• Sonuç bulunamadı

View of Coefficient Estimates of a New Subclass of Biunivalent Functions

N/A
N/A
Protected

Academic year: 2021

Share "View of Coefficient Estimates of a New Subclass of Biunivalent Functions"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1780-1785

Research Article

1780

Coefficient Estimates of a New Subclass of Biunivalent Functions

N. Shekhawat

1

, P. Goswami

2

,R.S. Dubey

1Department of Mathematics, Amity University, Jaipur, India. 2School of Liberal Studies, Ambedkar University, Delhi, India. 3Department of Mathematics, Amity University, Jaipur, India.

1neetushekhawat1723@gmail.com, 2pranaygoswami83@gmail.com,3 ravimath13@gmail.com

Article History Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

April 2021 8

online: 2

Abstract. In this paper, we try to extend and obtain some more results inspired by P. Goswami and Aljouiee [9]. Here we are introducing a new subclass of biunivalent functions by using q-derivative operator, quasi-subordination and convolution analytic bi-univalent functions. Also we find both some initial and general coefficient bounds.

Keywords. Univalent Functions, Convex and q-convex Functions, Starlike and q-starlike Functions, q-number and Generalized Confluent Hypergeometric Function

1. Introduction and Preliminary

Let 𝑓(𝑧) be analytic and univalent in △. Then, since 𝑓′(0) ≠ 0, the function

𝑓(𝑧) = 𝑧 + ∑𝑛=2𝑎𝑛𝑧𝑛. (1.1)

In the open unit disk △defined as △= {𝑧: 𝑧 ∈ 𝐶and |𝑧| < 1}, these functions are analytic and follows the normalization condition 𝑓(0) = 𝑓′(0) − 1 = 0

Assume subclass S of A to be univalent in △. According to koebe one quarter theorem [1], all the functions belonging to S has their inverse in △.Therefore if 𝑓 ∈ 𝑆, then we have 𝑓−1defined as

𝑓−1(𝑓(𝑧)) = 𝑧, (𝑧 ∈△) and 𝑓−1(𝑓(𝑤)) = 𝑤, (|𝑤| < 𝑟 0(𝑓); 𝑟0(𝑓) ≥ 1 4) where 𝑓−1(𝑤) = 𝑤 − 𝑎 2𝑤2+ (2𝑎2− 𝑎3)𝑤3− (5𝑎23− 5𝑎2𝑎3+ 𝑎4)𝑤4+. .. (1.2)

𝑓 is said to be biunivalent function if its inverse

𝑓−1 is also univalent in △. We denote the class of biunivalent function by symbol 𝜎.

Suppose M is class having functions which are of the form,

𝜙(𝑧) = 1 + ∑𝑛=1𝜙𝑛𝑧𝑛 (1.3) and are also regular in △.

Definition 1.1. [2] Let 𝑃𝑚(𝛾) denote the class of analytic functions 𝐾(𝑧) in △, satisfying the properties 𝐾(0) = 1, and ∫ |𝑅𝐾(𝑧) − 𝛾 1 − 𝛾 | 2𝜋 0 𝑑𝜃 ≤ 𝑚𝜋, where 𝑧 = 𝑟𝑒𝑖𝜃, 𝑚 ≥ 2𝑎𝑛𝑑0 ≤ 𝛾 < 1.

For 𝑚 = 2, 𝑃2(𝛾) = 𝑃(𝛾). When 𝛾 = 0, 𝑃𝑚(𝛾) reduces to the class 𝑃𝑚(0) = 𝑃𝑚, defined by Pinchuk [3]. And with the help of this we get the class 𝑃2(0) = 𝑃of caratheodory function of positive real parts.

Many mathematicians have worked in the field of biunivalent functions and obtained interesting results. The class σ of biunivalent functions was first investigated by Lewin [4]. He also found the bound for second coefficient. Certain subclasses of biunivalent functions similar to the subclasses of starlike, strongly starlike and convex functions are studied by Brannan and Taha [5].

In recent years, various researchers like Goyal and Goswami [8], Ali et al. [6], Aljouiee et al. [9], Srivastava et al. [7] have worked on the subclasses of bi-univalent functions and found the initial coefficient bounds.

Robertson [10], in 1970, introduced concept of quasi-subordination which is defined as follows:

Definition 1.2. If 𝑓(𝑧) and 𝐾(𝑧) be analytic function in △, them 𝑓(𝑧) is quasi-subordinate to 𝐾(𝑧) in △,i.e.

