• Sonuç bulunamadı

View of Study of Certain Classes of Multivalent Functions Associated With Integral Operators

N/A
N/A
Protected

Academic year: 2021

Share "View of Study of Certain Classes of Multivalent Functions Associated With Integral Operators"

Copied!
13
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

643

Study of Certain Classes of Multivalent Functions Associated With Integral Operators

𝐓. 𝐆. 𝐓𝐡𝐚𝐧𝐠𝐞𝟏 , 𝐒. 𝐒. 𝐉𝐚𝐝𝐡𝐚𝐯𝟐

1 Department of Mathematics.Yogeshwari Mahavidyalaya, Ambejogai.

2Sundarrao More Arts, Commerce, and Science (Sr.) College, Poladpur.Tal- Poladpur Dist.-

Raigad – 402 303.

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 20 April 2021

Abstract: In the given article we studied the class Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) of multivalent functions with integral operator. We

obtained necessary and sufficient condition for the functions in the class. Several geometric properties like coefficient bounds, closureness property, and integral mean are part of discussion. Extensions of the given class with several results are also pointed out.

Mathematics subject classification. 30C 45.

Keywords. Multivalent, Closurness, Operator. 1. Introduction.

Multivalent function theory is unique branch of geometric function theory. The special class of this topic is B (p).It consist of multivalent functions in the form,

f (z) = zp + ∑ 𝑎

𝑛𝑧𝑝+𝑛 ∞

𝑛=1 , p∈ 𝑁. (1)

Which are analytic in unit disc D= {z: |z|<1}.B+ (p) be the subclass of B (p) consist of all functions in the form (1.1) with positive coefficients.

g (z)= zp + ∑ 𝑏

𝑛𝑧𝑝+𝑛 ∞

𝑛=1 , ( bn≥ 0 , 𝑝 ∈ 𝑁) (2)

[1-5] and many other studied the classes of multivalent convex, starlike, close to convex functions of order 𝜕 ≥ 0. Hadmad [8] introduced concept of (convolution) hadmad product.

Definition 1.6.If f (z) = zp + ∑ 𝑎

𝑛𝑧𝑝+𝑛 ∞

𝑛=1 , g(z) = 𝑧𝑝 + ∑∞𝑛=1𝑏𝑛𝑧𝑝+𝑛 is an analytic function on unit disk D.The

hadmad product is denoted as f* g.It is defined as follows (f*g)(z)= zp +∑ 𝑎

𝑛𝑏𝑛𝑧𝑝+𝑛 ∞

𝑛=1 . (3)

This product is strong tool in development of geometric function theory. It has been shown that many subclasses of univalent and multivalent functions are remains invariant under convolution. Several authors like Bhousty [3], Ruschweyh [13], Robertson [10], and Thange [14] studied this product. We generalized this product by

introducing t th hadmad product. It is defined as follows.

Definition 1.7.For t ∈ ℝ, f(z)= zp + ∑ 𝑎

𝑛𝑧𝑝+𝑛 ∞

𝑛=1 , g(z) = 𝑧𝑝 + ∑∞𝑛=1𝑏𝑛𝑧𝑝+𝑛 in B(p), tth hadmad product (Convolution) is denoted by ∗𝑡.It is defined as (f 𝑡𝑔)= zp + ∑ (𝑎

𝑛. 𝑏𝑛)𝑡𝑧𝑝+𝑛 ∞

𝑛=1 . (4)

The 1 th hadmad product is equivalent to hadmad product.

[2][11][7][14] used following definition. It is utilized in subordination techniques to obtained geometric property of classes of univalent and multivalent function

Definition 1.3. Let f and g analytic in unit disc D, we say that the function f (z) is subordinate to g (z) in D and write

(2)

644

f (z) ⊰ g (z) (z ∈D) (5) If there exit Schwarz function w (z), analytical in U with w (0) = 0 and │w (z) │< 1 such that f (z) = g (w (z)) (z ∈ D) (6)

[7] has introduced following lemma known as Littlewoods Subordination lemma.[1][7] [11] has used this lemma to prove integral mean and subordination results for classes of univalent and analytic functions. Lemma1.1. Let f and g analytic in unit disc and suppose g ⊰ f, then for 0 < t < ∞

∫2𝜋│𝑔( 𝑟𝑒𝑖∅ )│𝑡

0 d𝜃 ≤ ∫ │𝑓( 𝑟𝑒

𝑖∅ )│𝑡 2𝜋

0 d𝜃 (0≤ 𝑟 < 1, 𝑡 > 0 ) (7)

Strict equality holds for 0 ≤ r < 1 unless f is constant or w (z) = α z, │α │=1. [16] has found the application of integral operator 𝐼𝜎𝑔(𝑧) = 1

𝑧2𝜏(𝜎)∫ (𝑙𝑜𝑔 𝑧 𝑡) 𝜎−1 𝑧 0 𝑡𝑔(𝑡)𝑑𝑡 for univalent

meromorphic function g (z).Associated with this operator he defined subclass of univalent meromorphic function f(z) on unit disc satisfying | [(𝑉−𝐻)𝛾+𝐻][𝑧2(𝐼𝜎f(z))

+𝛽𝑧𝐼𝜎f(z)+(1−𝛽)

[𝑧2(𝐼𝜎f(z))+𝛽𝑧𝐼𝜎f(z)][(𝑉−𝐻)𝛾+𝐻]+(1−𝛽)[(𝑉−𝐻)𝛾+𝐻+1]|< ∝ (8)

Analogous to same operator we define new integral operator as defined bellow,

Definition 1.2.The integral operator for f ∈ B (p) is denoted by 𝐼𝜎,𝑟,𝑠 and defined as follows

𝐼𝜎,𝑟,𝑠f (z) = 𝑧𝑟 𝜏(𝜎)∫ (𝑙𝑜𝑔 𝑧 𝑡) 𝜎−1 𝑧 0 𝑡 𝑠𝑓(𝑡)𝑑𝑡 where 𝜎 ≥ 0, 𝑠, 𝑟 ∈ ℤ. (9)

[16] has used operator 𝐼𝜎,−2,1 for meromorphic function.

