• Sonuç bulunamadı

Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications

N/A
N/A
Protected

Academic year: 2021

Share "Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications"

Copied!
17
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Availableonlineatwww.sciencedirect.com

ScienceDirect

jo u rn al h om ep a ge : w w w . e l s e v i e r . c o m / l o c a t e / n a n o t o d a y

REVIEW

Photogeneration

of

hot

plasmonic

electrons

with

metal

nanocrystals:

Quantum

description

and

potential

applications

Alexander

O.

Govorov

a,∗

,

Hui

Zhang

a

,

Hilmi

Volkan

Demir

b,c

,

Yurii

K.

Gun’ko

d,e

aDepartmentofPhysicsandAstronomy,OhioUniversity,Athens,OH45701,USA

bDepartmentofElectricalandElectronicsEngineering,DepartmentofPhysics,UNAMInstituteof

MaterialsScienceandNanotechnology,BilkentUniversity,Ankara06800,Turkey

cSchoolofElectricalandElectronicEngineering,SchoolofPhysicalandMathematicalSciences,Nanyang

TechnologicalUniversity,NanyangAvenue,Singapore639798,Singapore

dSchoolofChemistryandCRANN,UniversityofDublin,TrinityCollege,Dublin2,Ireland

eSaintPetersburgNationalResearchUniversityofInformationTechnologies,MechanicsandOptics,197101

SaintPetersburg,Russia

Received5November2013;receivedinrevisedform20January2014;accepted4February2014

KEYWORDS Plasmon; Plasmonicelectrons; Injectionof electrons; Nanostructures; Photoelectriceffect; Photodetectors; Photocatalysis

Summary Thepaperreviewsphysicalconceptsrelatedtothecollectivedynamicsof plas-monexcitationsinmetalnanocrystalswithafocusonthephotogenerationofenergeticcarriers. Usingquantumlinearresponsetheory,weanalyzethewavefunctionofaplasmonin nanostruc-turesofdifferentsizes.Energeticcarriersareefficientlygeneratedinsmallnanocrystalsdueto thenon-conservationofmomentumofelectronsinaconfinednanoscalesystem.Ontheother hand,largenanocrystalsandnanostructures,whendrivenbylight,producearelativelysmall numberofcarrierswithlargeexcitationenergies.Anotherimportantfactoristhepolarization ofthe excitinglight. Mostefficientgeneration andinjectionofhigh-energycarriers canbe realizedwhentheopticallyinducedelectriccurrentisalongthesmallestdimensionofa nano-structureandalsonormaltoitswallsand,forefficientinjection,thecurrentshouldbenormalto thecollectingbarrier.Otherimportantpropertiesandlimitations:(1)intra-bandtransitionsare preferableforgenerationofenergeticelectronsanddominatetheabsorptionforrelativelylong wavelengths(approximately>600nm),(2)inter-bandtransitionsefficientlygenerateenergetic holes and (3) the carrier-generation and absorption spectra can be significantly different.

Correspondingauthor.Tel.:+17405939430. E-mailaddress:govorov@ohiou.edu(A.O.Govorov). http://dx.doi.org/10.1016/j.nantod.2014.02.006 1748-0132/©2014ElsevierLtd.Allrightsreserved.

(2)

The describedphysicalproperties ofmetal nanocrystalsareessentialfor avarietyof poten-tial applications utilizinghot plasmonic electrons includingoptoelectronic signal processing, photodetection,photocatalysisandsolar-energyharvesting.

©2014ElsevierLtd.Allrightsreserved.

Introduction

Whereas plasmonic properties of metal nanocrystals in termsofopticalresponsehavebeen sointensively investi-gated[1,2],the internal quantumstatesof photo-excited

electrons inside plasmonic systems are much less known

becauseelectrons in nanocrystals oscillatein a nontrivial

way, creating a collective excitation, a plasmon. Under

optical illumination, the electrons simultaneously form a

plasmonexcitationandscatterbyeachotherandfromthe

wallsandphonons. Experimentally,opticallyexcited

elec-tronsin a metal can be registered via a photocurrent in

asemiconductor—metalSchottky-barrierphotodetector[3]

(Fig.1a)orusingsurfacephotochemistry[4,5](Fig.1b).It

hasbeenrecognizedrecentlythatplasmonicnanostructures

and nano-antennas can be used for hot carrier

genera-tion,photocatalysis,andinjection.Metalnanocrystalshave

largeabsorptioncrosssectionsandcanefficientlyenhance

andtraplight[6—8].Plasmonicenhancementof

photocur-rents and chemical processes can be induced via direct

electron transfer from a metal or indirectly via a local

amplification of electromagnetic field at functional

ele-ments of a device [9]. Several recent papers reported

plasmon-enhancedphotochemistry[9—22](whenplasmonic

nanocrystalsareincontactwithaliquid)andplasmon-driven

photocurrentresponsesinoptoelectronicdevicesand

nano-structures[23—33].

Thephoto-excitedplasmonicelectronslookvery

attrac-tive for applications in photochemistry, solar cells, and

photodetectors because metal nanocrystals can absorb

light much more efficiently compared to inorganic

semi-conductors and organic dye molecules. Here are some

advantagesofmetalnanocrystals:

• Largeabsorptioncrosssections.

• Alargenumberofelectronswithappropriateenergy

lev-elsforelectrontransfer.

• Efficienttuningoftheplasmonicresonances,absorption

spectraandlocalenhancementusingthesize,shape,

ori-entationandarrangementofnanocrystals[1,2,34—36].

Fig. 2 illustrates gold nanocrystals of various shapes

and shows their absorption spectra. We can see that the

position of plasmon resonance in absorption can be

con-venientlytunedwiththeshapeofananocrystal.However,

therearesignificantfundamentallimitationsfortheuseand

extractionofplasmonicelectronsinphotocatalyticandsolar

conversionapplications.Theselimitationsinclude:

• Fast relaxation and relatively short mean free path of

electronsinmetals.

• Limitedmomentumtransferandoftenalargenumberof

excitedelectronswithlowenergies.

• Reflection of electrons from the metal—semiconductor

interface.

Inthisperspectivearticle,wewilladdressphysical

prop-erties of plasmons in metalnanocrystals, focusingon the

microscopicquantumstructureofplasmonicoscillationsand

thenon-equilibriumelectrondistributionsinopticallydriven

confinedsystems.Thefirstsectionswilldescribeenergy

dis-tributionsanddynamicsofexcitedelectronsintheplasmon

wavesinthebulkandinconfinednanocrystals.The

follow-ingsectionswilladdressmodelphysicalsystemsanddevices

aswellasprovideabriefreviewofexperimentalworkinthe

field.

Wave

functions

of

plasmons

in

the

bulk

and

in

nanostructures

3Dmetal

Electronsin metals forma Fermigas,which is

character-izedbytheFermivelocity(vF),Fermienergy(EF),andbulk

plasmonfrequency,(ωp,bulk).Thenon-interactingFermi-gas

modelgivesthefollowingequationsfortheabove

parame-ters[38,39] EF= m0vF2 2 = 2(32n 0) 2/3 2m0 ,ωp,bulk=  4e2n 0 ε0m0 ,

wheren0isthe3Delectrondensity,m0istheelectronmass

and ε0 is the background dielectricconstant comingfrom

the atomic core electrons. For gold, these numbers are

EF=5.5eV,vF=1.39×108cm/s,andωp,bulk=3.96 eV[40].

