• Sonuç bulunamadı

View of Intuitionistic Fuzzy Ideals of M

N/A
N/A
Protected

Academic year: 2021

Share "View of Intuitionistic Fuzzy Ideals of M"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

1777

Intuitionistic Fuzzy Ideals of M

𝛤groups in Near Rings as Maximal Product of Graphs

S K Mala1, M M Shanmugapriya2, S Santhosh Kumar3

1Assistant Professor of Mathematics, KG College of Arts and

Science,Tamil Nadu – 6410351, India. & Research Scholar in Mathematics, Karpagam Academy of Higher Education , Coimbatore. mala.sk@kgcas.com

2Professor in Mathematics, Karpagam Academy of Higher Education ,

Coimbatore -641021. priya.mirdu@gmail.com

3Assistant Professor of Mathematics, Sri Ramakrishna Mission Vidyalaya

College of Arts and Science, Coimbatore – 641020. fuzzysansrmvcas@gmail.com

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 16 April 2021

Abstract: This paper explains about the degree of the vertices in the Maximal product of graphs which represents the IF Ideals of M𝛤groups in Near rings. It also describes various theorems about the characteristics of the vertices in calculating the degrees with an example

Keywords: IF Ideals of M𝛤groups in Near rings, Maximal product of graphs, Degrees of vertices in Maximal product of graphs

1. Introduction

In 1983. G. Pilz [11] introduced and explained the concept of Near rings. After the introduction of Fuzzy set by Zadeh L.A[15], many extended the algebraic concept of Near rings to Fuzzy Near rings. In 1996, S. D. KIM &H. S. KIM [4] extended Fuzzy Ideals of Near rings and also explained their various characteristics by theorems.K. T. Atanassov [1], in 1986 extended Fuzzy sets to IF sets by introducing IF sets .Later A.Jianming et al[2] discussed about IF ideals in near rings in 2005,M.G.Karunambigai et al[6] in 2012, explained various properties of IF graphs with its properties.S.K.Mala et al [7]described IF ideals of M𝛤groups in Near rings in 2018 and later represented them as graph byS.K.Mala et al[8] by explaining its properties in 2019.In 2019, M. Sitara et al [10] introduced Fuzzy graph structures with applications in detail .The maximal product of graphs of IF Ideals of M𝛤groups in Near rings has been discussed by S.K.Mala et al[ 9] in 2020 .

2. Preliminaries Definition: 2.1

Near ring is a non-empty set with two binary operation satisfying i. Group with respective to first operation

ii. Semi group with respect to second operation

iii. Second operation is distributive over the first operation.

Definition: 2.2

Fuzzy set is a crisp set with its elements having membership function. If they have non-membership value along with it satisfying the condition that their sum lies between 0 and 1,is called as anIntuitionistic Fuzzy set.

Definition: 2.3

A Fuzzy set in a near-ring R is called a fuzzy ideal of R if it satisfies: (i) μ (x − y) ≥ min{μ(x), μ(y)}

(ii) μ (y + x − y) ≥ μ(x) iii) μ(xy) ≥ μ(y)

iv. μ ((x + z) y − xy) ≥ μ(z) for all x, y, z ∈ R.

Definition: 2.4

An IF set A of a Near ringis said to beIntuitionistic fuzzy ringif it obeys (i) μA (x – y) > Min {μA(x), μA (y)}

(ii) μA (xy) > Min {μA (x), μA (y)}

(iii) γA (x – y) < Max {γA (x), γA (y)}

(iv) γA (xy) < Max {γA (x), γA (y)}, for all x, y in near ring. Definition: 2.5

Let GI1(VI1, EI1, µI1, γI1) and GI2(VI2, EI2, µI2, γI2) be 2 graphs of intuitionistic fuzzy ideals of M𝛤group in

near rings (IFIM𝛤GNR) I1 and I2 then GI1* GI2 = (VI, EI, µI, γI) is called maximal product graph of intuitionistic

fuzzy ideal of M𝛤group in near rings with structure vertices –

VI = VI1 * VI2 and, edges -EI = {((u1,v1) (u2,v2)) / u1=u2 and v1,v2 ϵ EI2 (or)

(2)

1778

Here µI (u,v) = µI1(u) ˅ µI2 (v) for all (u,v) ϵ VI

and γI (u,v) = γI1 (u) ˄ γI2 (v) for all (u,v) ϵ VI.