Example1.3. Show that for f (z) ∈ 𝐵(𝑝), 𝐼(𝜎,𝑝−1,−𝑝)f (z) = zp + ∑ 1

(𝑛+1)𝜎𝑎𝑛𝑧 𝑝+𝑛 ∞ 𝑛=1 p∈ ℕ. By definition, 𝐼(𝜎,𝑝−1,−𝑝)f(z)= 𝑧𝑝−1 𝜏(𝜎)∫ (𝑙𝑜𝑔 𝑧 𝑡) 𝜎−1 𝑧 0 1 𝑡𝑝𝑓(𝑡)𝑑𝑡 If f(z)= zp + ∑ 𝑎 𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 𝐼(𝜎,𝑝−1,−𝑝)f (z) = 𝑧𝑝−1 𝜏(𝜎)∫ (𝑙𝑜𝑔 𝑧 𝑡) 𝜎−1 𝑧 0 1 𝑡𝑝[ 𝑡 𝑝 + ∑ 𝑎 𝑛𝑡𝑝+𝑛 ∞ 𝑛=1 ]𝑑𝑡 . = 𝑧𝑝−1 𝜏(𝜎)∫ (𝑙𝑜𝑔 𝑧 𝑡) 𝜎−1 𝑧 0 [1 + ∑ 𝑎𝑛𝑡 𝑛 ∞ 𝑛=1 ]𝑑𝑡. = 𝑧𝑝−1 𝜏(𝜎)∫ (𝑙𝑜𝑔 𝑧 𝑡) 𝜎−1 𝑧 0 dt + ∑ 𝑧𝑝−1 𝜏(𝜎)𝑎𝑛∫ (𝑙𝑜𝑔 𝑧 𝑡) 𝜎−1 𝑧 0 𝑡 𝑛 ∞ 𝑛=1 dt. Put log (𝑧 𝑡 ) =x 𝐼(𝜎,𝑝−1,−𝑝)f (z)= 𝑧𝑝−1 𝜏(𝜎)∫ 𝑧𝑥 𝜎−1 ∞ 0 e-xdx + ∑ 𝑧𝑝+𝑛 𝜏(𝜎)𝑎𝑛∫ 𝑥 𝜎−1 ∞ 0 𝑒 −(𝑛+1)𝑑𝑥 ∞ 𝑛=1 = zp + ∑ 1 (𝑛+1)𝜎𝑎𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 2. Class Y+ (∝, 𝜷, 𝑯, 𝑽, 𝜸, 𝝈), Y (∝, 𝜷, 𝑯, 𝑽, 𝜸, 𝝈).

In this section we introduced new classes Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) of multivalent functions.We examined various geometric properties of this classes.We start with the necessary condition for the class Y (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎).

(3)

645

Definition 2.1. A function f (z) in B (p) is said to be in the class Y (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) if it satisfies the condition

| [(𝑉−𝐻)𝛾+𝐻][ 1 𝑧𝑝−1(𝐼 (𝜎,𝑝−1,−𝑝)f(z))+𝛽 𝑧𝑝 𝐼(𝜎,𝑝−1,−𝑝)f(z)−(𝛽+𝑝) [ 1 𝑧𝑝−1(𝐼(𝜎,𝑝−1,−𝑝)f(z)) ′ +𝛽 𝑧𝑝 𝐼(𝜎,𝑝−1,−𝑝)f(z)][(𝑉−𝐻)𝛾+𝐻]−(𝛽+𝑝)[(𝑉−𝐻)𝛾+𝐻+1] |< ∝ (10) 0≤ 𝛽<1, 0 <∝≤ 1,-1≤ 𝐻 < 𝑉 ≤ 1, 𝐻 𝐻−𝑉 < ≤ 1, 𝜎 > 0 We write the class Y+ (∝, 𝛽, 𝐴, 𝐵, 𝛾, 𝜎) as bellow,

Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎)= B+ (p) ∩ Y (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) (11) Example 2.2. If f3 (z) = zp + 1 (𝑝+1+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](12)𝜎 𝑧 𝑝+1+ ∝(𝛽+𝑝)−1 (𝑝+1+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](12)𝜎 𝑧 𝑝+2 With ∝ (𝛽 + 𝑝) > 1.Then f3 (z) ∈ Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎). Putting a1= 1 (𝑝+1+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](12)𝜎 a2 = ∝(𝛽+𝑝)−1 (𝑝+1+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](12)𝜎 , an = 0 for n > 2. Then,∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 . = ∝ (𝛽 + 𝑝) Hence f3 (z) ∈ Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎). Theorem 2.3. If f (z) ∈ 𝐵(𝑝), satisfies ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 |𝑎𝑛| ∞ 𝑛=1 ≤ ∝ (𝛽 + 𝑝) (12) Then f (z) ∈ Y (∝, 𝛽, 𝐴, 𝐵, 𝛾, 𝜎).