Thequantumdescriptionofelectrongasisbasedonthe

den-sity matrix, mn [38]. The elements of thedensity matrix

giveuspopulationsofquantumsingle-particlestatesinan

electrongasdrivenbyopticalexcitation.Thepopulationof

asingle-particlequantumstateinaFermigasissimplythe

correspondingmatrixelement

nn(t)=



 (t)ˆc+nˆcn (t) 

,

where (t)isanon-equilibriumwavefunction,which

may be quite complicated in its exact form, and the

operators ˆc+n and ˆcn are the creation and annihilation

operators,respectively.Then,theoperator ˆc+nˆcn‘‘probes’’

the many-bodywavefunction (t)and revealsthe

pres-ence of equilibrium or non-equilibrium electrons in the

Fermisea.Intheabsenceofillumination, thesystem isin

equilibriumandthe populationis, ofcourse,givenby the

Fermidistributionfunctionnn=fF(E),whereEisthe

elec-tronenergy.When theelectronplasma isilluminated,the

non-diagonal elements, like nn(t)=



 (t)ˆcn+ˆcn (t) 

,

revealthepresenceofanexcitation,anelectron—holepair,

in the Fermi gas (Figs. 3b and 4a). In the election—hole

(3)

Figure1 (a)Schematicsetupforphotoelectricexperimentwithametal-semiconductorSchottkycontactandtherelated energy-banddiagramforthephotoexcitationprocesses.ReprintedwithpermissionfromRef.[3].Copyright©2007byJohnWiley&Sons, Inc.(b)Schematicillustrationofhot-electrontransferfromametaltoanunoccupiedmolecularorbitalatthesurface.Thelaser lightgenerateshotelectronsinthebulkandtheseelectronshaveafiniteprobabilitytotunneltotheadsorbate.Reprintedwith permissionfromRef.[4].Copyright(2013)AmericanChemicalSociety.

below the Fermi level to the non-equilibrium state |n

above the Fermi-sea level (Figs. 3band 4a). The density

matrix describes the quantum state of electron gas and

shouldbefoundfromthesolutionoftheequationofmotion

[38,41]

∂ˆ

∂t =i[ˆ, ˆH(t)]− ˆrelˆ, (1)

Figure2 (a)Schematic illustration ofgold nanocrystalsandtheir absorptionspectra inwater. The absorptionspectra were calculatednumericallyusingthelocaldielectricconstantofgold.[37](b)Physicalprocessesinaphoto-excitedelectrongasthat isincontactwithasemiconductor.(c)Optoelectronicprocesses inaconfinednanocrystal incontactwithmolecularadsorbate. Photogeneratedplasmoniccarriershavechancetobetransferredtothemoleculesadsorbedonthesurface.

(4)

Figure3 (a)and(b)SchematicillustrationsforapropagatingplasmonwaveinabulkcrystalandtheFermiseaofelectronsinthe bulkwithaplasmonexcitation.(c)SurfaceplasmonpolaritoninanAuwaveguide.(d)Plasmonicelectrondistributioninthebulk plasmon.Thepositive(blue)partrepresentsthepopulationofelectronsabovetheFermienergywhilethenegative(red)partis theholepopulationbelowtheFermienergy.TheFermienergyEF=5.5eV,whichcorrespondstothecaseofbulkgold.Thedashed curveshowstheequilibriumFermidistributionofelectronsatroomtemperature.

Figure4 (a)Schematicsofelectrontransitionsinametalnanocrystal.AFermi-seaelectronbecomesfirstopticallyexcitedand thenundergoesenergy relaxation.Inthisway, asteady-statedistributionofhigh-energyelectronsinalocalizedplasmonwave becomesformed;qL=/LNCisthecharacteristicchangeofthemomentumoftheelectronandqLvF istheelementaryexcitation energy ofanelectron atthe Fermi levelina nanocrystal due tothe non-conservation oflinear momentum.(b) Modelofan Aunanocubewithelectronsbouncingoffthewalls.(c)Plasmonicelectrondistributioninthelocalizedplasmonina10nmgold nanocube.The dashedcurve shows theequilibrium Fermidistributionofelectrons. The data for thenanocubewere obtained numericallyfromEq.(3).Forthemoderatelightintensitiestypicallyusedintheexperiments,thenon-equilibriumpopulationof energeticcarriersismuchsmallerthattheequilibriumFermidistribution.

(5)

where ˆH istheHamiltonianincludingtheopticalexcitation

and ˆrel is an operator describing energy relaxation. The

equationofmotionintheform(1)providesuswithavery

convenient approach for treating many quantum systems

[38,39,41].

Westartwithaplasmonwaveinthebulkandinthe

sys-tems with large dimensions (Fig. 3a and c).The dynamic

responseofthe Fermigas inthepresence oftheexternal

fieldisdescribedbythebulkdielectricfunction[38]:

ε3D(ω,q)=1− 4e2 q2V  k fF(k)−fF(k+q) ω−Ek+q+Ek+i rel (2)

where q is wave vector of excitationin the gas and V

isthecrystalvolume.Thezerosofthisfunctionshouldgive

self-oscillationsofthesystem.Indeedonecanshowthatthe

equation ε3D(ω)=0 produces the plasmon frequency ω=

±ωp,bulk.

Now we look at the structure of a plasmon wave, i.e.

the electron distribution.The steady-state distributionof

hotplasmonicelectronscanbeobtaineddirectlyfromthe

diagonalelements

ın(E)=2·

n

ınn·ı(E−En),

whereı(E−En)isanumericalı-function,Enistheenergy

of the singe-particle state |n, and the factor 2 accounts

forspins.Theequationforthetime-averagedfunctionınn,

derivedfromthelinearresponsetheoryinRef.[42],reads:

ınn= 2 rel  n (f0 n−f 0 n)|eϕnn|2  rel (ω−En+En) 2 + rel2 + rel (ω+En−En) 2+ rel2  . (3) where ϕnn = n| ϕω(r)n 

is the matrix elements of optical excitations, ϕω(r) is a

complexamplitudeofthetime-oscillatingelectricpotential

induced by the illumination and rel is the energy

relax-ation rate of electrons. These matrix elements produce

quantumamplitudesofopticaltransitionsbetweenthe

elec-tron states. Fig. 3d shows the calculated hot plasmonic

distributions in a bulk plasmon taken from Ref.[42]. We

assumethattheplasmonwaveexcitedinanelectrongashas

the wavelength =760nm. The excited-electron

distribu-tionın(E)=n(E)−fF·D(E)ispositiveforE>EFandnegative

forE<EF;hereD(E)istheelectrondensity ofstatesofthe

bulk system. The function ın(E) reveals the presence of

electron—holepairexcitationsintheopticallydriven

elec-tronFermisea.Becauseoftheconservationofmomentum

inthe bulk,the transitionsoccur onlybetweenthe states

|n =k and|n =k+q,whereqis thewavevectorof

thebulkplasmon.Consequently,thesum(3)includesonly

the transitions between states k and k+q that have

smallexcitationenergies E=Ek+q+Ek∼qvF.The energy

qvF issmallandtypicallyless thantheplasmonand

ther-malenergies,qvF <kBTωp,bulk.Foramodelsystemwith

theFermienergyof goldat roomtemperature,whichhas

ωp,bulk=3.96eV and kBT=0.026eV , theexcitation energy

qvF=0.007eVassumingaplasmonwavewithawavelength

of760nm.Therefore,thetypicalenergyofanexcited

car-riercountedwithrespecttotheFermienergyintheplasmon

wave

Eexcited electrons∼3kBT+qvF =0.08eV (4)

undertheusualconditionqkF.Weseeaninteresting

prop-ertyofthebulkplasmonwave:Electronsintheplasmonwith

alargeenergyquantum(ωp,bulk∼3eV)haveverysmall

exci-tationenergiesofsingleelectrons.Inmanycases,itismore

convenienttoperformplasmonicexperimentsusinga

pla-narwaveguide(Fig.3c)[1,2]whereplasmonswithoptical

energies(ω∼1−2eV )canbelaunchedandthendetectedat

differentlateralpositions.

Plasmonsinawaveguide

Coupled plasmon-electromagnetic waves in a waveguide

are called Surface Plasmon Polaritons (SPPs). For

exam-ple, a SPP in a Au waveguide with a wavelength 760nm

hasthe energyquantumωSPP∼1.5eV [43].To launchaSPP

wave, one can use a grating (Fig. 3c) [1,43]. The width

ofthemetalwaveguideistypicallylarge(∼150nminRef.

[43]),muchlongerthanthemean-free-pathofanelectron.

Therefore,we can usethe bulktheory tounderstand the

electronicstructureofaSPPwave.Estimatingtheexcitation

energywithEq.(4),weseeagainthatSPPswitharealistic

wavelength create mostly very low-energy electron

exci-tations, Eexcited electrons∼3kBT∼0.08eV«ωSPP=1.5eV . We,

therefore, conclude that plasmonic systems with large

dimensions have the serious limitation for efficient

elec-tronphoto-injectionintoasemiconductorsincetheexcited

plasmonicelectrons need high enough energy topass the

Schottkybarrier.In other words, it is expectedthat SPPs

launchedina waveguidecannot create manyhigh-energy

electrons, which can be detected by a Schottky barrier

withatypicalheightof0.5—1eV.Nevertheless,the

exper-iment with an Au—Si photo-detector has shown injected

currents.[24]Thephysical explanationforthisobservation

canbe in breakdown of momentum conservationof

elec-tronsduetodefects, phonons,andinterfaces. Thissimple

argumentsuggeststhat the size of metalnanocrystal can

beveryimportantfortheplasmonicgenerationofelectrons

withlargeexcitationenergies.Wewilldescribethisphysical

behaviorinthenextsection.