Also, µI ((u1,v1) (u2,v2)) = {µI1(u1) ˅ µI2(v1 v2) where u1 = u2& v1 v2 ϵ EI2

µI2 (v2) ˅ µI1(u1 u2) where v1=v2& u1 u2 ϵ EI1

and γI ((u1,v1) (u2,v2)) = {γI1 (u1) ˄ γI2 (v1 v2) where u1 = u2& v1 v2 ϵ EI2

γI2 (v2) ˄ γI1 (u1 u2) where v1=v2& u1 u2 ϵ EI1.

Here EI(edges set) has edges only if either the first coordinates are same, or the second coordinates are same

with an edge existing already in GI1 or GI2.

3. Intuitionistic Fuzzy Ideals of M𝛤groups in Near Rings as Maximal Products of Graph

Let GI1(VI1,EI1I1I1) and GI2(VI2, EI2, µI2, γI2) be two graphs of IFIM𝛤GNR I1 and I2 in near ring N*then,

GI1*GI2 = (VI, EI, µI, γI) is called maximal product structure of IFIM𝛤GNR.

The following theorems explains the degree and total degree of vertices VI of GI1 * GI2. Theorem: 3.1

If GI1 (VI1,EI1I1I1) and GI2 (VI2, EI2, µI2, γI2) are the graphs of IFIM𝛤GNR such that µI1 (ui) ≤ µI2 (uivj) γI1

(ui) ≥ γI2 (vivj) therefore, the vertex degree of maximal product

GI1* GI2 (VI, EI, µI, γI) is given by

DGI1* GI2µI(ui, vj) = DGI1I1 (ui) µI2 (vj) + DGI2 µI2 (vj)

DGI1* GI2γI(ui, vj) = DGI1I1 (ui) γI2 (vj) + DGI2γI2 (vj) Proof

Let G1 (VI1,EI1I1I1) and G2 (VI2, EI2, µI2, γI2) are the graphs of IFIM𝛤GNR such that

µI1(ui) ≤ µI2 (vivj) then µI1 (uivj) ≤ µI2 (vj) and γI1 (ui) ≥ γI2 (vivj) then γI1 (uiuj) ≥ γI2 (vj) for ui∈VI1, uiuj∈EI1,

vi∈VI2, vivj∈EI2.

Therefore, the vertex degree of GI1*GI2 maximal product are:

DGI1* GI2µI (ui, vj) = ∑ µI1 (uiuj) ˅ µI2 (vj) + ∑ µI2 (vivj) ˅ µI1 (ui) and

DGI1* GI2γI (ui, vj) = ∑ γI1 (uiuj) ˄ γI2 (vj) + ∑ γI2 (vivj) ˄ γI1 (ui)

⟹ DGI1* GI2µI (ui, vj) = ∑ µI2 (vj) + ∑ µI2 (vivj) and

DGI1* GI2γI (ui, vj) = ∑ γI2(vj) + ∑ γI2 (vivj)

⟹ DGI1* GI2µI (ui, vj) = DGI1I1 (uiI2 (vj) + DGI2µI2 (vj) and

DGI1* GI2γI (ui, vj) = DGI1I1 (uiI2 (vj) + DGI2 γI2 (vj) Example: 3.2

Consider GI1 (VI1,EI1I1I1) for I1 = {0} of Z3 and GI2 (VI2, EI2, µI2, γI2) for I2 = {0} of Z4 therefore, GI = GI1

* GI2 is a maximal product of GI1 and GI2. This is explained in the following example.

(3)

1779

Figure 2: Graph GI2

Figure 3: Graph GI1 * GI2

The µI value for GI1* GI2 both by theorem and direct calculation are obtained as follows.

By theorem,

DGI1* GI2µI(0, 0) = DGI1* (0)µI2 (0)+ DGI2 µI2 (0)

= 2(0.3) + ( 0.3 + 0.25 + 0.4) = 1.55

DGI1* GI2µI(0, 1) = DGI1* (0)µI2 (1)+ DGI2 µI2 (1)

= 2(0.4) + (0.3) = 1.1

DGI1* GI2µI(0, 2) = DGI1* (0)µI2 (2) +DGI2 µI2 (2)

= 2(0.4) + (0.25) = 1.05

DGI1* GI2µI(0, 3) = DGI1* (0)µI2 (3)+ DGI2 µI2 (3)

(4)

1780

DGI1* GI2µI(1, 0) = DGI1* (1)µI2 (0)+ DGI2 µI2 (0)

= 1(0.3) + (0.3 + 0.25 + 0.4) = 1.25

DGI1* GI2µI(1, 1) = DGI1* (1)µI2 (1)+ DGI2µI2 (1)

= 1(0.4) + (0.3)= 0.7

DGI1* GI2µI(1, 2) = DGI1* (1)µI2 (2)+ DGI2 µI2 (2)