Proof: Suppose f (z) satisfies condition (8)

𝐼(𝜎,𝑝−1,−𝑝)f (z) = zp + ∑ 1 (𝑛+1)𝜎𝑎𝑛𝑧 𝑝+𝑛 ∞ 𝑛=1 D (𝐼(𝜎,𝑝−1,−𝑝)f (z)) = [(𝑉 − 𝐻)𝛾 + 𝐴] [ 1 𝑧𝑝−1(𝐼 (𝜎,𝑝−1,−𝑝)f(z))+ 𝛽 𝑧𝑝 𝐼 (𝜎,𝑝−1,−𝑝)f(z) − (𝛽 + 𝑝)] = ∑ (𝑝 + 𝑛 + 𝛽)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 |𝑎𝑛| ∞ 𝑛=1 zn. E (𝐼(𝜎,𝑝−1,−𝑝)f(z))= [(𝑉 − 𝐻)𝛾 + 𝐻] [ 1 𝑧𝑝−1(𝐼 (𝜎,𝑝−1,−𝑝)f(z))+ 𝛽 𝑧𝑝 𝐼 (𝜎,𝑝−1,−𝑝)f(z)] − (𝛽 + 𝑝)[(𝑉 − 𝐻)𝛾 + 𝐻 + 1] = - (𝛽 + 𝑝) + ∑ (𝑝 + 𝑛 + 𝛽)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 𝑧𝑛.

Now to show result we claim that|D(𝐼

(𝜎,𝑝−1,−𝑝)f(z)) E(𝐼(𝜎,𝑝−1,−𝑝)f(z))| < ∝ Given that ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 |𝑎𝑛| ∞ 𝑛=1 ≤ ∝ (𝛽 + 𝑝) Hence, ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 |𝑎𝑛||𝑧𝑛| ∞ 𝑛=1 ≤ ∝ (𝛽 + 𝑝)

(4)

646

∑ (𝑝 + 𝑛 + 𝛽)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 |𝑎𝑛||𝑧𝑛| ∞ 𝑛=1 ≤ −∝ ∑ (𝑝 + 𝑛 + 𝛽)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 |𝑎𝑛||𝑧𝑛| ∞ 𝑛=1 −∝ (𝛽 + 𝑝). ∑∞𝑛=1(𝑝+𝑛+𝛽)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎|𝑎𝑛||𝑧𝑛| (𝛽+𝑝)−∑∞𝑛=1(𝑝+𝑛+𝛽)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎|𝑎𝑛||𝑧𝑛| ≤ ∝ |D(𝐼 (𝜎,𝑝−1,−𝑝)f(z)) E(𝐼(𝜎,𝑝−1,−𝑝)f(z))| = | ∑∞𝑛=1(𝑝+𝑛+𝛽)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎𝑎𝑛𝑧𝑛| |(𝛽+𝑝)−∑∞𝑛=1(𝑝+𝑛+𝛽)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎𝑎𝑛𝑧𝑛| ≤ ∑ (𝑝+𝑛+𝛽)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 |𝑎𝑛||𝑧𝑛| ∞ 𝑛=1 (𝛽+𝑝)−∑∞𝑛=1(𝑝+𝑛+𝛽)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎|𝑎𝑛||𝑧𝑛| < ∝. ∴f (z) ∈ Y(∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎). Theorem 2.4. f (z) ∈ Y+(∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) iff ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 ≤ ∝ (𝛽 + 𝑝) (13)

Proof: Assume inequality (9) holds. Therefore by theorem (8) f (z) ∈ Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎). Conversely suppose f (z) ∈ Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎). | [(𝑉−𝐻)𝛾+𝐻][ 1 𝑧𝑝−1(𝐼 (𝜎,𝑝−1,−𝑝)f(z))+𝛽 𝑧𝑝 𝐼 (𝜎,𝑝−1,−𝑝)f(z)−(𝛽+𝑝) [ 1 𝑧𝑝−1(𝐼(𝜎,𝑝−1,−𝑝)f(z)) ′ +𝑧𝑝 𝛽𝐼(𝜎,𝑝−1,−𝑝)f(z)][(𝑉−𝐻)𝛾+𝐻]−(𝛽+𝑝)[[(𝑉−𝐻)𝛾+𝐻]+1] |< ∝ | ∑ (𝑝+𝑛+𝛽)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 𝑎𝑛𝑧𝑛 ∞ 𝑛=1 (𝛽+𝑝)−∑∞𝑛=1(𝑝+𝑛+𝛽)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎𝑎𝑛𝑧𝑛 | < ∝ Now Re {z} ≤ |𝑧| Re{ ∑ (𝑝+𝑛+𝛽)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 𝑎𝑛𝑧𝑛 ∞ 𝑛=1 (𝛽+𝑝)−∑∞𝑛=1(𝑝+𝑛+𝛽)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎𝑎𝑛𝑧𝑛 } < ∝

Allowing z→ 1- through positive real axis.

∑ (𝑝+𝑛+𝛽)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 (𝛽+𝑝)−∑∞𝑛=1(𝑝+𝑛+𝛽)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎𝑎𝑛 < ∝ ∑ (𝑝 + 𝑛 + 𝛽)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 < ∝ (𝛽 + 𝑝)−∝ ∑(𝑝 + 𝑛 + 𝛽)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛 + 1) 𝜎 𝑎𝑛 ∞ 𝑛=1 ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 ≤ ∝ (𝛽 + 𝑝) Hence f (z) ∈ Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎)

(5)

647

Corollary 2.5. f (z)= zp+ ∑ 𝑎 𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 ∈ Y+(∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) Then an ≤ ∝(𝛽+𝑝) (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎

Equality occurs for the function, fn (z) = zp +

∝(𝛽+𝑝)

(𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎 𝑧 𝑝+𝑛.