Plasmonicnanocrystals(NCs)

Generalremarks

The pictureof electron excitations ina confined electron

gasisdramaticallydifferent[42].Thephysicalreasonisthe

non-conservation of electron momentum due topotential

walls of the nanocrystal. Fig. 4 illustrates this case. The

energy of electrons is quantized and optical transitions

occurbetweenthediscretestates(Fig.4a).Thedistribution

ofexcitedelectronsinalocalizedplasmonisverydifferent

(6)

Figure5 (a)SchematicillustrationofaplasmonicAuslabinwaterdrivenbytheelectricfieldofincidentlight.(b)Distributions ofplasmoniccarriersintheslabswithavariablewidth.Theexcitingelectricfieldofincident illuminationisnormaltotheslab walls.Thepositiveregionofın(E)describesexcitedelectronsintheFermisea,whereasthenegativepartindicatesthepresence ofexcitedholes.Forconvenience,weshowbothnon-normalizedandnormalizeddistributions.Theuppergraphshowsthattheflat partsofthedistributionfunctiondonotdependontheslabwidth.Thisindicatesthatthephotogenerationinthesepartsisdueto thesurfacescatteringofcarriers.

electronsinaconfinednanocrystaloccupythewholeregion

oftheallowedenergies[42]

EF<Eexcited electrons<EF+ω.

This canbe understood usingthe followingarguments.

Because of the conservation of energy, an excited

elec-troncanacquiretheenergyEexcited=E+ω.Therefore,the

maximum allowed energy of the electron in the system

isEmax=EF+ω and,aswe see,the excited-electron

dis-tributionextends fromtheFermienergytothe maximum

value(the bluepart of thecurve inFig.4c).

Correspond-ingly,theenergyintervalforphoto-excitedholesisEF−ω<

Eexcited holes<EF(theredpartonthecurveinFig.4c). Plasmonicslab

As the simplest example, we consider now a plasmonic

platelet(slab) with the smallest dimension LNC along the

z-axis(Fig.5a).Theincidentelectromagneticwaveis polar-izedinthez-direction.This dynamicelectricfieldcreates

oscillatingelectric currentsthat hitthe walls oftheslab.

Therefore,theFermigas becomesstronglyperturbedand

wecanexpectasignificantnumberofelectronswithlarge

energies.Theelectrondistributioncalculatedbyusingthe

theory developed in Ref. [42] confirms our expectation

(Fig.5b).Moreover,thenumberofhighlyexcitedelectrons

islarge onlyfor relativelysmallsizes LNC.Withincreasing

LNC,thenumberofelectronswithlargeexcitationenergies

decreasesrapidly andalreadyfor LNC=40nmthe electron

distributionresemblesthebulkplasmon(Fig.5b).To

quali-tativelyexplainthisbehavior,welooknowattheelectron

excitation of aquantized system. In ananocrystal with a

quantizedmotionalongthez-direction,theelectrons

spec-trumtakestheformof

En,k||= 22n2 2m0L2NC + 2k2 || 2m0 ,

where n is the quantum number for the z-motion and k||

is the electron momentum in the plane of aslab. A

pho-tonexcitesan electronfromthestate |n tothestate |n

and the change in the electron number can only be odd,

n=1,3,5,...,due to the parity.Then, the characteristic

energyofelectronexcitationsinaconfinedsystemisgiven

bytheequation E=En+ n+En≈ 22n· n m0L2NC ∼vF  n LNC , n=1,3,5,..., (4)

assuming  n/LNC<kF and that all optical transitions

occur in the vicinity of the Fermi sea: En,k|| ≈EF or 0<

(n)/(LNCm0)≤vF. Importantly, the effective momentum

transfer,whichcomesfromtheelectronconfinement,can

besignificantandisgivenby

k=  n LNC = n·kL

(7)

where n can bea large numberand kL=␲/LNC is the

characteristic change of electron momentum due to the

NC confinement. Since n can be large, this momentum

transfer from the nanocrystal to single electrons permits

efficientexcitationofelectronswithenergiesinthewhole

intervalEF<Eexcited electrons<EF+ω(Fig.4cand5b).The

excitationenergiesofsingleelectronsarenowintheoptical

range,1—3eV, andsuchelectrons canbeusedfor

chemi-calreactions at the surface or for efficientinjection into

asemiconductor. Inthenexttwosections,wewilldiscuss

suchapplications. Due tothe conservationof energy, the

mostimportantmomentumtransfernumbers nshouldbe

in theinterval n> ncritical,where thecriticalnumberis

givenbythecondition[42]

vF  ncritical LNC =ω.

The effect of generation of high-energy electrons is

strong if the above number (i.e. ncritical) is not too

large [42]. The above consideration is also applied to

the hotplasmon holes generated inthe interval EF−ω<

Eexcited holes<EF. Some other properties of the function

␦n(E)canbeseenfromthisequationfortheplasmonicslab

takenfromRef.[42]:

ın(E)∼ A rel Ez,inside 2 for EF+3kBT+qvF<E<EF+ω (5)

where relistheenergyrelaxationrateintheelectrongas

andA=LxLyisthecross-sectionalareaoftheslabandEz,inside

istheinternalfieldnormaltotheslabwalls(Fig.5a).Note

thatthenumberofhigh-energyelectronsdoesnotdepend

on the slab width, LNC. From Eq. (5), we see now three

importantproperties:(1)theeffectofphotogenerationof

high-energycarriers(electronsandholes)isasurfaceeffect

sinceitdoesnotdependonthesizeoftheslab,ın(E)∼L0

NC.

(2) This effect weakens withincreasing energy-relaxation

rate,ın∼1/ rel.(3)Theeffectisverysensitivetothe

direc-tionoftheexcitingelectricfield,ın(E)∼Ez,inside

2

.Electrons

withhighexcitationenergiesbecomegeneratedonlybythe

electricfieldnormaltothewall.

To estimate the energy-relaxation rate, we adopted

the experimental results from the time-resolved studies

of gold nanocrystals [44] that give the energyrelaxation

time =0.5ps (also see Fig. 12 below). Therefore, for

the relaxation rate we obtain rel=/=1.3meV. This

relaxation rate describes the energyrelaxation and

ther-malization of the Fermi gas and involves both phonons

andelectron—electronscattering.Forsimplicity,wedonot

involve here theradiative channelof relaxation assuming

NCsofsmallsizes.

Sinceaconfined systemhasa quantizedspectrum, the

calculated electron distribution exhibits steps due to the

2Delectronicsub-bandsintheslab(Fig.5).Inaddition,we

haveperformed an averagingoftheelectron spectraover

thewidthoftheslabintheinterval|L−LNC|<ıL=1nm,

assuming the presence of variations of the slab thickness

[45].

Figure 6 Illustrations of plasmonic processes within the linear-responseandphenomenologicalmodels.Thetheoretical treatmentofplasmonicdynamicsinthispaperisbasedonthe linear-responsemany-bodytheory.

Phenomenologicalpictureofplasmondynamics

Itisinterestingtolookattheplasmonkineticsusinga

phen-omenological picture (Fig. 6). Within the linear-response

many-bodyapproach, theFermigasdrivenbytheac

exci-tation field resides in a dynamic steady state (Fig. 6a).

Electronsandholesareconstantlybeingcreatedand

relax-ing.Inthequantumplasmonicpicture,weshouldconsider

a plasmon as an excited quantum state of the electron

system (Fig. 6, lower panel). Then, the plasmon

under-goesfastde-phasingwithcreationofelectron—holepairs.

Plasmon de-phasing comes from collisions with phonons

and defects and also from electron—electron scattering

[46]. The related plasmon coherence time is very fast,

plasmon∼9fs(seeSection‘‘RelaxationMechanisms’’).

Qual-itatively this coherence time of electron oscillations can

be regarded as a plasmon lifetime. Consequently, the

electron—holepairsrelaxandthermalizefurtherwithinthe

relaxation time rel. A balance equation for the plasmon

populationinaNCcanbewrittenas

dnplasmon dt = absI0 ωp − npl plasmon ,

wherenplasmonisthenumberofplasmonscreatedintheNC,

andabsandI0aretheabsorptioncrosssectionandlightflux,

respectively. In thesteady state, dnplasmon/dt=0 andthe

plasmon number nplasmon=plasmon(absI0/ωp). In relatively

smallNCswithin thelinear regime,the plasmonnumbers

aresmall,asexpected.Forexample,npl∼0.02fora60nm

Aunanosphereinwater,illuminatedwithI0=104 W/cm2

(8)

Nanocrystalsofvariousshapes

Nowwebrieflyconsidernanocrystalsofvariousshapes.So

far,afull theoryof photogenerationof plasmoniccarriers

hasbeendevelopedonlyforthesimplestgeometryofaslab

(oraplatelet).However,thistheorycanbeapplied

qualita-tivelytoothershapes(nanospheres,nanocubes,nanorods,

nanowires, etc.). In all these nanocrystals, an external

electricfieldefficientlyexciteslocalizedsurfaceplasmons

resonancesandgenerates surfacecharges.Therefore,the

electroncurrentsin thesegeometriesshouldhitthewalls

of these nanostructures and enablethe creation of

high-energyelectrons.Thekeyfunctionfortheplasmonic-carrier

generationisthemagnitudeoftheelectricfieldinsidethe

nanocrystal.Theeffectofgenerationof excitedelectrons

comesfromthe plasmon-enhancedelectric fieldsinside a

NC.

