,Richardso,D.R.,Ray,P.E.,Gordeuk,V.R.,Nekhai,

S.,2007.IronchelatorsICL670and311inhibitHIV-1

(7)

environmental toxicology and pharmacology 39 (2015)787–793

793

Exjade®ConsumerMedicineInformation

(www.novartis.com.au/CMIPDF/exj.pdf).

Ila,H.B.,Topaktas,M.,Arslan,M.,Buyukleyla,M.,2014.Signsof

deferasiroxgenotoxicity.Cytotechnology66(4),647–654.

Juckett,M.B.,Shadley,J.D.,Zheng,Y.,Klein,J.P.,1998.

Desferrioxamineenhancestheeffectsofgammaradiationon clonogenicsurvivalandtheformationofchromosomal aberrationsinendothelialcells.Radiat.Res.149,330–337.

Kim,B.M.,Choi,J.Y.,Kim,Y.J.,Woo,H.D.,Chung,H.W.,2007.

Desferrioxamine(DFX)hasgenotoxiceffectsoncultured humanlymphocytesandinducesthep53-mediateddamage response.Toxicology229,226–235.

Mace,J.M.L.,Daskal,Y.,Wray,W.,1978.Scanning-electron

microscopyofchromosomeaberrations.Mutat.Res.52, 199–206.

Maron,D.M.,Ames,B.N.,1983.Revisedmethodsforthe

Salmonellamutagenicitytest.Mutat.Res.113,173–215.

Marshall,R.,Tricta,F.,Galanello,R.,Leoni,G.,Kirkland,D.,Minto,

S.,Spino,M.,2003.Chromosomalaberrationfrequenciesin

patientswiththalassaemiamajorundergoingtherapywith deferiproneanddeferoxamineinacomparativecrossover study.Mutagenesis18,457–463.

Matthews,A.J.,Vercellotti,G.M.,Menchaca,H.J.,Bloch,P.H.,

Michalek,V.N.,Marker,P.H.,Murar,J.,Buchwald,H.,1997.Iron

andatherosclerosis:inhibitionbytheironchelatordeferiprone (L1).J.Surg.Res.73,35–40.

Paz-y-Mino,C.,Bustamante,G.,Sanchez,M.E.,Leone,P.E.,2002.

Cytogeneticmonitoringinapopulationoccupationally exposedtopesticidesinEcuador.Environ.HealthPerspect. 110,1077–1080.

OECDTG473,2012.InVitroMammalianChromosomal

AberrationTest.

Pietrangelo,A.,2003.Haemochromatosis.Gut52,ii23–ii30.

Pires,V.S.,Gaboriau,F.,Nascimento,S.,Dassonville,A.,Lescoat,

G.,Desplat,V.,Rochette,J.,Jarry,C.,Sonnet,P.,2006.

Modulationofcellproliferationinratlivercellculturesby newcalixarenes.J.EnzymeInhib.Med.Chem.21,261–270.

Sedigh-Ardekani,M.,Saadat,I.,Saadat,M.,2013.Propranolol

inducedchromosomalaberrationsinChinesehamsterovary cellline.Mol.Biol.Res.Commun.2(1–2),11–18.

Simonart,T.,Noel,J.C.,AndreI.,G.,Parent,D.,VanVooren,J.P.,

Hermans,P.,Lunardi-yskandar,Y.,Lambert,C.,Dieye,T.,

Farber,C.M.,Liesnard,C.,Snoeck,R.,Heenen,M.,Boelaert,

J.R.,1998.Ironasapotentialco-factorinthepathogenesisof

Kaposi’ssarcoma?Int.J.Cancer78,720–726.

Song,S.,Christova,T.,Perusini,S.,Alizadeh,S.,Bao,R.Y.,

Miller,.B.W.,Hurren,R.,Jitkova,Y.,Gronda,M.,Isaac,M.,

Joseph,B.,Subramaniam,R.,Aman,A.,Chau,A.,Hogge,D.E.,

Weir,S.J.,Kasper,J.,Schimmer,A.D.,Al-awar,R.,Wrana,J.L.,

Attisano,L.,2011.Wntinhibitorscreenrevealsiron

dependenceof␤-cateninsignalingincancers.CancerRes.71, 7628–7639.