𝑓(𝑧) ≺𝑞𝐾(𝑧), (𝑧 ∈△)

if there exist an analytic function 𝜓, (|𝜓(𝑧)| ≤ 1), such that (𝑓(𝑧)

𝜓(𝑧))is analytic in △,and (𝑓(𝑧)

𝜓(𝑧)) ≺ 𝐾(𝑧), (𝑧 ∈△)

i.e. there exist the Schwarz function 𝑤(𝑧) such that

𝑓(𝑧) = 𝜓(𝑧). 𝐾(𝑤(𝑧))

And we know from [1] that 𝑓(𝑧) is subordinate to 𝐾(𝑧)𝑖. 𝑒. 𝑓(𝑧) ≺ 𝐾(𝑧), if there exist a Schwarz functions 𝑤(𝑧) in △ such that 𝑓(𝑧) = 𝐾(𝑤(𝑧)), with 𝑤(0) = 0and |𝑤(𝑧)| < 1, (𝑧 ∈△).

(2)

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1780-1785

Research Article

1781

Jacson [11], in 1908, introduced the concept of q-derivative, which is defined as follows:

Definition 1.3. The q-derivative of a function 𝑓is defined on a subset of 𝐶is given by (𝐷𝑞𝑓)(𝑧) =

𝑓(𝑧)−𝑓(𝑧𝑞)

(1−𝑞)𝑧 , (𝑧 ≠ 0) (1.4) and(𝐷𝑞𝑓)(𝑧) = 𝑓′(0) provided 𝑓′(0) exists.

If 𝑓is differential, then

𝑙𝑖𝑚 𝑞→1−(𝐷𝑞𝑓)(𝑧) = 𝑙𝑖𝑚𝑞→1− 𝑓(𝑧)−𝑓(𝑧𝑞) (1−𝑞)𝑧 = 𝑑𝑓(𝑧) 𝑑𝑧 , From (1.4) and (1.1), we get

(𝐷𝑞𝑓)(𝑧) = 1 + ∑𝑛=2[𝑛]𝑞𝑎𝑛𝑧𝑛−1 (1.5)

Where [𝑛]𝑞 = 1−𝑞𝑛

1−𝑞 , (𝑞 ≠ 1)

Definition 1.4. If 𝑓(𝑧) be a function defined by (1.1), then for any function𝑙(𝑧) of the form, 𝑙(𝑧) = 𝑧 + ∑ 𝑙𝑛𝑧𝑛

𝑛=2 Convolution of 𝑓(𝑧) and 𝑙(𝑧) is defined by,

(𝑓 ∗ 𝑙)(𝑧) = 𝑧 + ∑𝑛=2𝑎𝑛𝑙𝑛𝑧𝑛, 𝑧 ∈△ (1.6)

Sahsene Altinkaya [11] in 2018 introduced the class 𝑇𝜎(𝑞,⋋) and obtain the upper bounds for coefficient of functions of this subclass.

A function 𝑓 ∈ 𝜎is in 𝑇𝜎(𝑞,⋋), (⋋≥ 1) if satisfy the condition as follows:

(1 −⋋)

𝑓(𝑧)

𝑧

+⋋ (𝐷

𝑞

𝑓)(𝑧) ≺

𝑞

𝜓(𝑧)

And

(1 −⋋)

𝐹(𝑤)𝑤

+⋋ (𝐷

𝑞

𝐹)(𝑤) ≺

𝑞

𝜓(𝑤)

where 𝐹 = 𝑓−1, and 𝜓 ∈ 𝑀be univalent in △and 𝜓 (△) be symmetrical about the real axes with 𝜓′(0) > 0. Definition 1.5. Let 𝜓 ∈ 𝑀be an univalent function in △and let 𝜓(△) be symmetrical about the real axis with 𝜓′(0) > 0. A function 𝑓 ∈ 𝜎, is in the class 𝑀𝜎𝛼(𝑞,⋋), (⋋≥ 1, 𝛼 ∈ 𝑅), if it satisfy the conditions given below:

(1 −⋋) (𝑓(𝑧) 𝑧 ) 𝛼 +⋋ ((𝐷𝑞𝑓)(𝑧)) 𝛼 ≺𝑞𝜓(𝑧), (𝑧 ∈△) (1.7) and (1 −⋋) (𝐹(𝑤) 𝑤 ) 𝛼 +⋋ ((𝐷𝑞𝐹)(𝑤)) 𝛼 ≺𝑞𝜓(𝑤), (𝑤 ∈△) (1.8) where 𝐹 = 𝑓−1

Considering these definitions, we will define a new subclass of bi-univalent functions by q-derivative and convolution, and also obtain general and initial coefficient bounds by means of Taylor expansion formula.