Theoverallenhancementofthefieldinsideaplasmonic

NCcanbeconvenientlyquantifiedwiththefollowing

func-tion: FENC= VNC EωEω∗ E2 0 dV 1/2

where E0and Eωarethedrivingandinternalelectricfields,

respectively.Fortheslab,sphereandellipsoidgeometries,

thisfield-enhancementfunctioncanbecalculated

analyti-cally.Inparticular,thefunctionFENCforaslabandasphere

isgivenby[47] Pslab(ω)=  ε0 εAu  , Psphere(ω)=   3ε0 2ε0+εAu  ,

whereεAu andε0arethedielectricconstantsofthemetal

andthematrix.InFig.7,we nowplotthecalculatedfield

enhancementsforthefourtypesofNC.Nano-ellipsoidsare

obviouslyadvantageous,duetoastrongamplificationofthe

fieldinthelongitudinalplasmonicresonance.

Applicationtophotochemistry

Plasmonic elections are being actively studied in

experi-mentsonphotocatalysis[10—20].Fig.8showsasimplified

energydiagramforthetransferofplasmoniccarrierstothe

externalelectronstates.Suchexternalelectronstatescan

be:(1)Moleculesadsorbedonthemetalsurface,(2)alayer

ofmaterialdeposited onthesurface,or (3) anelectronic

contact. This scheme is similar to that used for water

splittinginthecurrentexperiments[9](seefurtherFig.14a

inthesection onexperimental work).In thisscheme,the

energyofexcitedplasmonicelectronsistransferredtothe

externalstates,creatingreducedmoleculesorhigh-energy

carriers in the external electrodes. Consequently, such

energeticcarriersormoleculescanbeusedfor

photochem-istry.Thisschemehastwoenergyparametersimportantfor

theextractionofelectronsandholesfromNCs:Thebarrier

energies εe and εh.Theseenergiesarecalculatedfrom

the Fermisurface. Apparently, for efficientinjection, we

need to have sufficiently large numbers of electrons and

holesattheenergies εeand εh.Suchbarrierenergiesare

Figure7 (a)Modelsofnanocrystals.(b)Calculated enhance-ment factorsfor theelectricfield ofincident lightinsideAu nanocrystalsofvariousshapes.Nanocrystalsareassumedtobe inadielectricmatrix(water).

typically ∼eV. Therefore,the photons of visible light are

abletogeneratecarriersforinjection,butthenanocrystal

should beof a sufficientlysmallsize. As we have seen in

the previous section,only smallNCs havea large number

of highlyexcited carriers.The efficiencyof generation of

electrons(holes)withenergy εe(h) canbedefinedas

Effe(h)(ω,LNC)= Ratee(h)(ω) Rateabsorption ∝ ın(EF± εe(h),ω,LNC) VNC ,

where Rateabsorption is the rate of absorption of incident

photons by a NC and Ratee(h)(ω) is a rate of injection of

electrons(holes)intothesurfacestates.Heretheelectron

injection rate is proportional to the population at the

energy EF+ εe: Ratee(ω)∝ıne(EF+ εe). Similarly, for

the holes, we have Rateh(ω)∝−ın(EF− εe).

Simultane-ously,theabsorptionrate Rateabsorption∝VNC,where VNC is

theNCvolume.Fig.8showsthecalculatedefficiencytaken

fromRef.[42].Thecarriergenerationefficiencydecreases

with increasing NC size since the energies required for

injectionaretypicallylarge,about eV,andonly relatively

smallNCs cangenerate efficientlysuch high-energy

carri-ers. The number of energetic electrons (with E∼eV) is

proportional to the surface area of the nanocrystal and,

therefore,forasphericalorcubicnanoparticle

Effe(h)∝

ANC

VNC

∼ 1

(9)

Figure8 (a)Energydiagramfor thetransferprocesses.(b) Calculatedefficienciesofgenerationofplasmonicelectronswith thebarrier energiesE=EF+ εe.Insert:ModelofacubicAu NC. Reprintedwith permissionfromRef. [42].Copyright(2013) AmericanChemicalSociety.(c)Calculatednumberofhigh-energyelectrons(EEF= εe=1eV)andtheabsorptioncrosssection, bothnormalized.

Injectionofplasmoniccarriersintoa

semiconductor

Anotherstreamofresearchconcernsinjectionofplasmonic

carriersintosemiconductorsandorganicmaterials[24—31].

Oneexampleisthesemiconductor—metalSchottkycontact

withabarrierheight EB(Fig.9a).Ingeneral,theinjection

processdependsontheboundaryconditionsattheinterface

betweenthemetalandthesemiconductor.Foranidealflat

interface,an electron crossingthe interfaceconservesits

parallelmomentum.Therefore,theconditionsforinjection

ofsuchelectronshouldbewrittenas

EF+ω≥E≥EF+ EB and

p2

z

2m > EB+EF. (6)

The first conditionis thesimple energyargument: The

photoexcited electron should have energy abovethe

bar-rier (Fig.9a) while the energies of excited electrons are

limitedbyEF+ω.Thesecondonegivesanotherrestriction;

thistellsthatthez-component ofenergyshouldbelarger

thanthebarrier height[49] (Fig.9b). Physically,itmeans

that,foragivenenergy,anelectroncanenterthecontact

onlyifitsmomentumiswithintheinjectioncone(Fig.9b).

Bothconditionscreaterestrictionsforthenumbersof

elec-tronsthatcanbeinjectedintoacontact.However,ifthe

metal—semiconductorboundaryisrough,thesecond

condi-tioncanberemoved andmoreelectronscanbeinjected.

In Fig.9cand d, we show calculatedrates of generation

foracontactwithabarrier EB=1eV .Weseethe

limita-tioncomingfromtheconditions(6).First,thetotalrateof

generationof plasmoniccarriers exceeds therate of

gen-eration of carriersabovethe barrier EF+ω≥E≥EF+ EB.

However,thenumberofelectronsthatcanenterthecontact

is even smaller because of the second restrictive

condi-tion,p2

z/2m> EB+EF.Asexpected,thecalculatedcurves

inFig.9exhibitoscillationsowingtothesize-quantization

ofelectronsin a 20nm-thick metalslab.Fig.9 illustrates

theproperties of a 1eV injection barrier, asan example.

In real junctions, the barrier height varies in the range

0.5—1.5eV[3].Theexperimentalnumbersforafew

exam-plesofSchottkybarriersaregiveninTable1.Moredataon

theSchottkybarrierscanbefoundelsewhere[3].

Therateofinjectionatthethresholdcanbewell

approx-imatedbytheresultfromtheFowlertheory[49]:

Iphoto−current=I0·(ω− EB)2

The quadratic Fowler law is based on the conditions

(6). A full quantum mechanical solution to the problem

of the photo-electric effectwas given by Tamm[50] and

further developed in Refs. [51,52]. The rate of injection

fromthefull quantum treatment includes also the effect

Table1 DatatakenfromRefs.[3,48].

Contact Barrierheight, EB=eB(eV)

n-Si—Au 0.83

p-Si—Au 0.34

TiO2—Au 0.87—0.94

ZnO—Au 0.65

(10)

Figure9 (a)and(b)EnergydiagramandschematicoftheSchottkybarrieremployedforinjectionofplasmonicelectrons.(c) CalculatedgenerationandinjectionratesforaplasmonicAuslab.(d)Thisgraphshowscloselytheinjectionrateanditscomparison withtheFowlerlaw.The graphs(c)and(d) arereprinted withpermissionfromRef.[42].Copyright(2013)American Chemical Society.

of over-barrier reflection of electrons and under certain

conditionsbecomes:

Iphoto−current=I1·(ω− EB) 5/2

Recentlyatheoryofinternalphoto-effecthasbeen

fur-therdevelopedincludingseveraleffects characteristicfor

theplasmonicsystems.Inparticular,therecentstudies

con-cerneda reflectionof electronwaves inslabs [53,54]and

plasmoniceffectsinsolarcellsandphotodetectors[55—57].