Proof. Given that, f (z)= zp+ ∑ 𝑎

𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 ∈ Y + (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) . ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 ≤ ∝ (𝛽 + 𝑝) ∴ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑎𝑛≤ ∝ (𝛽 + 𝑝) ∴ an ≤ ∝(𝛽+𝑝) (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎

With equality occurs for the function, fn (z) = zp +

∝(𝛽+𝑝)

(𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎 𝑧 𝑝+𝑛.

Further, we prove closurness property for class Y+(∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎)

Theorem 2.6.The class Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) is closed under convex combination.

Proof. Let fi (z) = zp + ∑∞𝑛=1𝑎𝑛,𝑖𝑧𝑝+𝑛 1 ≤ i ≤ t is in Y+(∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) ∴ ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑎𝑛,𝑖 ∞ 𝑛=1 ≤ ∝ (𝛽 + 𝑝). Let G (z) =∑𝑡𝑖=1𝜆𝑖𝑓𝑖(𝑧), where ∑𝑡𝑖=1𝜆𝑖=1. = ∑𝑡𝑖=1𝜆𝑖( zp +∑∞𝑛=1𝑎𝑛,𝑖𝑧𝑝+𝑛). = zp + ∑ 𝜆 𝑖 𝑡 𝑖=1 ( ∑∞𝑛=1𝑎𝑛,𝑖𝑧𝑝+𝑛) = zp + ∑. 𝑛=1( ∑𝑡𝑖=1𝜆𝑖𝑎𝑛,𝑖)𝑧𝑝+𝑛. = zp + ∑. 𝑛=1 𝑇𝑛𝑧𝑝+𝑛 where 𝑇𝑛= ∑𝑡𝑖=1𝜆𝑖𝑎𝑛,𝑖 ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑇𝑛 ∞ 𝑛=1 = ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 ∞ 𝑛=1 ∑𝑡𝑖=1𝜆𝑖𝑎𝑛,𝑖. = ∑ 𝜆𝑖(∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 ∞ 𝑛=1 𝑎𝑛,𝑖 𝑡 𝑖=1 ) ≤ ∑𝑡𝑖=1𝜆𝑖∝ (𝛽 + 𝑝) ≤ ∝ (𝛽 + 𝑝)

(6)

648

Therefore G (z) ∈ Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎)

Theorem 2.7. The function of the form f (z) = zp + ∑ 𝑎

𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 is in Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) and g (z)= zp + ∑ 𝑎𝑛 𝑛𝜎𝑧 𝑝+𝑛 ∞ 𝑛=1 then, ∑ 𝑎𝑛 𝑛𝜎 ∞ 𝑛=1 ≤ 2𝜎∝(𝛽+𝑝) (𝑝+1+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻] Proof. f (z)= zp + ∑ 𝑎 𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 is in Y+(∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 ≤ ∝ (𝛽 + 𝑝) (1 2𝑛) 𝜎 ≤ ( 1 𝑛+1) 𝜎 (𝑝 + 1 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ∑ (1 2𝑛) 𝜎 ∞ 𝑛=1 𝑎𝑛. ≤ ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 ∞ 𝑛=1 an ≤ ∝ (𝛽 + 𝑝). ∑ 𝑎𝑛 𝑛𝜎 ∞ 𝑛=1 . ≤ 2𝜎∝(𝛽+𝑝) (𝑝+1+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻] Theorem 2.8. If f (z) = zp + ∑ 𝑎 𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 ∈ Y+(∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) and g(z)= zp + ∑ 𝑎𝑛 𝑛𝜎𝑧 𝑝+𝑛 ∞ 𝑛=1 𝑟 − (𝑝+1+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]2𝜎∝(𝛽+𝑝) 𝑟 ≤|g (z) | ≤ 𝑟 + (𝑝+1+𝛽)(1+∝)[[(𝑉−𝐻)𝛾+𝐻]] 2𝜎∝(𝛽+𝑝) r. Proof. Given that f (z) = zp + ∑ 𝑎

𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 ∈ Y+(∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) Therefore by theorem (2.7) ∑ 𝑎𝑛 𝑛𝜎 ∞ 𝑛=1 . ≤ 2𝜎∝(𝛽+𝑝) (𝑝+1+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻] |g (z)| = | zp + ∑ 𝑎𝑛 𝑛𝜎𝑧 𝑝+𝑛 ∞ 𝑛=1 | ≤ | zp | + ∑ 𝑎𝑛 𝑛𝜎|𝑧 𝑝+𝑛 ∞ 𝑛=1 | ≤ r + ∑ 𝑎𝑛 𝑛𝜎 𝑟. ∞ 𝑛=1 ≤ r + 2𝜎∝(𝛽+𝑝) (𝑝+1+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻] 𝑟 Similarly, |g(z)| = | zp + ∑ 𝑎𝑛 𝑛𝜎𝑧 𝑝+𝑛 ∞ 𝑛=1 |≥ r - 2𝜎∝(𝛽+𝑝) (𝑝+1+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻] 𝑟.

In next theorem we will discuss the extreme points of the class Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎)

Theorem 2.9.The extreme points of the class Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) are f

n (z) where, f0 (z) = zp, fn (z) = zp + ∝(𝛽+𝑝) (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎𝑧 𝑝+𝑛 n∈ ℕ. Proof. Suppose f (z) = zp + ∑ 𝑎 𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 ∈ Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) ∴ ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 ≤ ∝ (𝛽 + 𝑝).