1. Main Results

Lemma 2.1. [3] Suppose 𝜉be a function defined by 𝜉(𝑧) = 1 + ∑∞𝑛=1𝑐𝑛𝑧𝑛is convex in △. If 𝜉(𝑧) ∈ 𝑃𝑚, then |𝑐𝑛| ≤ 𝑚, (𝑚 ∈ 𝑁)

Definition 2.1.A function 𝑓(𝑧) ∈ 𝜎, is said to be in class 𝑀𝜎𝛼(𝑓, 𝑙;⋋; 𝑡), 𝑓𝑜𝑟 ⋋≥ 0, 𝑡 ∈ (1/2,1], 𝛼 ∈ 𝑅, if the following condition is satisfied:

(1 −⋋) ((𝑓 ∗ 𝑙)(𝑧) 𝑧 ) 𝛼 +⋋ ((𝐷𝑞(𝑓 ∗ 𝑙))(𝑧)) 𝛼 ≺𝑞𝜓(𝑧), (𝑧 ∈△) and (1 −⋋) ((𝐹 ∗ 𝑙)(𝑤) 𝑤 ) 𝛼 +⋋ ((𝐷𝑞(𝐹 ∗ 𝑙))(𝑤)) 𝛼 ≺𝑞𝜓(𝑤), (𝑤 ∈△) where𝐹 = 𝑓−1.

This is very clear from the above definition that 𝑓 ∈ 𝑀𝜎𝛼(𝑓, 𝑙;⋋; 𝑡), if there exist a function ℎ(|ℎ(𝑧)| ≤ 1), satisfying following conditions:

(1−⋋)((𝑓∗𝑙)(𝑧)𝑧 )

𝛼

+⋋((𝐷𝑞(𝑓∗𝑙))(𝑧))𝛼

ℎ(𝑧) ≺ 𝜓(𝑧), (𝑧 ∈△) (2.1)

(3)

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1780-1785

Research Article

1782

(1−⋋)((𝐹∗𝑙)(𝑤) 𝑤 ) 𝛼 +⋋((𝐷𝑞(𝐹∗𝑙))(𝑤))𝛼 ℎ(𝑤) ≺ 𝜓(𝑤), (𝑤 ∈△) (2.2)

where 𝐹 = 𝑓−1. Here we suppose that 𝜓 ∈ 𝑀is of the form

𝜓(𝑧) = 1 + 𝑐1𝑧 + 𝑐2𝑧2+. . . , (𝑐𝑛> 0, 𝑧 ∈△) and the function h analytic in △is taken as

ℎ(𝑧) = 𝑋0+ 𝑋1𝑧 + 𝑋2𝑧2+. . . , (|ℎ(𝑧)| ≤ 1, 𝑧 ∈△) Now our main results are as follows:

Theorem 2.1. Let f be function given by (1.1) be in the class 𝑀𝜎𝛼(𝑓, 𝑙;⋋; 𝑡), if 𝑎𝑚= 0, for 2 ≤ 𝑚 ≤ 𝑛 − 1, then |𝑎𝑛| ≤ 𝑐1+|𝑋𝑛−1| 𝛼[1+([𝑛]𝑞−1)⋋]|𝑙𝑛|, (𝑛 > 3). Proof: We have 𝑓(𝑧) = 𝑧 + ∑ 𝑎𝑛𝑧𝑛 𝑛=2 , 𝑙(𝑧) = 𝑧 + ∑ 𝑙𝑛𝑧𝑛 𝑛=2 , so (𝑓 ∗ 𝑙)(𝑧) = 𝑧 + ∑ 𝑎𝑛𝑙𝑛𝑧𝑛 𝑛=2 Now [(𝑓 ∗ 𝑙)(𝑧) 𝑧 ] 𝛼 = [1 + ∑ 𝑎𝑛𝑙𝑛𝑧𝑛−1 𝑛=2 ] 𝛼 and [(𝐷𝑞(𝑓 ∗ 𝑙))(𝑧)] 𝛼 = [1 + ∑[𝑛]𝑞𝑎𝑛𝑙𝑛𝑧𝑛−1 𝑛=2 ] 𝛼 Denoting 𝑁(𝑧) = ((𝑓∗𝑙)(𝑧) 𝑧 ) 𝛼 ; 𝑄(𝑧) = [(𝐷𝑞(𝑓 ∗ 𝑙))(𝑧)]𝛼; 𝑉(𝑤) = ((𝐹∗𝑙)(𝑤) 𝑤 ) 𝛼 ; 𝑊(𝑤) = [(𝐷𝑞(𝐹 ∗ 𝑙))(𝑤)]𝛼. Then we have (1 −⋋)𝑁(𝑧) +⋋ 𝑄(𝑧) ≺𝑞 𝜓(𝑧), (2.3) and (1 −⋋)𝑉(𝑤) +⋋ 𝑊(𝑤) ≺𝑞 𝜓(𝑤), (2.4)