Thequantum theoryfor surface photo-electriceffectwas

usedto calculate the photo-injection efficienciesin

plas-monicnanostructuresinRefs.[58,59].Arecentpaper[60]

describedthenon-equilibriumsteadystateofelectronsinan

opticallydrivenmetalnanoparticleusingtheenergybalance

equations.

Band

structure

effects:

inter-band

and

intra-band

transitions

Thebanddiagramofarealmetalismorecomplexthanthe

spectrumofafreeelectron (Fig.10a).Forthecase ofAu

andAg,the bandstructurecan beunderstoodinterms of

sp-andd-bands.The sp-bandresemblesthefree-electron

dispersionand crosses the Fermi level. Transitions within

thesp-band are intra-band excitations formingthe Drude

partofthedielectricconstant.Opticaltransitionsbetween

thefilledd-bandandthe emptystatesofthesp-band are

inter-band excitations. We can see contributions of both

types of transitions in the empirical dielectric function

takenfromRef.[37] (Fig.10b).A dielectricfunctionof a

bulkmaterialcanbewrittenasasumoftwocontributions,

εmetal=εDrude+εinter-band[2].TheDrudecontributioncoming

fromtheintra-bandtransitionshastheform

εDrude(ω)=ε0−

ω2

p

ω(ω+ibulk)

(7)

wherethe coefficientsshouldbefound fromfittingtothe

empiricaldielectricconstantatlongwavelengths(Fig.10b).

Indeed,weseethattheDrudeformula(7)givesan

excel-lentfittotheexperimentaldata,usingbulk=0.076eVand

ωp=8.9eV[62].Thisindicatesthatgoldbehaveslikeagood

metal.Then,wecanseethecontributionoftheinter-band

transitions bysubtractingtheDrudecontributionfromthe

empirical dielectric constant εinter-band(ω)=εempirical(ω)−

εDrude(ω).Sincewenowknowtheinter-bandandintra-band

contributionstothedielectricconstant(Fig.10b),we can

calculatethecorrespondingcomponentsofabsorption.The

absorptioninaNCcanbewrittenasasumoftwoterms

Qtotal=Qintra−band+Qinter−band=2·Re dV (j·E∗) = ω 2Im[εempirical(ω)]· dV (E·E∗) = ω

2Im[εDrude(ω)+εinter−band(ω)]·

(11)

Figure10 (a)Banddiagramofgold,reproducedfromRef.[61].Wealsoshowtheintra-bandandinter-bandtransitions(redand bluearrows).Copyright1971byTheAmericanPhysicalSociety.Insert:Schematicofthedensityofstatesinthesp-andd-bands.(b) Imaginarypartofthedielectricfunctionofgold[37]andtheDrudefitforthelongwavelengthlimit.Thedifferencebetweenthese twocurvesshowsthepresenceofintensiveinter-bandtransitions.Theverticallineshowsthetransitionbetweentworegimesin theabsorption; <600nm(ω>2.07 eV)theimaginarypartofthedielectricconstantandtheabsorptionaredominatedbythe inter-bandtransitions,whileinthisinterval >600nmtheintra-bandDrude-liketransitionsgovernthepicture.(c)Distributionof hotplasmonicelectronsandholesgeneratedthroughtheinter-bandtransitionsinbulkgold.ThecalculationisdoneusingtheDFT theory.

where j and E are the complex amplitudes of electric

currentandelectricfieldinsideaNC,respectively.Fig.11c

shows the calculated contributions to the absorption for

three different shapes. We see that the most common

spherical NChasa smallnumber ofphotogenerated

intra-band carriersandthe majorityof absorptioninthese NCs

comes from the inter-band transitions. When we shift

the plasmon resonance to the red, the contribution of

intra-band transitions grows strongly. For structures with

plasmon resonances longer than 600nm, the intra-band

Drude-likeabsorptiondominates.IntheinsetinFig.11c,we

showtheparameterAforAuellipsoid,whichisdefinedas

A=

3eV

1.5eVQintrabanddω 3eV

1.5eVQtotaldω

Weseeastrongincreaseofthecontributionfrom

intra-bandtransitionswithincreasingtheaspectratioa/b.Thisis

becausetheplasmonresonanceofanellipsoidshiftstothe

redwhentheaspectratioincreases.

To summarize this section, we show qualitatively the

spectrumofplasmonicelectronsandholesinaNCexcited

with the photon energy 2.3eV (Fig. 11b). While the

intra-band transitions produce energetic electrons and

holes inthe whole intervalEF−ω<Eexcited electrons<EF+

ω,theinter-bandtransitions(atthethresholdphoton

ener-gies ω∼2.1−2.4eV ) create mostly energetic holes with

Eexcited holes∼EF−2.3eV (Fig. 10c).Simultaneously,

photo-generated electrons for such inter-band transitions are

not energetic and have energies near the Fermi level,

Eexcited electrons∼EF.

Relaxation

mechanisms

Relaxation mechanisms of electrons and plasmons are

summarized in Fig. 12. The data on the mean-free

path of excited electrons in gold can be found in

Refs. [63,64]. The relaxation mechanisms of hot

elec-tronsinvolveelectron—electronscatteringandemissionof

phonons and photons (rel=0.5—1ps) [44,46]. These

pro-cessesinvolve both intra-band and inter-band relaxations

assistedbyphonons, photons,andelectron—electron

scat-tering(Fig.12a)[65].Ingold,opticallygeneratedelectrons

with excitation energies 1—2eV have mean-free path in

theinterval17nm<1mfp<50nm.Thislengthdeterminesthe

(12)

Figure11 (a)Simplifieddiagramshowingtheinter-bandandintra-bandtransitionsingold.(b)Distributionsofplasmoniccarriers createdviatheintra-bandtransitions(blueandredbands)andthedistributionsofcarriersexcitedthroughtheinter-bandtransitions (solidlines).Asanexample,theenergyofexcitingphotonsistakenas2.2eV.(c)Totalabsorptionsandthecontributionsfromthe inter-andintra-bandtransitions.Thecalculationswerecarriedoutusingthelocaldielectricfunction.Insets:Dielectricmodelsof nanocrystals.Insetinthemiddlegraphshowstheratioofintra-bandandtotalabsorptionsforanAuellipsoidasafunctionofthe parametera/b,whereaandbarethesizesofellipsoid.

dimension of 50nm are the most advantageous since an

energeticcarrierinsuchadevicecanpropagatetothe

sur-facewithout essentialrelaxation.Anotherpossibilityis to

usehigh-quality metals witha long mean-free path,such

as very high quality silver films fabricated in Ref. [66].

As we can see the mean free path of electron in gold is

relatively short and the related lifetimeis shortas well,

lmfp/vF∼20fs. This can be understood involving collisions

withdefectsandphononsandalsoduetoelectron—electron

scattering[67].Thefastestprocessinthecollective

dynam-icsis the de-phasing (coherentlifetime) ofplasmon. This

plasmoncoherence time plasmon∼5—10fs and can be

esti-mateddirectlyfromtheempiricaldielectricfunctionofgold

asplasmon∼/bulk∼9fs.Theplasmoncoherencelifeshownin

Fig.12d is shorter due to the inter-band transitions that

createanadditionalde-phasingmechanismforplasmons.

Current

experimental

work

and

potential

applications

Herewe briefly review some of the experimental reports

in the field. The mechanisms responsible for

plasmon-enhancedphotocurrentsandphotocatalysiscanbedivided

intothreegroups:Thermallyactivatedprocesses,processes

amplified by the plasmon electromagnetic enhancement

effect,anddirectelectrontransfer/injection.