(7)

649

∴ ∑ (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 ∝(𝛽+𝑝) ∞ 𝑛=1 𝑎𝑛≤ 1. Put 𝜎𝑛= (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎 ∝(𝛽+𝑝) 𝑎𝑛 0 ≤ ∑∞𝑛=1𝜎𝑛 ≤ 1 ∴ 0 ≤ 1- ∑∞𝑛=1𝜎𝑛≤ 1. Put 𝜎0= 1- ∑∞𝑛=1𝜎𝑛 f (z)= zp + ∑ 𝑎 𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 = zp + ∑ ∝(𝛽+𝑝) (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎𝜎𝑛𝑧 𝑝+𝑛 ∞ 𝑛=1 = zp + (𝑓 𝑛(𝑧) − 𝑧𝑝)𝜎𝑛 ∞ 𝑛=1 = zp + ∑ (𝑓 𝑛(𝑧)𝜎𝑛 ∞ 𝑛=1 - ∑∞𝑛=1𝑧𝑝𝜎𝑛. = zp (1- ∑ 𝜎 𝑛 ∞ 𝑛=1 ) + ∑∞𝑛=1(𝑓𝑛(𝑧)𝜎𝑛 = 𝜎0 f0 (z) + ∑∞𝑛=1(𝑓𝑛(𝑧)𝜎𝑛 = ∑∞𝑛=0𝑓𝑛(𝑧)𝜎𝑛.

Hence 𝑓𝑛(𝑧) is extreme point.

Conversely assume f (z) = ∑∞𝑛=0𝑓𝑛(𝑧)𝜎𝑛 where ∑∞𝑛=0𝑓𝑛 = 1.

= 𝑓0(𝑧)𝜎0 + ∑∞𝑛=1𝑓𝑛(𝑧)𝜎𝑛 = 𝑓0(𝑧)[1 − ∑∞𝑛=1𝜎𝑛 ] + ∑∞𝑛=1𝜎𝑛(𝑧𝑝 + ∝(𝛽+𝑝) (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎 𝑧 𝑝+𝑛) = zp + ∑ 𝑇 𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 where 𝑇𝑛= ∝(𝛽+𝑝) (𝑝+𝑛+𝛽)(1+∝)[(𝐵−𝐴)𝛾+𝐴](𝑛+11 )𝜎 𝜎𝑛 = ∑ (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 𝑇𝑛 ∝(𝛽+𝑝) ∞ 𝑛=1 = ∑ ((𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 . ∝(𝛽+𝑝) ) ∞ 𝑛=1 ( ∝(𝛽+𝑝) (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎 𝜎𝑛) = ∑∞𝑛=1𝜎𝑛 = 1- 𝜎0 ≤ 1. ∴ ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑇𝑛 ∞ 𝑛=1 ≤ ∝ (𝛽 + 𝑝) ∴ 𝑓(𝑧) ∈ Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎).

(8)

650

Theorem 2.10.If 𝑓, 𝑔 ∈ Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) Where, f (z) = zp + ∑ 𝑎 𝑛𝑧𝑝+𝑛 𝑎𝑛𝑑 ∞ 𝑛=1 , g(z) = 𝑧𝑝 + ∑∞𝑛=1𝑏𝑛𝑧𝑝+𝑛 Then f∗12 g ∈ WAG+ (∝, 𝛽, 𝐴, 𝐵, 𝛾, 𝜎).

Moreover if √𝑎𝑘𝑏𝑘 < 1, with 𝑎𝑘,𝑏𝑘 > 0, then f* g ∈ Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎)

Proof. Given that 𝑓, 𝑔 ∈ Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) ∴ ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 ≤ ∝ (𝛽 + 𝑝) ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑏𝑛 ∞ 𝑛=1 ≤ ∝ (𝛽 + 𝑝)

We know that if ∑∞𝑛=1𝑇𝑛2 and ∑∞𝑛=1𝐿2𝑛 is convergent then,

∑∞𝑛=1𝑇𝑛𝐿𝑛 ≤ (∑∞𝑛=1𝑇𝑛2) 1 2 (∑𝑛=1𝐿2𝑛) 1 2 Put 𝑇𝑛 = (𝑡𝑛 𝑎𝑛) 1 2 and 𝐿𝑛 = (𝑡𝑛 𝑏𝑛) 1 2, where tn= (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 Hence∑ (𝑡𝑛 𝑎𝑛𝑡𝑛 𝑏𝑛) 1 2 ∞ 𝑛=1 . ≤ (∑∞𝑛=1𝑡𝑛 𝑎𝑛) 1 2. (∑∞𝑛=1𝑡𝑛 𝑏𝑛) 1 2 ≤ ∝ (𝛽 + 𝑝). ∴ ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 . ∞ 𝑛=1 (𝑎𝑛𝑏𝑛 ) 1 2 ≤ ∝ (𝛽 + 𝑝) ∴ f∗12 g ∈ Y+(∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) By assumption √𝑎𝑛𝑏𝑛 < 1 ⇒ 𝑎𝑛𝑏𝑛 ≤ √𝑎𝑛𝑏𝑛 < 1 ∴ ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 . ∞ 𝑛=1 𝑎𝑛𝑏𝑛≤ ∝ (𝛽 + 𝑝) ∴ f* g ∈ Y+(∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) Theorem 2.11. Let f (z) = zp + ∑ 𝑎 𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 is a function in Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎)

Consider the function fj (z) = zp +

∝(𝛽+𝑝)

(𝑝+𝑗+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑗+11 )𝜎.