By Taylor expansion formula we obtain 𝑁(𝑧) = ((𝑓 ∗ 𝑙)(𝑧) 𝑧 ) 𝛼 = 𝑁(0) + 𝑧𝑁′(0) +𝑧 2 2!𝑁′′(0)+. . . + 𝑧𝑛 𝑛!𝑁 (𝑛)(0)+. .. We can calculate 𝑁(0) = 1, 𝑁′(0) = 𝛼𝑎2𝑙2 𝑁′′(0) = 𝛼(𝛼 − 1)(𝑎2𝑙2)2+ 2𝛼𝑎3𝑙3 𝑁′′′(0) = 𝛼(𝛼 − 1)(𝛼 − 2)(𝑎2𝑙2)3+ 6𝛼(𝛼 − 1)𝑎2𝑎3𝑙2𝑙3+ 3! 𝛼𝑎4𝑙4 𝑁(𝑛−1)(0) = 𝐵(𝛼(𝛼 − 1)(𝛼 − 2). . . (𝛼 − 𝑛 + 1), 𝑎 2, 𝑎3, . . . , 𝑎𝑛−1, 𝑙2, 𝑙3, . . . 𝑙𝑛−1,) + 𝛼(𝑛 − 1)! 𝑎𝑛𝑙𝑛, where 𝐵(𝛼(𝛼 − 1)(𝛼 − 2). . . (𝛼 − 𝑛 + 1), 𝑎2, 𝑎3. . . , 𝑎𝑛−1, 𝑙2, 𝑙3, . . . 𝑙𝑛−1, ) is the sum of the functions formed by the product of 𝛼(𝛼 − 1)(𝛼 − 2). . . (𝛼 − 𝑛 + 1), 𝑎2, 𝑎3. . . , 𝑎𝑛−1, 𝑙2, 𝑙3, . . . 𝑙𝑛−1and atleast one of the product factor is 𝑎𝑖𝑙𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 1, 𝑠𝑜 𝑁(𝑧) = 1 + 𝛼𝑎2𝑙2𝑧 + 𝑧2 2![𝛼(𝛼 − 1)𝑎2 2𝑙 22+ 2𝛼𝑎3𝑙3] +𝑧3 3![𝛼(𝛼 − 1)(𝛼 − 2)𝑎2 3𝑙 23+ 3! 𝛼(𝛼 − 1)𝑎2𝑎3𝑙2𝑙3+ 3! 𝛼𝑎4𝑙4]+. .. +(𝑛−1)!𝑧𝑛−1 [𝐵(𝛼(𝛼 − 1)(𝛼 − 2). . . (𝛼 − 𝑛 + 1), 𝑎2, 𝑎3, . . . , 𝑎𝑛−1, 𝑙2, 𝑙3, . . . 𝑙𝑛−1) + 𝛼(𝑛 − 1)! 𝑎𝑛𝑙𝑛]+. .. (2.5) Now,

(4)

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1780-1785

Research Article

1783

𝑄(𝑧) = [(𝐷𝑞(𝑓 ∗ 𝑙))(𝑧)]𝛼= [1 + ∑[𝑛]𝑞𝑎𝑛𝑙𝑛𝑧𝑛−1 𝑛=2 ] 𝛼 = [1 + [2]𝑞𝑎2𝑙2𝑧1+ [3]𝑞𝑎3𝑙3𝑧2+. . . ]𝛼 By Taylor expansion formula,