Thermaleffectsandcharacteristictemperaturesin

thephoto-excitedmetalnanocrystals

One essential aspect of the problem is the photothermal

effectintheplasmonicNCs[68,70—73].PlasmonicNCs

effi-cientlydissipatelightenergy,whichmayleadtoanincrease

in local temperature of the system. This temperature

increase can bea reasonfor thephotocurrent generation

[69],increasedratesofchemicalreactions[74,75],and

pho-tomeltingofpolymersandDNAs[76—78],plasmonicwelding

[79],etc.The increaseintemperatureat thesurfaceofa

singlesphericalnanoparticlederivedfromthethermalheat

equationis TsingleNC= Qtotal 4k0 1 RNC

where k0 is an averaged thermal conductivity of the

sur-rounding matrix and RNC is a radius of heated NC. This

temperatureincreaseistypicallysmall(∼1—10K)for

plas-monicNCsinsolutionilluminatedwithmoderatelightfluxes

(13)

Figure12 Reviewofrelaxationmechanismsinplasmonicnanocrystals.(a)Inter-bandrelaxationofphotogeneratedcarriersin gold.TakenfromRef.[65].Copyright2004byTheAmericanPhysicalSociety.(b)DynamicsofphotobleachingofAunanoparticles revealingthetypicaltimesofrelaxationduetoelectron—electronandelectron—phononcollisions.Reprintedwithpermissionfrom Ref.[44].Copyright(1999)AmericanChemicalSociety.(c)Illustrationfortherelaxationmechanismsandtheparametersrelated todynamicsofphoto-excitedelectrongasinametal.(d)Calculateddynamicsofrelaxationofplasmonicelectricfieldinside a plasmonicnanoparticleexcitedbyafs-pulse.Thisdynamicsexhibitsashortcoherentlifetimeofplasmon.Thecalculationwasdone usingthelocaldielectricfunctionofgold[37].

generatehigh temperaturesdue tothe collective heating

effect [71,72,80].In thiscase, the resultingtemperature

increasecanbelarge[68,71],

Ttotal=f(NC,RNC)· TsingleNC·NNC2/3

where NNC is the number of NCs inside the volume of

lightbeamandNC istheNCdensityinsolution.Since

typ-ically NNC1, it is easy torealize the collective heating

and boiling regimes when Ttotal Tsin gleNC and Ttotal

canbeabovetheboilingpoint.Thiseffectcanbeused,for

Figure13 (a)CalculatedtemperatureatthesurfaceofasingleAunanoparticleinwater.ReprintedfromRef.[68],Copyright (2006),withpermissionfromElsevier.(b)and(c)Monolayerofgoldnanoparticlesonasubstrateandmeasuredphotocurrentinthis systemasafunctionoftime.Theoriginofthephotocurrentwasidentifiedasbolometric.ReprintedwithpermissionfromRef.[69]. Copyright2009,AIPPublishingLLC.

(14)

Figure14 (a)Schematicsofthewatersplittingreactionutilizingplasmoniccarriers. ReproducedfromRef. [9].Reprintedby permissionfromMacmillan PublishersLtd: NatureMaterials, copyright2011.(b) Thebanddiagramofasolarcellbasedonthe optically-activeadsorbedmoleculesandametalfilmtransmittingelectrons.TakenfromRef.[82].Reprintedbypermissionfrom MacmillanPublishersLtd:Nature,copyright2003.(c)Photo-triggeredreleaseofDNAsfromplasmonicnanorods.Reprintedwith permissionfromRef.[14].Copyright(2011)AmericanChemicalSociety.(d)InjectionofplasmoniccarriersfromtheAunanoparticle tothe semiconductor nanorod ina hybrid architecture. Reprinted with permissionfrom Ref. [32].Copyright (2013)American ChemicalSociety.

example,forboilingandthermaldestructionofthematrix

material[76,81].

Oneofthefirstexperimentsonthephotocurrentsin

plas-monicNCarraysisshowninFig.13b.Astrongphotocurrent

response in this study wasattributed and explainedas a

bolometriceffect;thepresenceofhotelectronsinsidethe

NCsresultedinamplifiedelectriccurrentsthroughthe

junc-tionsintheNCarray.

Elecromagneticenhancementeffects

Plasmonicnanostructuresareabletostronglyenhanceand

trapelectromagneticfieldsandthiseffectoffersinteresting

possibilities for designing more efficient light-harvesting

system and solar cells [6,7]. Using plasmonic NCs and

lithographically fabricated nanostructures, the

electro-magnetic field can be focused on the key regions of the

system where photochemical transformations take place

[9,15,19,13].Inparticular,thestudy[19]presentedhybrid

nanocrystals in which the spatial area of photocatalytic

activity (semiconductor nanoparticle) is separated from

the plasmonic particle by a barrier; in this way it was

demonstrated that the enhancement of chemical activity

in this system comesfrom the plasmonicenergy transfer,

withoutdirecttransferofcarriers.

Electrontransferandinjection

This direction is strongly motivated by the reports on

photo-injectioninpurelysolid-statesdevicesincorporating

aSchottkybarrierandplasmonicwaveguidesandresonators

[24,25]. Potential applications of such structures are in

photo-detectors. Regarding solid-state and dye-sensitized

solarcells,themetalcomponentcanbeusedasthemain

absorbing element [22] or as a mediator participating in

electronandholetransfers[82].Thelattercaseisillustrated

inFig.14b.Inthissystem,themetalgatesupplieselectrons

to theabsorbing molecules andalso transmits

photoelec-tronstothesemiconductor.Theotherschemeisillustrated

(15)

Figure15 (a)Modelsofnanocrystalandmolecularabsorbers.(b)AbsorptionscalculatedusingMietheoryandlocaldielectric functionsoftherelatedmaterials;forthedyemolecule,wetookatypicalextinction105(Mcm)−1.(c)Principleofoperationand energylevelschemeofthedye-sensitizednanocrystallinesolarcell.ReprintedfromRef.[88],Copyright(2003),withpermission fromElsevier.

is simultaneously an absorber of optical energy and a

transmitter of carriers to a semiconductor and adsorbed

molecules. At this moment, plasmonic photocatalysis has

beenusedtodriveseveralchemicalreactions.Recent

exam-plesincludedissociationofO2[75,83]andH2[21],splitting

of water [9,18,20,22,84], ethyleneepoxidation [83], etc.

Searchfornanomaterialswithahighefficiencyofconversion

ofsolarenergyintochemicalfuelsisveryactive.Plasmonic

electrons may also play an active role in bio-conjugated

nanocrystals.Forexample,excitedelectronsofanoptically

drivenNCandheatingcantriggerreleaseofDNAmolecules

[14](Fig.14c).Themechanismsofgenerationandinjection

ofplasmoniccarriersarepresentlyunderactive

investiga-tionusingvariousspectroscopictechniques.Inparticular,a

recentpaper[32]hasreportedatime-resolvedtransmission

studyofelectronsinjectedfromanAuNCtoa

semiconduc-tornanorod.Anothervery recentpaper[85] reportedthe

experiment onfocusing of surface plasmonpolaritions on

the metal—semiconductor junction using a tapered metal

tip.Inthissystem,theelectroninjectionwasenhancedby

compressingtheplasmonwaveintoarelativelysmallvolume

[86].Interestingpossibilitiesforhotelectroninjectionand

generationappearalsointhephoto-excitedmetaljunctions

underastrongelectricbiaswhenasymmetryofajunction

isvoltage-controlled[87].

Conclusions

This review article is mainly focused on the

understand-ing of behaviors of excited electrons in optically driven

metalnanocrystals.IntheconcludingFig.15,weshowthe

absorptioncrosssectionsofvarioustypesofnanomaterials.

Theobviousadvantageofplasmonicnanocrystalsisintheir

strongabsorption.OpticalabsorptionsofmetalNCs

signif-icantlyexceed ones of semiconductor quantum dots, dye

molecules and carbon nanotubes, which are used in

dye-sensitizedsolarcells[88]andotherhybridsystems[89,90]

(Fig. 15b). However, the challenge in the use of metal

nanocrystalsisinefficientextractionoftheenergetic

elec-tronsandholes.Thelifetimeofexcitedcarriersinametalis

short,whereasexcitonsindyemoleculesand

semiconduc-torquantum dots are relatively long-lived. Other limiting

factors for the use of plasmonic electrons are the

trans-ferof momentum from a NC to plasmonic electrons and

thereflectionof carriersatinterfaces. However,weshow

thattheefficiencyofgenerationandinjectionofplasmonic

carriers can be increased by choosing appropriate sizes,

geometriesandexcitationfrequencies.Webelievethatthis

papershouldbeusefulforunderstandingofgenerationand

transport of hot plasmonic electrons in optically excited

(16)

canbeusedin arange ofpotential applicationsincluding

optoelectronics,sensing, photochemistry and energy

har-vesting.

Acknowledgments

WethankZ.FanfortheDFTcalculationsofbulkgold.This

workwassupportedbytheScienceFoundationIreland(SFI

11/W.1/12065andSFI07/IN.1/I1862projects),theMinistry

ofEducationandScienceoftheRussianFederation(Grant

No. 14.В25.31.0002), the NSF (project: CBET-0933782),

andVolkswagenFoundation.H.V.D.gratefullyacknowledges

supportfromNRF-RF-2009-09andNRF-CRP-6-2010-2aswell

asTUBAandESFEURYI.