If analytic function w (z) is given by (𝑤(𝑧))𝑗−1=(𝑝+𝑗+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻] ∝(𝛽+𝑝) ∑ ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 𝑧𝑛. Then for z=r𝑒𝑖𝜃 , 0 < r < 1. ∫2𝜋|𝐼(𝜎,𝑝−1,−𝑝)f(z) |𝑝𝑑 0 𝜃 ≤ ∫ |𝐼 (𝜎,𝑝−1,−𝑝)𝑓 𝑗(z) |𝑝𝑑 2𝜋 0 𝜃.

Where 𝐼(𝜎,𝑝−1,−𝑝) is differential operator defined in (4)

Proof. For f (z) = zp + ∑ 𝑎 𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 𝑖𝑛 Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) ∴ (𝑝 + 𝑗 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ∑ ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1

(9)

651

≤ ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 ≤ ∝ (𝛽 + 𝑝) ∴ ∑ ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 ≤ (𝑝+𝑗+𝛽)(1+∝) ∝(𝛽+𝑝)[(𝑉−𝐻)𝛾+𝐻] 𝐼(𝜎,𝑝−1,−𝑝)f (z) = zp + ∑ 1 (𝑛+1)𝜎𝑎𝑛𝑧 𝑝+𝑛 ∞ 𝑛=1 . We set |(𝑤(𝑧))𝑗−1| = | (𝑝+𝑗+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻] ∝(𝛽+𝑝) ∑ ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 𝑧𝑛| ≤ |z| | (𝑝+𝑗+𝛽)(1+∝) ∝(𝛽+𝑝) ∑ ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 | < (𝑝+𝑗+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻] ∝(𝛽+𝑝) ∝(𝛽+𝑝) (𝑝+𝑗+𝛽)(1+∝)[[(𝑉−𝐻)𝛾+𝐻]] < |z| < 1. ∴ | 𝑤(𝑧)| < 1 ∴ 1 + (𝑝+𝑗+𝛽)(1+∝)[(𝐵−𝐴)𝛾+𝐴]∝(𝛽+𝑝) (𝑤(𝑧))𝑗−1 = 1 + ∑ ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 𝑧𝑛 ∴ 1 + ∑ ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 𝑧𝑛 ⊰ 1 + ∝(𝛽+𝑝) (𝑝+𝑗+𝛽)(1+∝)[(𝐵−𝐴)𝛾+𝐴] (𝑤(𝑧)) 𝑗−1.

∴ By Littlewood Subordintion Theorem, ∫ | 1 + ∑ ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 𝑧𝑛 |𝑝𝑑 2𝜋 0 𝜃 ≤ ∫ 1 + ∝(𝛽+𝑝) (𝑝+𝑗+𝛽)(1+∝)[(𝐵−𝐴)𝛾+𝐴] 𝑧 𝑗−1 |𝑝𝑑 2𝜋 0 𝜃. ∴ ∫2𝜋|𝐼(𝜎,𝑝−1,−𝑝)f(z) |𝑝𝑑 0 𝜃 ≤ ∫ |𝐼 (𝜎,𝑝−1,−𝑝)𝑓 𝑗(z) |𝑝𝑑 2𝜋 0 𝜃. 3. Class t-sqrt Y+ (∝, 𝜷, 𝑯, 𝑽, 𝜸, 𝝈)

In this section we introduced another class t-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎)which is extension class of Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎)

Definition 3.1. A function f(z) in B(p) is said to be in the class t sqr- Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎)if it satisfies the condition , ∑ 1 𝑡( (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )2 ∝(𝛽+𝑝) ) 2 ∞ 𝑛=1 𝑎𝑛2≤ 1 t ∈ ℕ. (7) 0≤ 𝛽<1, 0 <∝≤ 1,-1≤ 𝐴 < 𝐵 ≤ 1, 𝐴 𝐴−𝐵 < ≤ 1, 𝜎 > 0 Theorem 3.2. Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) ⊆ t-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) Proof. Suppose f (z) ∈ Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) ∴ ∑ (𝑝 + 𝑛 + 𝛽)(1+∝)[(𝑉 − 𝐻)𝛾 + 𝐻] ( 1 𝑛+1) 𝜎 𝑎𝑛 ∞ 𝑛=1 . ≤ ∝ (𝛽 + 𝑝) ∑ (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 𝑎𝑛 ∝(𝛽+𝑝) ∞ 𝑛=1 ≤ 1.

(10)

652

∴ (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 𝑎𝑛 ∝(𝛽+𝑝) ≤ 1. ∴ ((𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 𝑎𝑛 ∝(𝛽+𝑝) ) 2 ≤ (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 𝑎𝑛 ∝(𝛽+𝑝) ≤ 1. For any t ≥ 1, 1 𝑡 ((𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 𝑎𝑛 ∝(𝛽+𝑝) ) 2 ≤.(𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 𝑎𝑛 ∝(𝛽+𝑝) ≤ 1. ∑ 1 𝑡 ( (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎𝑎𝑛 ∝(𝛽+𝑝) ) 2 ∞ 𝑛=1 ≤ 1 Hence f (z) ∈ t-sqrt Y+ (∝, 𝛽, 𝐴, 𝐵, 𝛾, 𝜎) ∴ Y+ (∝, 𝛽, 𝐴, 𝐵, 𝛾, 𝜎) ⊆ t-sqrt Y+ (∝, 𝛽, 𝐴, 𝐵, 𝛾, 𝜎)

Theorem 3.3. If 1-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎)𝑖𝑠 closed under ∗12 convolution then 1-sqrt Y+ (∝ , 𝛽, 𝐻, 𝑉, 𝛾, 𝜎)𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑢𝑛𝑑𝑒𝑟 convex combination.