𝑄(𝑧) = 𝑄(0) + 𝑧𝑄′(0) +𝑧 2 2!𝑄′′(0)+. . . + 𝑧𝑛 𝑛!𝑄 (𝑛)(0)+. .. By calculations, we get 𝑄(0) = 1, 𝑄′(0) = 𝛼[2]𝑞𝑎2𝑙2, 𝑄′′(0) = 𝛼(𝛼 − 1)([2]𝑞𝑎2𝑙2) 2 + 2𝛼[3]𝑞𝑎3𝑙3, 𝑄′′′(0) = 𝛼(𝛼 − 1)(𝛼 − 2)([2]𝑞𝑎2𝑙2) 3 + 6𝛼(𝛼 − 1)([2]𝑞𝑎2𝑙2)([3]𝑞𝑎3𝑙3) + 3! 𝛼([4]𝑞𝑎4𝑙4), … 𝑄(𝑛−1)(0) = 𝑌(𝛼(𝛼 − 1)(𝛼 − 2). . . (𝛼 − 𝑛 + 1), 𝑎 2, 𝑎3, . . . , 𝑎𝑛−1, 𝑙2, 𝑙3, . . . 𝑙𝑛−1) + 𝛼(𝑛 − 1)! [𝑛]𝑞𝑎𝑛𝑙𝑛, Therefore, we get 𝑄(𝑧) = 1 + (𝛼[2]𝑞𝑎2𝑙2)𝑧 + 𝑧2 2!(𝛼(𝛼 − 1)([2]𝑞𝑎2𝑙2) 2+ 2𝛼[3] 𝑞𝑎3𝑙3)+. .. + 𝑧𝑛−1 (𝑛+1)![𝑌(𝛼(𝛼 − 1)(𝛼 − 2). . . (𝛼 − 𝑛 + 1), 𝑎2, 𝑎3, . . . , 𝑎𝑛−1, 𝑙2, 𝑙3. . . 𝑙𝑛−1) + 𝛼(𝑛 − 1)! [𝑛]𝑞𝑎𝑛𝑙𝑛]+. .. (2.6) where 𝑌(𝛼(𝛼 − 1)(𝛼 − 2). . . (𝛼 − 𝑛 + 1), 𝑎2, 𝑎3, . . . , 𝑎𝑛−1, 𝑙2, 𝑙3. . . 𝑙𝑛−1) the sum of the functions formed by the product of 𝛼(𝛼 − 1)(𝛼 − 2). . . (𝛼 − 𝑛 + 1), 𝑎2, 𝑎3, . . . , 𝑎𝑛−1, 𝑙2, 𝑙3. . . 𝑙𝑛−1and at least one of the product factors is 𝑎𝑖𝑙𝑖, 2 ≤ 𝑚 ≤ 𝑛 − 1,

Using (2.5) and (2.6) in (2.3), the coefficients of

z

n−1

,

if

𝑎𝑚= 0for 2 ≤ 𝑖 ≤ 𝑛 − 1, is given by [1 + ([𝑛]𝑞− 1) ⋋]𝛼𝑎𝑛𝑙𝑛

Similarly, we can find the coefficient of 𝑤𝑛−1 in (2.4), i.e. [1 + ([𝑛]𝑞− 1) ⋋]𝛼𝑏𝑛𝑙𝑛

Where

𝐹(𝑤) = 𝑤 + ∑∞𝑛=2𝑏𝑛𝑤𝑛, 𝐹 = 𝑓−1

From definition (2.2), it is clear that there exist two Schwarz functions 𝜙(𝑧) = ∑∞𝑛=1𝑑𝑛𝑧𝑛and 𝜑(𝑤) = ∑𝑛=1𝑠𝑛𝑤𝑛, |𝑑𝑛|≤ 1, |𝑠𝑛| ≤ 1, such that (1 −⋋) [(𝑓∗𝑙)(𝑧) 𝑧 ] 𝛼 +⋋ [(𝐷𝑞(𝑓 ∗ 𝑙))(𝑧)] 𝛼 = ℎ(𝑧)𝜓(𝜙(𝑧)), (2.7) and (1 −⋋) [(𝐹∗𝑙)(𝑤) 𝑤 ] 𝛼 +⋋ [(𝐷𝑞(𝐹 ∗ 𝑙))(𝑤)] 𝛼 = ℎ(𝑤)𝜓(𝜙(𝑤)), (2.8)

Thus from definition (2.2), and (2.7)

[1 + ([𝑛]𝑞− 1) ⋋]𝛼𝑎𝑛𝑙𝑛= 𝑋𝑛−1+ ∑𝑡=1∞ ∑𝑘=1∞ 𝑐𝑘△𝑘𝑛(𝑑1, 𝑑2, . . . 𝑑𝑛). 𝑋𝑛−(𝑡+1),(𝑋0= 1) (2.9) Similarly by definition (2.2) and (2.8), we get