= 1(0.4) + (0.25) = 1.65

DGI1* GI2µI(1, 3) = DGI1* (1)µI2 (3)+ DGI2 µI2 (3)

= 1(0.5) + (0.4) = 0.9

DGI1* GI2µI(2, 0) = DGI1* (2)µI2 (0)+ DGI2 µI2 (0)

= 1(0.3) + (0.3 + 0.25 + 0.4) = 1.25

DGI1* GI2µI(2, 1) = DGI1* (2)µI2 (1) +DGI2 µI2 (1)

= 1(0.4) + (0.3) = 0.7

DGI1* GI2µI(2, 2) = DGI1* (2)µI2 (2)+ DGI2 µI2 (2)

= 1(0.4) + (0.25) = 1.65

DGI1* GI2µI(2, 3) = DGI1* (2)µI2 (3)+ DGI2 µI2 (3)

= 1(0.5) + (0.4) = 0.9 By direct calculation, DGI1* GI2µI(0, 0) = 0.25 + 0.3 + 0.4 + 0.3 +0.3 = 1.55 DGI1* GI2µI(0, 1) = 0.3 + 0.4 + 0.4 = 0.1 DGI1* GI2µI(0, 2) = 0.4 + 0.25 +0.4 = 1.05 DGI1* GI2µI(0, 3) = 0.5 + 0.5 + 0.4 = 1.4 DGI1* GI2µI(1, 0) = 0.25 + 0.4 + 0.3 + 0.3 = 1.25 DGI1* GI2µI(1, 1) = 0.3 + 0.4 = 0.7 DGI1* GI2µI(1, 2) = 0.25 + 0.4 = 0.65 DGI1* GI2µI(1, 3) = 0.4 + 0.5 = 0.9 DGI1* GI2µI(2, 0) = 0.4 + 0.25 + 0.3 + 0.3 = 1.25 DGI1* GI2µI(2, 1) = 0.4 + 0.3 = 0.7 DGI1* GI2µI(2, 2) = 0.4 + 0.25 = 0.65 DGI1* GI2µI(2, 3) = 0.5 + 0.4 = 0.9

Similarly, the γI value forGI1* GI2 both by theorem and direct calculation are obtained as follows:

By theorem,

DGI1* GI2γI(0, 0) = DGI1* (0)γI2 (0)+ DGI2 γI2 (0)

= 2(0.2) + (0.15 + 0.2 + 0.3) = 1.05

DGI1* GI2γI(0, 1) = DGI1* (0)γI2 (1)+ DGI2 γI2 (1)

= 2(0.2) + (0.15) = 0.55

DGI1* GI2γI(0, 2) = DGI1* (0)γI2 (2)+ DGI2 γI2 (2)

= 2(0.3) + (0.2) = 0.8

DGI1* GI2γI(0, 3) = DGI1* (0)γI2 (3)+ DGI2 γI2 (3)

= 2(0.4) + (0.3) = 1.1

DGI1* GI2γI(1, 0) = DGI1* (1)γI2 (0)+ DGI2γI2 (0)

= 1(0.2) + (0.15 + 0.2 + 0.3) = 0.85

DGI1* GI2γI(1, 1) = DGI1* (1)γI2 (1)+ DGI2γI2 (1)

= 1(0.2) + (0.15) = 0.35

DGI1* GI2γI(1, 2) = DGI1* (1)γI2 (2)+ DGI2 γI2 (2)

= 1(0.3) + (0.2) = 1.5

DGI1* GI2γI(1, 3) = DGI1* (1)γI2 (3)+ DGI2 γI2 (3)

= 1(0.4) + (0.3)= 0.7

DGI1* GI2γI(2, 0) = DGI1* (2)γI2 (0)+ DGI2 γI2 (0)

= 1(0.2) + (0.15 + 0.2 + 0.3) = 0.85

DGI1* GI2γI(2, 1) = dGI1* (2)γI2 (1)+ dGI2 γI2 (1)

= 1(0.2) + (0.15)= 0.35

(5)

1781 = 1(0.3) + (0.2) = 0.5

DGI1* GI2γI(2, 3) = dGI1* (2)γI2 (3)+ dGI2 γI2 (3)