Proof. Given that 1-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) 𝑖𝑠 closed under ∗12 convolution. ∴ f, g∈ 1-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) ⇒ f ∗12 g ∈ 1-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) f (z)= zp + ∑ 𝑎 𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 , g(z) = 𝑧𝑝 + ∑∞𝑛=1𝑏𝑛𝑧𝑝+𝑛 (f ∗12 g)(z) = zp + ∑ (𝑎𝑛𝑏𝑛 ) 1 2𝑧𝑝+𝑛 ∞ 𝑛=1 ∴ ∑ ((𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 . ∝(𝛽+𝑝) ) 2 𝑎𝑛𝑏𝑛 ∞ 𝑛=1 ≤ 1

Now we will show that 1-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎)is closed under convex combination. Now for f, g∈ 1-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎)we have

∑ ((𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 . ∝(𝛽+𝑝) 𝑎𝑛) 2 ∞ 𝑛=1 ≤ 1 ∑ ((𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 . ∝(𝛽+𝑝) 𝑏𝑛) 2 ∞ 𝑛=1 ≤ 1. Let g (z) = (1- 𝜆) f (z) + 𝜆𝑔(𝑧) = (1- 𝜆) [ zp + ∑ 𝑎 𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 ] + 𝜆[zp +∑∞𝑛=1𝑎𝑛𝑧𝑝+𝑛] = zp + ∑ [(1 − 𝜆)𝑎 𝑛+ 𝜆𝑏𝑛]𝑧𝑝+𝑛 ∞ 𝑛=1 ∑ ((𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 . ∝(𝛽+𝑝) ) 2 ∞ 𝑛=1 [(1 − 𝜆)𝑎𝑛+ 𝜆𝑏𝑛]2

(11)

653

= (1 − 𝜆)2 ((𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 . ∝(𝛽+𝑝) 𝑎𝑛) 2 ∞ 𝑛=1 + (𝜆)2∑ ( (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎 . ∝(𝛽+𝑝) 𝑏𝑛) 2 ∞ 𝑛=1 +2𝜆(1 − 𝜆) ∑ ((𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻]( 1 𝑛+1) 𝜎 . ∝(𝛽+𝑝) ) 2 𝑎𝑛𝑏𝑛 ∞ 𝑛=1 ≤ (1 − 𝜆)2 + (𝜆)2 + 2𝜆(1 − 𝜆) =1 ∴g (z) ∈ 1-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎)

Theorem 3.4.If f (z) ∈ t-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎). C is any real number such that q+p > 0. L (z) = 𝑞+𝑝 𝑧𝑞 ∫ (𝑠) 𝑞−1 𝑧 0 𝑓(𝑠)𝑑𝑠. Then L (z) ∈ t-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) Proof: Let f (z) = zp +∑ 𝑎 𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 . L (z) = 𝑞+𝑝 𝑧𝑞 ∫ (𝑠) 𝑞−1 𝑧 0 𝑓(𝑠)𝑑𝑠 = 𝑞+𝑝 𝑧𝑞 ∫ (𝑠) 𝑞−1 𝑧 0 [𝑠 𝑝 + ∑ 𝑎 𝑛𝑠𝑝+𝑛 ∞ 𝑛=1 ]𝑑𝑠 = 𝑞+𝑝 𝑧𝑞 [ 𝑠𝑝+𝑞 𝑞+𝑝+ ∑ 𝑎𝑘 𝑠𝑝+𝑞+𝑛 𝑞+𝑝+𝑛 ∞ 𝑛=1 ] 𝑠=0 𝑠=𝑧 = 𝑧𝑝+ ∑ 𝑎 𝑛 𝑝+𝑞 𝑞+𝑝+𝑛 ∞ 𝑛=1 𝑧𝑝+𝑛 Given that f(z) ∈ t-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎). ( 𝑝+𝑞 𝑞+𝑝+𝑘) ∑ 1 𝑡 ( (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎𝑎𝑛 ∝(𝛽+𝑝) ) 2 ∞ 𝑛=1 ≤ 1 ∑ 1 𝑡 ( (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎( 𝑝+𝑞 𝑞+𝑝+𝑘)𝑎𝑛 ∝(𝛽+𝑝) ) 2 ∞ 𝑛=1 < ∑ 1 𝑡 ( (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎𝑎𝑛 ∝(𝛽+𝑝) ) 2 ∞ 𝑛=1 as ( 𝑝+𝑞 𝑞+𝑝+𝑘) < 1 < 1 ∴ 𝐿(z) ∈ t-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎).

Corollary 3.5.If f (z) ∈ Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) then G (z) ∈ t-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎).

Theorem 3.6. If f (z) ∈ t-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) 𝑁ℎ(z) = (1 – h) 𝑧𝑝 + hp ∫ 𝑓(𝑠) 𝑠 𝑧 0 ds (h≥ 0) Then 𝑁ℎ ∈ t-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎). 0 ≤h ≤ 𝑝+𝑛 𝑝 Proof. f (z) = 𝑧𝑝+ ∑ 𝑎 𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 .