[1 + ([𝑛]𝑞− 1) ⋋]𝛼𝑏𝑛𝑙𝑛= 𝑋𝑛−1+ ∑ ∑ 𝑐𝑘△𝑛𝑘 ∞ 𝑘=1 ∞ 𝑡=1 (𝑠1, 𝑠2...,𝑠𝑛). 𝑋𝑛−(𝑡+1), For𝑎𝑚= 0, (2 ≤ 𝑚 ≤ 𝑛 − 1), we have 𝑏𝑛= −𝑎𝑛and so

𝛼[1 + ([𝑛]𝑞− 1) ⋋]𝑎𝑛𝑙𝑛= 𝛼𝑎𝑛𝑙𝑛+ 𝛼 ⋋ ([𝑛]𝑞− 1) = 𝑐1𝑑𝑛−1+ 𝑋𝑛−1 (2.10) and

𝛼[1 + ([𝑛]𝑞− 1) ⋋]𝑏𝑛𝑙𝑛= 𝑐1𝑠𝑛−1+ 𝑋𝑛−1 (2.11)

Now taking the absolute value of the above equations, we get |𝑎𝑛| =

|𝑐1𝑑𝑛−1+𝑋𝑛−1|

|𝛼[1+([𝑛]𝑞−1)⋋]||𝑙𝑛|≤

𝑐1+|𝑋𝑛−1|

𝛼[1+([𝑛]𝑞−1)⋋]|𝑙𝑛|, (𝑛 > 3). (2.12) This completes proof.

Theorem 2.2. Let the function 𝑓 ∈ 𝑀𝜎𝛼(𝑓, 𝑙;⋋; 𝑡), be given by (1.1). If 𝑎𝑘= 0for 2 ≤ 𝑘 ≤ 𝑛 − 1, then we have |𝑎𝑛| ≤

𝑚(1−⋋)

𝛼|𝑙𝑛| , (𝑛 ≥ 3) Proof: We have from (2.5)

((𝑓 ∗ 𝑙)(𝑧) 𝑧 ) 𝛼 = 1 + 𝛼𝑎2𝑙2𝑧 + 𝑧2 2!(𝛼(𝛼 − 1)(𝑎2𝑙2) 2+ 2𝛼𝑎 3𝑙3)+. . . + 𝑧𝑛−1 (𝑛 − 1)! [𝐵(𝛼(𝛼 − 1)(𝛼 − 2). . . (𝛼 − 𝑛 + 1), 𝑎2, 𝑎3, . . . , 𝑎𝑛−1, 𝑙2, 𝑙3. . . 𝑙𝑛−1+ 𝛼(𝑛 − 1)! 𝑎𝑛𝑙𝑛]+. . ., (2.13) Similarly, for𝐹 = 𝑓−1= 𝑤 + ∑ 𝑏 𝑛𝑤𝑛, 𝑛=2

(5)

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1780-1785

Research Article

1784

((𝐹 ∗ 𝑙)(𝑤) 𝑤 ) 𝛼 = 1 + 𝛼𝑏2𝑙2𝑤 + 𝑤2 2! (𝛼(𝛼 − 1)(𝑏2𝑙2) 2+ 2𝛼𝑏 3𝑙3)+. . . + 𝑤𝑛−1 (𝑛 − 1)! [𝐴(𝛼(𝛼 − 1)(𝛼 − 2). . . (𝛼 − 𝑛 + 1), 𝑏2, 𝑏3, . . . , 𝑏𝑛−1, 𝑙2, 𝑙3. . . 𝑙𝑛−1) + 𝛼(𝑛 − 1)! 𝑏𝑛𝑙𝑛], (2.14) By definition and Lemma (2.1), there exist two functions

𝑢(𝑧) = 1 + ∑∞𝑛=1𝑢𝑛𝑧𝑛∈ 𝑃𝑚, (2.15) 𝑣(𝑤) = 1 + ∑∞𝑛=1𝑣𝑛𝑤𝑛∈ 𝑃𝑚, (2.16) |𝑢𝑛| ≤ 𝑚, |𝑣𝑛| ≤ 𝑚, such that ((𝑓∗𝑙)(𝑧) 𝑧 ) 𝛼 =⋋ +(1 −⋋)𝑢(𝑧) = 1 + (1 −⋋)𝑢1𝑧 + (1 −⋋)𝑢2𝑧2+. . ., (2.17) ((𝐹∗𝑙)(𝑤) 𝑤 ) 𝛼 =⋋ +(1 −⋋)𝑣(𝑤) = 1 + (1 −⋋)𝑣1𝑤 + (1 −⋋)𝑣2𝑤2+. . ., (2.18) Now comparing the coefficients of (2.13) and (2.17),