References

[1]S.A. Maier, Plasmonics: Fundamentals and applications, Springer,NewYork,2007.

[2]L. Novotny, B.Hecht, Principlesof Nano-Optics, Cambridge Univ.Press,Cambridge,UK,2006.

[3]S.M.Sze,K.K.Ng,PhysicsofSemiconductorDevices,3rded., Wiley,Hoboken,NJ,2007.

[4]C.D.Lindstrom,X.-Y.Zhu,Chem.Rev.106(2006)4281. [5]C.Frischkorn,M.Wolf,Chem.Rev.106(2006)4207. [6]H.A.Atwater,A.Polman,Nat.Mater.9(2010)205.

[7]J.A.Schuller,E.S.Barnard,W.Cai,Y.C.Jun,J.S.White,M.L. Brongersma,Nat.Mater.9(2010)193.

[8]S.V.Boriskina,H.Ghasemi,G.Chen,Mater.Today16(2013) 375—386.

[9]S.Linic,P.Christopher,D.B.Ingram,Nat.Mater.10(2011)911. [10]C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S.

Kostcheev,L.Billot,etal.,NanoLett.5(2005)615. [11]L.Brus,Acc.Chem.Res.41(2008)1742.

[12]X.Wu,E.S.Thrall,H.Liu, M.Steigerwald,L. Brus,J.Phys. Chem.C114(2010)12896.

[13]Z.Liu,W.Hou,P.Pavaskar,M.Aykol,S.B.Cronin,NanoLett. 11(2011)1111.

[14]R.Huschka,J.Zuloaga,M.W.Knight,L.V.Brown,P.Nordlander, N.J.Halas,J.Am.Chem.Soc.133(2011)12247.

[15]I.Thomann,B.A.Pinaud,Z.Chen,B.M.Clemens,T.F.Jaramillo, M.L.Brongersma,NanoLett.11(2011)3440.

[16]M.Xiao,R.Jiang,F.Wang,C.Fang,J.Wang,J.C.Yu,J.Mater. Chem.1(2013)5790.

[17]H.Tong,S.Ouyang,Y.Bi,N.Umezawa,M.Oshikiri,J.Ye,Adv. Mater.24(2012)229.

[18]S.C.Warren,E.Thimsen,EnergyEnviron.Sci.5(2012)5133. [19]S.K.Cushing,J.Li,F.Meng,T.R.Senty,S.Suri,M.Zhi,etal.,

J.Am.Chem.Soc.134(2012)15033.

[20]D.B.Ingram,S.Linic,J.Am.Chem.Soc.133(2011)5202. [21]S.Mukherjee,F.Libisch,N.Large,O.Neuman,L.V.Brown,J.

Cheng,etal.,NanoLett.13(2013)240.

[22]S. Mubeen, J. Lee, N. Singh, S. Krämer, G.D. Stucky, M. Moskovits,Nat.Nanotechnol.8(2013)247.

[23]H.R.Stuart,D.G.Hall,Appl.Phys.Lett.73(1998)3815. [24]A.Akbari,R.N.Tait,P.Berini,Opt.Exp.18(2010)8505. [25]M.W.Knight,H.Sobhani,P.Nordlander,N.J.Halas,Science332

(2011)702.

[26]Y.K.Lee,C.H.Jung,J.Park,H.Seo,G.A.Somorjai,J.Y.Park, NanoLett.11(2011)4251.

[27]I.Goykhman,B.Desiatov,J.Khurgin,J.Shappir,U.Levy,Nano Lett.11(2011)2219.

[28]M.Casalino,Int.J.Opt.Appl.2(2012)1.

[29]D. Conklin, S. Nanayakkara, T.-H. Park, M.F. Lagadec, J.T. Stecher,X.Chen,etal.,ACSNano7(2013)4479.

[30]F.Yan,X.W.Sun,Appl.Phys.Lett.102(2013)043303. [31]P. Berini, Laser Photon. Rev. (2013), http://dx.doi.org/

10.1002/lpor.201300019.

[32]K.Wu,W.E.Rodríguez-Córdoba,Y.Yang,T.Lian,NanoLett.13 (2013)5255.

[33]Y.He,P.Basnet,S.Murph,Y.Zhao,ACSAppl.Mater.Interfaces 5(2013)11818.

[34]E.Hao,G.C.Schatz,J.Chem.Phys.120(2004)357. [35]F.J.G.deAbajo,J.Phys.Chem.C112(2008)17983.

[36]M.Liu,P.Guyot-Sionnest,T.W.Lee,S.K.Gray,Phys.Rev.B76 (2007)235428.

[37]P.B.Johnson,R.W.Christy,Phys.Rev.B6(1972)4370. [38]P.M.Platzman,P.A.Wolff,WavesandInteractionsinSolidState

Plasma,AcademicPress,NewYork,1973.

[39]G.D. Mahan, Many-particle Physics, 3rd ed., Kluwer Aca-demic/PlenumPublishers,NewYork,2000.

[40]Forgold,wecanuseε0=9.01asthebackgrounddielectric con-stant,whichdescribesthescreeningeffectcomingfromthe reactionofthecoreelectronsofAuions.Inthereality,thisis stillasimplisticapproximationforgoldbecauseofthepresence ofintensiveinter-bandtransitions.

[41]A.Yariv,QuantumElectronics,3rded.,JohnWiley&Sons,New York,1989.

[42]A.O.Govorov, H.Zhang, Y.K.Gun’ko,J. Phys.Chem.C117 (2013)16616.

[43]E.Devaux,T.W.Ebbesen,J.-C.Weeber,A.Dereux,Appl.Phys. Lett.83(2003)4936.

[44]S.Link,M.A.El-Sayed,J.Phys.Chem.B103(1999)8410. [45]A.O.Govorov,H.Zhang,J.Phys.Chem.C(2014),http://dx.

doi.org/10.1021/jp500009k.

[46]G.V.Hartland,Chem.Rev.111(2011)3858.

[47]J.D.Jackson,ClassicalElectrodynamics,3rded.,JohnWiley& Sons,NewYork,1998.

[48]N.Szydlo,R.Poirier,J.Appl.Phys.51(1980)3310. [49]R.H.Fowler,Phys.Rev.38(1931)45.

[50]I.Tamm,S.Schubin,Z.Phys.68(1931)97. [51]K.Mitchel,Proc.R.Soc.Lond.146(1934)442—464.

[52]A.M.Brodsky,YuYa.Gurevich,Sov.Phys.JETP27(1968)114. [53]C.Scales,P.Berini,IEEEJ.Quant.Elect.46(2010)633. [54]Q.Y.Chen,C.W.BatesJr.,Phys.Rev.Lett.57(1986)2737. [55]T.P.White,K.R.Catchpole,Appl.Phys.Lett.101(2012)073905. [56]S.Zhu,G.Q.Lo,D.L.Kwong,Opt.Exp.19(2011)15843. [57]F.B.Atar, E.Battal,L.E.Aygun, B.Daglar,M.Bayindir, A.K.

Okyay,Opt.Exp.21(2013)7196.

[58]I.E.Protsenko,A.V.Uskov,Physics-Uspekhi55(2012)508. [59]A. Novitsky, A.V. Uskov, C. Gritti, I.E. Protsenko, B.E.

Kar-dynał, A.V. Lavrinenko, Prog. Photovolt Res. Appl. (2012), http://dx.doi.org/10.1002/pip.2278.

[60]M.Kornbluth,A.Nitzan,T.Seideman,J.Chem.Phys.138(2013) 174707.

[61]N.E. Christensen, B.O. Seraphin, Phys. Rev. B 4 (1971) 3321.

[62]A. Vial, A.-S.Grimault,D.Macías,D. Barchiesi,M.L. deLa Chapelle,Phys.Rev.B71(2005)085416.

[63]C.R.Crowell,S.M.Sze,in:G.Hass,R.E.Thun(Eds.),Physics ofThinFilms,AcademicPress,1967.

[64]C.R.Crowell,S.M.Sze,Phys.Rev.Lett.15(1965)659. [65]E.Dulkeith,T.Niedereichholz,T.A.Klar,J.Feldmann,G.von

Plessen,D.I.Gittins,etal.,Phys.Rev.B70(2004)205424. [66]Y.-J.Lu,J.Kim,H.-Y.Chen,C.Wu,N.Dabidian,C.E.Sanders,

etal.,Science337(2012)450.

[67]K.W.FreseJr.,C.Chen,J.Electrochem.Soc.139(1992)3234. [68]A.O.Govorov,H.H.Richardson,NanoToday2(2007)30. [69]M.A.Mangold,C.Weiss,M.Calame,A.W.Holleitner,Appl.Phys.