(12)

654

𝑁ℎ(z) = (1 – h) 𝑧𝑝+ hp ∫ 𝑠𝑝 + ∑∞𝑛=1𝑎𝑛𝑠𝑝+𝑛. 𝑠 𝑧 0 ds = (1 – h) 𝑧𝑝 + hp(∫ 𝑠𝑝 𝑠 𝑑𝑠 + ∫ ∑∞𝑛=1𝑎𝑛𝑠𝑝+𝑛 𝑠 𝑑𝑠 𝑧 0 𝑧 0 ) = (1 – h) 𝑧𝑝+ ph.(𝑠𝑝 𝑠 + ∑ 𝑎𝑛 𝑠𝑝+𝑛 𝑝+𝑛 ∞ 𝑛=1 ) 𝑠=0 𝑠=𝑧 = 𝑧𝑝 + ∑ 𝑝ℎ 𝑝+𝑛𝑎𝑛𝑧 𝑝+𝑛 ∞ 𝑛=1 For f (z) = 𝑧𝑝+ ∑ 𝑎 𝑛𝑧𝑝+𝑛 ∞ 𝑛=1 ∈ t-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) ∴ ∑ 1 𝑡 ( (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎𝑎𝑛 ∝(𝛽+𝑝) ) 2 ∞ 𝑛=1 ≤ 1 ∑ 1 𝑡 ( (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎 𝑝ℎ 𝑝+𝑛 𝑎𝑛 ∝(𝛽+𝑝) ) 2 ∞ 𝑛=1 < ∑ 1 𝑡 ( (𝑝+𝑛+𝛽)(1+∝)[(𝑉−𝐻)𝛾+𝐻](𝑛+11 )𝜎 𝑝ℎ 𝑝+𝑛 𝑎𝑛 ∝(𝛽+𝑝) ) 2 ∞ 𝑛=1 (as 𝑝ℎ 𝑝+𝑛 < 1) < 1. ∴ 𝐿ℎ ∈ t-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎). Corollary3.7. If f (z) ∈ Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎) then 𝐹 ℎ ∈ t-sqrt Y+ (∝, 𝛽, 𝐻, 𝑉, 𝛾, 𝜎). 4. References

[1] A.R. Juma, S.R. Kulkarni, Some problems connected with geometry of univalent & multivalent functions, PhD thesis, University of Pune, (2008).

[2] A.W. Goodman, An invitation to the study of univalent and multivalent function, Int.J. Math and Math.Sci, 2,163-186, (1979).

[3] D.Bshouty, A note on Hadamard products of univalent functions, Proc.Amer. Math. Soc. 80, 271-272. (1980) [4] H. Irmak, O.F. Cetin, Some theorems involving inequalities on p valent functions, Turk.J. Math, 23,453-459, (1999).

[5] H. Irmark, R.K. Raina, The starlikeness and convexity of multivalent functions, Revista Matematica Complutense,16(2),391-398, (2003).

[6] I.S. Jack, Functions starlike & convex of order ∝,J.London. Math. Soc, 2(3), 469-474, (1971)

[7]J.E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23, 481–519. (1925). [8] J.Hadamard, Thorme sur les series entires(French), Acta.Math. 22, 55-63. (1898).

[9] M. Nunokawa, J. Sukol, Condition for starlikness of multivalent functions, Results in Mathematica, (2017). [10]M.S.Robertson, Applications of Lemma of Fejerto typically real functions, Proc.Amer.Math.Soc. 1, 555-561. (1950)

(13)

655

[12] S. Owa, M. Nunokawa, H.M. Srivastav, A certain class of multivalent function, Appl.Math. Lett, 10(2), 7-10, (1997)

[13] S.Ruscheweyh, T.Sheil-Small, Hadamard product of schlicht functions and the polya-Schoenberg conjecture, Comm. Math.Helv. 48,119-135, (1973)

[14] T.G.Thange, S.S.Jadhav, On certain subclass of normalized analytic function associated with Rusal differential operators, Malaya.J.Matematic, 8(1), 235-242, (2020).

[15] V.A.Chughule, U.H.Naik, Some properties of new subclass of multivalent functions, IJRAR, 6(2), (2019). [16] W.G.Atshan, S.R.Kulkarni, Study of various aspects in the theory of univalent and multivalent function, PhD thesis, University of Pune, (2008).

[17] W.K.Hayman, On the coefficients of the univalent functions, Proc.Cambridge Philos. Soc. 55, 373-374. 164, (1959)

Referanslar

Benzer Belgeler

diversification. A wide range of possible alternatives is available for an investor to invest in the financial market. All these investment avenues vary from each other and

Murray ve arkada~lannm ~ah~masmda kist SIVlsm- daki immunoglobulin degerlerinin serum immunog- lobulin degerleri ile BOS'a gore daha uyumlu oldugunu bildirilmi~tir (3).. Ancak

Veli Bayezidin otuz yıllık gev­ şekliğinden sonra Yavuzun sekiz yıllık şiddet devri ne kadar lâzım- dıysa o kasırgalı şiddetten sonra da Kanunî

olan (Millî orta oyunıı) ‘idamei mev­ cudiyeti uğrunda çalışan heyetimizi takdir buyuran kadirşinasanın tas­ vip ve tergibi üzerine oyunların nevi­ leri

rürlüğü beklemek ne mümkündü I Kimi zindanlara atılarak, kimi sürülerek, ki­ mi de yukarıda bahsi geçen arkadaşları­ mız gibi Avrupa'ya kaçırılarak

Bu bağlamda, elektronik malzeme satışı yapan kişisel satış personeli 10 kişi ile odak grup görüşmesi yapılarak, kişisel satış faaliyetlerinin önemi ve zorlukları üzerinde

In particular, they are used in Perron-Bremermann method to solve the Dirichlet problem: find a homogeneous solution of the Monge-Ampere operator with continuous

The aim of this study is to provide developing students’ awareness of mathematics in our lives, helping to connect with science and daily life, realizing