1

(𝑛−1)![𝐵(𝛼(𝛼 − 1)(𝛼 − 2). . . (𝛼 − 𝑛 + 1), 𝑎2, 𝑎3, . . . , 𝑎𝑛−1, 𝑙2, 𝑙3, . . . 𝑙𝑛𝑛−1+ 𝛼(𝑛 − 1)! 𝑎𝑛𝑙𝑛)] = (1 −⋋)𝑢𝑛−1 (2.19)

also comparing the coefficients of (2.14) and (2.18) 1

(𝑛−1)![𝐴(𝛼(𝛼 − 1)(𝛼 − 2). . . (𝛼 − 𝑛 + 1), 𝑏2, 𝑏3, . . . , 𝑏𝑛−1, 𝑙2, 𝑙3, . . . 𝑙𝑛 −1+ 𝛼(𝑛 − 1)! 𝑏𝑛𝑙𝑛)] = (1 −⋋)𝑣𝑛−1 (2.20)

If𝑎𝑘, 𝑙𝑘 = 0for 2≤ 𝑘 ≤ 𝑛 − 1, then

𝛼(𝑛 − 1)! 𝑎𝑛𝑙𝑛 (𝑛 − 1)! = (1 −⋋)𝑢𝑛−1 or 𝑎𝑛= 1 𝛼𝑙𝑛 (1 −⋋)𝑢𝑛−1 Similarly 𝑏𝑛= 1 𝛼𝑙𝑛 (1 −⋋)𝑣𝑛−1 Taking absolute value, we get

|𝑎𝑛| ≤

(1−⋋)|𝑢𝑛−1|

𝛼|𝑙𝑛| ≤ (1−⋋)𝑚

𝛼|𝑙𝑛| (2.21)

Here we get the desired result.

If we relax the condition𝑎𝑘 = 0for2 ≤ 𝑘 ≤ 𝑛 − 1, then we have the following consequence: Corollary 2.1. If𝑎𝑘 ≠ 0for 2 ≤ 𝑘 ≤ 𝑛 − 1, then we have,

|𝑎2| ≤ { √ 2𝑚(1 −⋋) 𝛼[(𝛼 − 1)|𝑙2|2+ 2|𝑙3|] , 0 ≤⋋≤ 1 − 2𝛼|𝑙2| 2 𝑚[(𝛼 − 1)|𝑙2|2+ 2|𝑙3|] 𝑚(1 −⋋) 𝛼|𝑙2| , 1 − 2𝛼|𝑙2| 2 𝑚[(𝛼 − 1)|𝑙2|2+ 2|𝑙3|] ≤⋋< 1 } and |𝑎3| ≤ { √ 2𝑚(1 −⋋) 𝛼[(𝛼 − 1)|𝑙2|2+ 2|𝑙3|] , 0 ≤⋋≤ 1 − 2𝛼|𝑙2| 2 𝑚[(𝛼 − 1)|𝑙2|2+ 2|𝑙3|] 𝑚2(1 −⋋)2 𝛼2|𝑙 2|2 +𝑚(1 −⋋) 𝛼|𝑙3| , 1 >⋋≥ 1 − 2𝛼|𝑙2| 2 𝑚[(𝛼 − 1)|𝑙2|2+ 2|𝑙3|] , } Proof: If 𝑎𝑘≠ 0for 2 ≤ 𝑘 ≤ 𝑛 − 1, then from (2.21), we have

|𝑎2| ≤ (1−⋋)𝑚

𝛼|𝑙2| (2.22)

Again, on comparing the coefficients of 𝑧2in (2.13) and (2.17), we get 1

2!(𝛼(𝛼 − 1)(𝑎2𝑙2)

2+ 2𝛼𝑎

3𝑙3) = (1 −⋋)𝑐2 (2.23)

Using (2.14) and (2.18), comparing the coefficients of𝑤2,we get 1 2!(𝛼(𝛼 − 1)(𝑎2𝑙2) 2+ 2𝛼(2𝑎 2 2− 𝑎 3)𝑙3) = (1 −⋋)𝑑2 (2.24) Now adding (2.23) and (2.24), we get

𝑎22=

(1 −⋋)(𝑐2+ 𝑑2) 𝛼((𝛼 − 1)𝑙22+ 2𝑙3) taking absolute value, we get the result.