Speit,G.,1984.Considerationsonthemechanismofdifferential

giemsastainingofbromodeoxyuridine-substituted chromosomes.Hum.Genet.67,264–269.

Speit,G.,Hauper,S.,1985.Onthemechanismofdifferential

giemsastainingofBrdU-substitutedchromosomes.Hum. Genet.70,126–129.

Stinson,T.J.,Jaw,S.,Jeffery,E.H.,Plewa,M.J.,1992.The

relationshipbetweennickelchloride-inducedperoxidation andDNAstrandbreakageinratliver.Toxicol.Appl. Pharmacol.117,98–103.

Sugimoto,R.,Kumagai,Y.,Nakai,Y.,Ishii,T.,2005.

9,10-Phenanthraquinoneindieselexhaustparticles downregulatesCu,Zn-SODandHO-1inhumanpulmonary epithelialcells:intracellularironscavenger

1,10-phenanthrolineaffordsprotectionagainstapoptosis. FreeRadic.Biol.Med.38,388–395.

Topaktas,M.,Rencuzogullari,E.,Ila,H.B.,1996.Invivo

chromosomalaberrationsinbonemarrowcellsofratstreated withmarshal.Mutat.Res.371,259–264.

Wang,T.,Gao,C.,Chen,B.A.,2010.Deferasirox–aneworaliron

chelator–review.ZhongguoShiYanXueYeXueZaZhi18, 1359–1364.

Whittaker,P.,Seifried,H.E.,San,R.H.,Clarke,J.J.,Dunkel,V.C.,

2001.GenotoxicityofironchelatorsinL5178Ymouse

lymphomacells.Environ.Mol.Mutagen.38,347–356.

Witte,I.,Zhu,B.Z.,Lueken,A.,Magnani,D.,Stossberg,H.,

Chevion,M.,2000.Protectionbydesferrioxamineandother

hydroxamicacidsagainsttetrachlorohydroquinone-induced cyto-andgenotoxicityinhumanfibroblasts.FreeRadic.Biol. Med.28,693–700.

Zhang,L.,Bandy,B.,Davison,A.J.,1996.Effectsofmetals,ligands

andantioxidantsonthereactionofoxygenwith 1,2,4-benzenetriol.FreeRadic.Biol.Med.20, 495–505.

Şekil

Table 2 – The in vitro sister chromatid exchange, abnormal cell percentage, CA/cell ratio, proliferation index (PI), and mitotic index (MI) values caused by the deferasirox in the human peripheral lymphocytes in the presence of metabolic activator (S9 mix)
Table 3 – The in vivo abnormal cell percentage, CA/cell ratio, and mitotic index (MI) values caused by the deferasirox in the bone marrow cells of rats.

Referanslar

Benzer Belgeler

Sonuçta olumlu bir çaba olarak okunabilecek metin, örnekler açısından zengin olmakla birlikte belirli alt başlıklarda keyfî davranmakta, kuramsal zemini kurmak- ta zayıf

We investigated the effects of paternal smoking on the frequency of CAs in newborns and analyzed the levels of cotinine in mother’s urine samples to confirm their exposure

ulation with phenotypic variation for salt tolerance, (b) identification of QTLs and markers linked with various micronutrient concentrations and salt tolerance related

Here we showed that physical exercise indeed increases both the mRNA expression and the protein content of AQP7 in cardiac tissue, indicating that exercise not only stimulates

Considering the proposed subgroups, 5-year survival rates in patients with resection were found to be 59% in N1a, 50% in N1b, 54% in N2a1, 43% in N2a2, and 38% in N2b

Yapılan analizde ortaya çıkan anlamlı farklılığın her iki boyutta da lisansüstü eğitimi mezunu öğretmenlerin lehine olduğu saptanmış olup, lisansüstü

STUDY PURPOSE This study intends to understand county and township-level influences on adult health status

CY ve CY+Ver kombinasyonlarının direkt olarak bakteriye uygulanmaları ve bu maddelerin sıçanlara enjeksiyonları sonrasında alınan idrar