= 1(0.4) + (0.3) = 0.7 By direct calculation, DGI1* GI2γI(0, 0) = 0.2 + 0.3 + 0.2 + 0.2 +0.15 = 1.05 DGI1* GI2γI(0, 1) = 0.2 + 0.2 + 0.15 = 0.55 DGI1* GI2γI(0, 2) = 0.3 + 0.3 +0.2 = 0.8 DGI1* GI2γI(0, 3) = 0.3 + 0.4 + 0.4 = 1.1 DGI1* GI2γI(1, 0) = 0.2 + 0.2 + 0.3 + 0.15 = 1.85 DGI1* GI2γI(1, 1) = 0.15 + 0.2 = 0.35 DGI1* GI2γI(1, 2) = 0.2 + 0.3 = 0.5 DGI1* GI2γI(1, 3) = 0.4 + 0.3 = 0.7 DGI1* GI2γI(2, 0) = 0.15 + 0.2 + 0.2 + 0.3 = 0.85 DGI1* GI2γI(2, 1) = 0.2 + 0.15 = 0.35 DGI1* GI2γI(2, 2) = 0.3 + 0.2 = 0.5 DGI1* GI2γI(2, 3) = 0.3 + 0.4 = 0.7 Theorem:3.3

If GI1 (VI1,EI1I1I1) and GI2 (VI2, EI2, µI2, γI2) are the graphs of IFIM𝛤GNR such that µI1 (ui) ≤ µI2(vivj)

γI1(ui) ≥ γI2(vivj) and function µI2(vj) is a constant “C1” and function γI2 is a constant “C2”. Therefore, the vertex

degree in GI1 * GI2 maximal product graph of IFIM𝛤GNR is given by DGI1* GI2µI (ui, vj) = D*GI1µI1 (ui) . C1 +

DGI2µI2 (vj) and DGI1* GI2γI (ui, vj) = D*GI1 γI1 (ui). C2 + DGI2γI2 (vj) Proof

If GI1 (VI1,EI1I1I1) and GI2 (VI2, EI2, µI2, γI2) are the graphs of IFIM𝛤GNR in such a way thatµI1 (ui) ≤ µI2

(vivj) and γI1 (ui) ≥ γI2 (vivj) for i, j =1 to n. Here µI2 (vj) = C1 and γI2 (vj) = C2. Also, µI1(ui) ≤ µI2 (vivj) ⟹µI1

(uiuj) ≤ µI2 (vj) and γI1 (ui) ≥ γI2 (vivj) ⟹γI1 (uiuj) ≥ γI2 (vj) for i, j =1 to n.

Therefore, the vertex degree in GI1 * GI2 maximal product is

DGI1* GI2µI(ui, vj) = ∑ µI1 (uiuj) ˅ µI2 (vj) + ∑ µI2 (vi, vj) ˅ µI1 (ui)

= ∑ µI2 (vj) + ∑ µI2 ( vivj)

= D*GI1µI2 (ui).C1 + DGI2 µI2 (vj)

Also, DGI1* GI2γI(ui, uj) = ∑ γI1 (uiuj) ˄ γI2 (vj) + ∑ γI2 (vi, vj) ˄ γI1 (ui)

= ∑ γI2 (vj) + ∑ γI2 (vivj) =D*GI1γI2 (ui).C2 + DGI2γI2 (vj) Theorem :3.4

If GI1 (VI1, EI1, µI1, γI1) and GI2 (VI2, EI2, µI2, γI2) are the graphs of IFIM𝛤GNR, I1 and I2 such that µI2 (vj) ≤

µI1(uivj) and γI2 (vj) ≥ γI1 (vivj) Therefore, the vertex degree in GI1 * GI2 maximal product graph is given by

DGI1* GI2µ(ui, vj) = D*GI2µI2 (vj) µI1(ui) + DGI1µI1 (ui)

DGI1* GI2γ(ui, vj) = D*GI2γI2 (vj) γI1(ui) + DGI1γI1 (ui) Proof

If GI1 (VI1,EI1I1I1) and GI2 (VI2, EI2, µI2, γI2) are the graphs of IFIM𝛤GNR, I1 and I2 so that µI2 (uj) ≤ µI1

(uiuk) ⟹µI2 (vivj) ≤ µI1 (ui) for i, j =1 to n and

γI2 (uj) ≥ γI1 (uiuk) ⟹γI2 (vivj) ≥ γI1 (ui).

Therefore, the vertex degree of maximal product GI1*GI2 is

DGI1* GI2µI (uivj) = ∑ µI1 (uiuk) ˅ µI2 (vj) + ∑ µI2 (vivj) ˅ µI1 (ui)

⟹ DGI1* GI2µI (ui, vj) = ∑ µI1 (uiuk) + ∑ µI1 (ui)

= DGI1µI1 (ui) + D*GI2 µI2 (vj) µI1 (ui)

Similarly, DGI1* GI2 γI (uivj) = ∑ γI1 (uiuk) ˄ γI2 (vj) + ∑ γI2 (vivj) ˄ γI1 (ui)

⟹ DGI1* GI2γI (ui, vj) = ∑ γI1 (uiuk) + ∑ γI1 (ui)

= DGI1γI1 (ui) + D*GI2γI2 (vj) γI1 (ui) 4. Conclusion

The degree of maximal product of two graphs of IF Ideals of M𝛤groups in Near rings are explained by theorems and verified through an example .This can be further extended in Intuitionistic fuzzy graph which has wider applications in the modern scientific world.