(6)

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1780-1785

Research Article

1785

𝑎3= (1−⋋)(𝑐2−𝑑2)+2𝛼𝑎22𝑙3 2𝑙3𝛼 (2.25)

Taking absolute value, and using the value of|𝑎2|2,we get the required result. Remark 2.1 For𝛼 = 1, we get,

|𝑎2| ≤ { √𝑚(1 −⋋) |𝑙3| , 0 ≤⋋≤ 1 − |𝑙2| 2 𝑚|𝑙3| 𝑚(1 −⋋) |𝑙2| , 1 − |𝑙2|2 𝑚|𝑙3| ≤⋋< 1 } and |𝑎3| ≤ { 2𝑚(1 −⋋) |𝑙3| , 0 ≤⋋≤ 1 − |𝑙2| 2 𝑚|𝑙3| 𝑚2(1 −⋋)2 |𝑙2|2 + 𝑚(1 −⋋) |𝑙3| , 1 − |𝑙2|2 𝑚|𝑙3| ≤⋋< 1 } References

1. P.L. Duren, Univalent Functions. Basics of mathematical Sciences, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

2. K. Padmanadhan and R. Parvathem. Properties of a class of a functions with bounded boundary rotation. Ann. Polon. Math., 31(1075), 311–323.

3. Pinchuk. Functions with bounded boundary rotation. Isr. J. Math., 10(1971).7–16.

4. M. Lewin. On a coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc. 18 (1967). 5. D.A. Brannan and T.S. Taha. On some classes of bi-univalent functions, Studia Univ. Bapes-Bolyai

Math., 31(2) (1986), 70–77.

6. R. M. Ali, S.K. Lee, V. Ravichandran and S. Subramanium, Coefficient estimates for biunivalent Ma-Mindastarlike and convex functions. Appl. Math. Lett., 25(3) (2012), 344–351.

7. H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett., 23 (10) (2010), 1188–1192.

8. S.P. Goyal and P. Goswami. Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivative. J. Egyptian Math. Soc., 20(3) (2012), 179–182.

9. Aljouiee and P. Goswami. Coefficient estimates of the class of bi-univalent functions. J. Function spaces, 2016(2016), Article ID 3454763, 4 pages.

10. F. H. Jackson. On q- functions and a certain difference operator. Transactions of the Royal society of Edimburgh, 46 (1908), 253—281.

11. Sahsene Altinkaya, Sibel Yalcin Tokgz, On a subclass of bi-univalent functions with the Faber Polynomial Expansion, International conference on analysis and its applications, 18, (2018), 133-138.

Referanslar

Benzer Belgeler

Asiklovirin IV olarak 3x10 mg/kg (30mg/gün) dozunda 21 gün süreyle kullanımın herpetik ensefalitte en iyi seçenek olduğu kabul edilmektedir (9,10). Olgumuz da 3x10 mg/kg dozunda

¨ O., Sok´ o l, J., ˙Ilhan, S., Second Hankel determinant problem for some analytic function classes with connected k-Fibonacci numbers, Acta Univ.. ¨ O., ˙Ilhan, S., Sok´ o l, J.,

Further, the best possible lower and upper bounds for the second and third-order Hermitian–Toeplitz determinants are estimated over the classes of starlike and convex functions of

Due to interest and time constraint, we shall dissect the Laplace equation in their in two polar coordinates of cylindrical and spherical systems, in order to uncover some special

Additionally, if there any di¤erential equation exists such that it can be reduced to the Hypergeometric di¤erential equation, then solutions of these type equations can be given

Murray ve arkada~lannm ~ah~masmda kist SIVlsm- daki immunoglobulin degerlerinin serum immunog- lobulin degerleri ile BOS'a gore daha uyumlu oldugunu bildirilmi~tir (3).. Ancak

The present study indicated that self-monitoring of blood glucose at home was not effectively used and it had no significant effect on metabolic control and prevention

Diğer yandan bazı bilim insanları kalp ve damar hasta- lıkları, kanser gibi kronik hastalıkların ön- lenmesi ya da tedavisi mümkün olsa bile insanın yaşam süresinin en