Lett.94(2009)161104.

[70]G.V.Hartland,Phys.Chem.Chem.Phys.6(2004)5263. [71]A.O.Govorov, W.Zhang,T.Skeini,H.Richardson,J.Lee,N.

(17)

[72] P.Keblinski,D.G.Cahill,A.Bodapati,C.R.Sullivan,T.A.Taton, J.Appl.Phys.100(2006)054305.

[73] G.Baffou,C.Girard,R.Quidant,Phys.Rev.Lett.104(2010) 136805.

[74] J.R.Adleman,D.A.Boyd,D.G.Goodwin,D.Psaltis,NanoLett. 9(2009)4417.

[75] P.Christopher,H.Xin,S.Linic,Nat.Chem.3(2011)467. [76] A.G.Skirtach,C.Dejugnat,D.Braun,A.S.Susha,A.L.Rogach,

W.J.Parak,etal.,NanoLett.5(2005)1371.

[77] J.Stehr,C.Hrelescu,R.A.Sperling,G.Raschke,M.Wunderlich, A.Nichtl,etal.,NanoLett.8(2008)619.

[78] A.S.Urban,M.Fedoruk,M.R.Horton,J.O.Rädler,F.D.Stefani, J.Feldmann,NanoLett.9(2009)2903.

[79] E.C.Garnett,W.Cai,J.J.Cha,F.Mahmood,S.T.Connor,M.G. Christoforo,etal.,Nat.Mater.11(2012)241.

[80] H.H.Richardson, Z.Hickman, A.O.Govorov, A. Thomas, W. Zhang,M.E.Kordesch,NanoLett.6(2006)783.

[81] D.Hühn,A.O.Govorov,P.R.Gil,W.J.Parak,Adv.Funct.Mater. 22(2012)294.

[82] E.W.McFarland,J.Tang,Nature421(2003)616.

[83] P.Christopher,H.Xin,A.Marimuthu,S.Linic,Nat.Mater.11 (2012)1044.

[84] G.Wang,Y.Ling,H.Wang,X.Lu,Y.Li,J.Photochem.Photobiol. CPhotochem.Rev.19(2014)35.

[85] A. Giugni, B. Torre,A. Toma, M.Francardi, M. Malerba,A. Alabastri,etal.,Nat.Nanotechnol.8(2013)845.

[86] P.J.Schuck,Nat.Nanotechnol.8(2013)799.

[87] A.Stolz,J.Berthelot,L.Markey,G.ColasdesFrancs,A. Bouhe-lier,(2013)arXiv:1308.4508.

[88] M.Grätzel, J.Photochem. Photobiol. C:Photochem. Rev.4 (2003)145.

[89] M.J.Berr,P.Wagner,S.Fischbach,A.Vaneski,J.Scheider,A.S. Susha,etal.,Appl.Phys.Lett.100(2012)223903.

[90] K.T.Dembele, G.S.Selopal, C.Soldano, R. Nechache, J.C. Rimada, I. Concina, et al., J. Phys. Chem. C 117 (2013) 14510—14517.

AlexanderO. Govorovis Professorof Theo-reticalPhysicsatOhioUniversityinAthens, USA. PhD: 1991, Institute of Semiconduc-tor Physics, Novosibirsk, Russia. Research positionin theaboveInstitute:1987—2001. In2001,he movedto theU.S.and became Professor at Ohio University. His research is focused on the theory of optical and electronic properties of nanostructures whichincorporatesemiconductor,metal,and molecularcomponents. His theoretical pre-dictionsmotivatedexperimentsinmanyresearchlabsworldwide. He isanauthor ofmorethan170papers.He is aFellow ofthe AmericanPhysicalSocietyandarecipient oftheBesselResearch Award(HumboldtFoundation,Germany),theIkerbasqueResearch Fellowship (Spain), the E. T. S. Walton Visitor Award (Ireland), ChangJiangChairProfessorshipoftheScholarProgramofMOEof Chinaand2014Jacques-BeaulieuExcellenceResearchChairAward (INRS,Montreal,Canada).

HuiZhangreceivedhisB.Sc.degreeinApplied Physics from the University of Science and TechnologyofChinain2006,andPh.D.in The-oreticalPhysicsfromtheInstituteofPhysics, Chinese Academy of Sciences in2011. Cur-rently,heisapostdoctoralresearcheratthe groupofProf.A.O.GovorovatOhio Univer-sity,U.S.Hiscurrentresearchisonplasmonics andexcitonicsofhybridnanostructureswitha focusonquantumphenomena.Heisanauthor of several recentpapers published inNano Letters,ACSNanoandotherjournals.

HilmiVolkanDemirisaprofessorof electri-calengineeringandphysics.Hereceivedhis M.S. and Ph.D.degreesat Stanford Univer-sity.HewasnamedaFellowbytheSingapore National ResearchFoundation and was also appointedtoaNanyangAssociate Professor-shipatNTUSingapore.Concurrently,heisthe EURYI AssociateProfessorat Bilkent Univer-sity,Turkey.HeservesastheDirectorofthe Luminous!Center ofExcellence. Amonghis research interests are light-matter interac-tionsatthenanoscaleandsemiconductordevicephysics.Dr.Demir hascontributedtocommercializationandlicensingofseveralnew enablingtechnologiesaswellasestablishingasuccessfulcompany and led to >20 patent applications, several of which have cur-rentlybeenused,ownedorlicensedbytheindustry.Thesescientific andentrepreneurshipactivitiesresultedinseveralimportant inter-nationalawardsincludingEuropeanScienceFoundationEuropean YoungInvestigatorAwardandTheOutstandingYoungPersoninthe WorldAwardbyJCIFederationofYoungLeadersandEntrepreneurs. Yurii Gun’ko graduated from the Chemistry Department of Moscow State University in 1987. He hasalsoreceivedhis Ph.Ddegree in Inorganic Chemistry from Moscow State Universityin1990.Thenheworkedasa lec-turerinChemistryinBelorussianInstituteof Technology(Belarus). In1994hereceiveda postdoctoralpositioninthegroupof profes-sorM.F.LappertintheUniversitySussex(UK). Thenin1995hewasawardedAlexandervon Humboldtfellowshipandworkedinthe Uni-versityofMagdeburg(Germany)withprofessorF.T.Edelmann.After thathereturnedbacktotheUniversitySussexandworkedwhere as a postdoctoral researcher. In 1999 Dr. Gun’ko moved to the ChemistryDepartmentofTrinity CollegeDublin(Ireland)to take uptheposition ofthelecturerin InorganicChemistry.Currently YuriiGun’koworksasaProfessorintheSchoolofChemistryanda PrincipalInvestigatorinCRANNInstituteinTrinityCollege.Hismain researchinterestandactivitiesare:carbonnanomaterials, photo-voltaiccells,magneticnanostructures,plasmonicandquantumdot basedmaterials.

Şekil

Figure 2 (a) Schematic illustration of gold nanocrystals and their absorption spectra in water
Figure 3 (a) and (b) Schematic illustrations for a propagating plasmon wave in a bulk crystal and the Fermi sea of electrons in the bulk with a plasmon excitation
Figure 5 (a) Schematic illustration of a plasmonic Au slab in water driven by the electric field of incident light
Figure 6 Illustrations of plasmonic processes within the linear-response and phenomenological models
+7

Referanslar

Benzer Belgeler

According to Léon-Ledesma and Thirlwall (2002), the endogeneity of the natural growth rate means that full employment ceiling is not constant; it can increase und er

Fakat en çok güldüren, bunun için de tuluat jestlerinden biraz çokça istifade eden Melımed K a­ raca oldu.. Bu piyes üzerinde daha çok duramıy aeağımıza,

• The change of an electric current or the amount of reduced and oxidized matter in the interfaces is directly proportional to the amount of electricity passing through the

In this chapter we explore some of the applications of the definite integral by using it to compute areas between curves, volumes of solids, and the work done by a varying force....

We provide a novel proof of the existence of regulator indecomposables in the cycle group CH 2 (X, 1), where X is a sufficiently general product of two elliptic curves.. Our interest

 Stratigrafik olarak, bölgede temelde Paleozoyik yaşlı gnays-şistler olup, bunların üzerine tektonik olarak Kretase yaşlı Vezirler Melanjı gelmektedir. Vezirler

Numuneler üzerinde yaptıkları su emme, ultra ses hızı ve basınç dayanımı deneyleri sonucunda, mermer tozunun betona %5 – 15 oranında ince malzeme olarak

Benign mesothelial tumors of the urinary bladder: Review of literature and a report of a case of leiomyoma. Knoll LD, Segura JW,