(6)

1782

5. References

1. K. T. Atanassov IF sets, Fuzzy set and systems, 20 (1986), 87–96.

2. Z. Jianming and M. Xueling Intuitionistic fuzzy ideals of near rings, International 3. Society for Mathematical Sciences, 61(2005), 219–223.

4. Y. B. Jun, M. Sapanci and M. A. Ozturk Fuzzy ideals in gamma near-rings, Turk.J.Math., 22(1998), 449–459.

5. S. D. Kim and H. S. Kim Fuzzy ideals of near-rings, Bull. Korean Mathematical Society,33(4) (1996), 593–601.

6. M. G. Karunambigai, R. Parvathi and R. Buvaneswari Arcs in Intuitionistic fuzzy graphs, Notes on Intuitionistic fuzzy sets, 18(4) (2012), 48–58.

7. M. G. Karunambigai, R. Parvathi and R. Buvaneswari Intuitionistic fuzzygraphs, Notes on Intuitionistic fuzzy sets, 18(4)(2012), 48–58.

8. S. K. Mala, and M. M. Shanmugapriya IF ideals of M𝛤groups, International Journal of Mathematical Archieve, 9(1) (2018), 114–122.

9. S. K. Mala, and M. M. Shanmugapriy A Graph of an IF ideals inM𝛤groups of Near rings.IJITEE 8 (2019) 3154-3157

10. S Santhosh Kumar Algebraic Properties of Intuitionistic fuzzy set operators International Journal Of Mathematical Archive-9

11. Uzzmal Sitara, Muhammad Akram and Muhammad Yousaf Bharth Fuzzygraph structures with application, 7(2019).

12. G. Pilz: Near-Rings, Revised edition, North Holland, 1983.

13. Rosenfeld Fuzzy graphs, Fuzzy sets and their application to cognitive and decisionprocess. Academic Press, New York, (1975), 77–95.

14. Satyanarayana and K. S. Prasad:Near rings fuzzy ideals, and graph theory, CRCpress, 305(312) (2013), 335–344.

15. P. K. Sharma Intuitionistic fuzzy representations of intuitionistic fuzzy groups, Asian 16. Journal of Fuzzy and Applied Mathematics, (2015).

17. L. A. Zadeh Fuzzy sets. In Fuzzy Sets, Fuzzy Logic and Fuzzy Systems, (1996), 338–353. 18. J. Zhan And Xueling IF ideals of nearrings, Scientiae MathematicaeJaponicae,

Referanslar

Benzer Belgeler

Oktaş Hazır Beton bugüne kadar Uşak Belediyesi, UDAŞ Uşak Doğalgaz Dağıtım A.Ş, Bereket Enerji Üretim A.Ş, Sönmez Elektrik Üretim San.. A.Ş., Uşak

27 Ekim tarihinde açılan sergi­ de, dünyanın en ünlü yayın kuru­ luşları arasında yer alan National Geographic Magazine’in arşivle­ rinden derlenen, bir

Belki varlı­ ğını ancak sezdiği güzellikleri ara­ yan, bulamadığı için hüzünlü, yine bulamadığı, ya da sadece bulmak ümidiyle yaşadığı için bahtiyar

Bu böyle, sana tuhaf bir şey daha söyleyeyim: Müzehher’den son aldığım mektupta, şair Asaf Halet Çelebi’den -biraz alayla- bahsediyor ve karısına

Bilim ve teknolojinin hızla geliştiği çağımızda alçılı vitray, yerini giderek yeni tekniklere bırakmakta, Selçuklu ve Osmanlı Dönemi'nde olduğu gibi yaygın

The spirit has a big role in writing symbolist plays. It is individuality itself and old fairy tales and myths contribute to removing materialism from the self. The

Aziz Nesin, yaşamı boyunca uğradığı haksızlıkla­ rın en büyüğü, en inanılmazı ile Sivas olayında kar­ şılaştı: Otuz yedi aydının yakılmasını azgın kalaba­

Fransa’ daki gösteriler daha çok Türkiye'nin Avrupa ile arasını açma hedefine yöneltilirken, Atina'daki miting doğrudan doğruya Türkiye ile Yunanistan