• Sonuç bulunamadı

A Note on Extremal Problem in Approximation by Zygmund Sums

N/A
N/A
Protected

Academic year: 2021

Share "A Note on Extremal Problem in Approximation by Zygmund Sums"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

C.Ü. Fen-Edebiyat Fakültesi

Fen Bilimleri Dergisi (2008)Cilt 29 Sayı 2

A Note on Extremal Problem in Approximation by Zygmund Sums

Uğur DEĞER

Department of Mathematics, Mersin University, Turkey degpar@hotmail.com

Received: 08.02.2008, Accepted: 27.10.2008

Abstract: In this paper we consider asymptotic representation about the approximation of functions from

the classes of  -integrals by the Zygmund sums. In particularly, we obtain asymptotic formula for the value n

(

, ns

)

sup ( ) ns( ); C C f C C Z f x Z f x ψ ∞ ψ ∞ ∈ = − E , where C ( ) x max x ϕ = ϕ .

Key Words: Zygmund sums, the class of  -integrals

Zygmund Toplamları İle Yaklaşımda Ekstremal Problem Üzerine Bir Not

Özet: Bu makalede, Zygmund toplamları ile  -integrallerinin sınıflarından olan fonksiyonlara yaklaşım

ile ilgili asimptotik gösterimleri göz önünde tutarız. Özellikle, C ( )

x max x ϕ = ϕ olmak üzere,

(

, s

)

sup ( ) s( ); n n n C C f C C Z f x Z f x ψ ∞ ψ ∞ ∈ = −

E değeri için asimptotik formül elde ederiz.

Anahtar Kelimeler : Zygmund toplamı,  -integralleri sınıfı

1. Introduction.

Let L denote the space of integrable 2π -periodic functions, and let

[ ]

0

(

)

( )

cos sin ; a S f a kx b kx A f x ∞ ∞ = +

+ ≡

(2)

be the Fourier series of a function fL, for any k =0,1, 2,L

( )

1

( )

cos k k a a f f t kt dt π π π = =

, bk bk

( )

f 1 f t

( )

sinkt dt π π π = =

.

The polynomials that have the form

( )

0 1

( )

1 ; 1 ; , 0 2 s n s n k k a k Z f x A f x s n − =     = +   >    

are called the Zygmund sums, and Fejér sums in case of s=1. In [1, Chpt.IV], C is a class of 2π - periodic continuous functions which represented in the form of convolution

(

) ( )

(

)

( )

0 1 0 ( ) 2 2 a a f x x t t dt f x π π ϕ π = +

− Ψ = + ∗ Ψ

where Ψ

( )

x is a certain function that has the Fourier series

( )

( )

(

1 2

)

1 cos sin k k kx k kx ∞ = +

  ,

(

1, 2

)

=

   is a pair of arbitrary fixed systems of numbers 1

( )

k and 2

( )

k

1, 2,

k = L,and the function ϕ is called  -derivative of function f , and is denoted by

( )

,

( )

1,

( )

0 f f t f t dt π π ∞ − ⋅ ≤

=    . In [1], if

( )

( )

1 cos 2 v = v βπ   and

( )

( )

2 sin 2 v = v βπ

  , then the classes C coincide with the classes

C

β,.

In this work we obtain some asymptotic results for

(

, s

)

n n

C

Z

E in the classes of

C that is larger than

C

β,,and we will give the asymptotic formula which gives relation between  and  for  n

(

, ns

)

C

Cψ Z

E under the various conditions of functions

i

 and *

i

 , 1,2i= . Similar problems have been investigated by many mathematicians. A. I. Stepanets [1], and D. N. Busev, [2], was obtained some asymptotic results about

(

, ,

)

s n Cβ ∞ Zn C

(3)

2. Some Auxiliary Results.

We will give two lemmas before the main theorem. But firstly, we will give some notations [1,Chpt.IV]:, M denotes the set of continuous positive functions 

( )

⋅ which are convex downwards for all v≥1 and with lim

( )

0

v→∞ v = and M denotes the ′ subset of functions  which from M that satisfy in addition the following

( )

⋅ condition:

( )

1 t dt t ∞ < ∞

 .

Lemma 2.1. Let. M ,  M . Then, as n∈ ′ → ∞ the following asymptotic equality holds:

(

, s

)

ˆ

( )

n n n n C C Z t dt ∞ ψ ∞ −∞ = τ

+ γ E (2.1) where γn ≤0;

( )

2 ˆ n n t O t dt π γ τ ≥     =     

and τˆn

( )

t is determined by the following equality:

( )

(

1

( )

2

( )

)

0 1 ˆn t v cosvt v sinvt dv ∞ τ = τ + τ π

(2.2)

Here, τi

( )

v which is determined by

( )

( )

( )

( )

1 , 0 1 ,1 , i s s i i s i v v n v v v v n n v v n τ≤ ≤    = ≤ ≤   ≥     

for i=1, 2, are continuous functions for all v≥0, and their transformations

( )

( )

1 1 0 1 ˆ t v cosvtdv, τ τ π ∞ + =

2

( )

1

( )

0 1 ˆ t v sinvtdv, τ τ π ∞ − =

(4)

Proof. For any fC

( )

ns

(

;

)

(

) ( )

ˆn . f x Z f x f x t τ t dt ∞ −∞ − =

 − (2.3)

is true, [1, Chp. IV], where τˆn

( )

t which is determined by (2.2).

According to the classes C are invariant under the shift of an argument, that is, if fC, then the function f1

( )

x = f x

(

+h

)

also belongs to C

for any fixed h¡ ,

from (2.3) we have

(

, s

)

sup

( ) ( )

ˆ ˆ

( )

n n n n C f C Z f t τ t dt τ t dt ∞ ∞ ∞ ∞ ∈ −∞ −∞ =

− ≤

E   (2.4)

On the other hand, since the inequality ϕ

( )

t ≤1 . .a e is true, there exist a function

( )

( )

;

f x = f ϕ x , for which f

( ) ( )

x =ϕ x , in classes C. Hence, there exist a function

*( )

f t in C such that it has the form

( )

(

( )

)

* ˆ , 2 , 2 n sign t t f t periodicly t τ π π  ≤  =    (2.5)

on the set

{

t t: ≤π 2

} {

t t: ≥π 2

}

. Then, owing to (2.5), we have

( )

(

)

( )

( )

( ) ( )

* * * 2 2 ˆ ˆ ˆ 0 ns ; 0 n n n t t f Z f t dt t dt f t t dt π π τ τ τ ∞ −∞ ≥ ≥ − =

+

 − ≥

( )

( )

2 ˆn 2 ˆn . t t dt t dt π τ τ ∞ −∞ ≥ ≥

(2.6) Taking into account (2.4) and (2.6), as n→ ∞, we obtain (2.1).

Let 

( )

u be convex downwards with lim

( )

0

u→∞ u = for u≥ ≥a 1 and let ′′

( )

u be continuous on the interval

[

1,∞

)

and let g u

( )

=us

( )

u , s>0, u≥ ≥b 1, be convex ,i.e.,

( )

g u is convex downwards with lim

( )

0

u→∞g u = >c or limu→∞g u

( )

= ∞

( )

g u is convex upwards with lim

( )

0

u→∞g u = >c or limu→∞g u

( )

= ∞

(5)

If

( )

( )

( )

( )

( )

{ }

* ,1 , max , g M u g M Mg M u M g u g u u M a b ′ + − ′ ≤ ≤  =  =  and

( )

( )

( )

( )

( )

( )

1 * ,1 1 , s s s g M g M Mg M u M u g u u u u u u M − ′ − ′  + ≤ ≤  = =     

then g u is convex on interval *

( )

[

1,∞

)

, 

( )

u is continuous on

[

1,∞

)

, ′′

( )

u is continuous on interval

[

1,∞

)

except for point u=M , which is first kind discontinuous point.

3. Main Result.

The following theorem has been given in the classes Cβ ∞, by D. N. Busev, [2].

Theorem. Let functions i

( ) ( )

v , g vi and

( )

*

i v

 , i=1, 2 satisfy the conditions of Lemma 2.2. Then as n→ ∞ the following asymptotic equality holds:

(

)

(

*

)

1 , s , s n n C n n s C C Z C Z O n ψ ψ ∞ = ∞ +      E E (2.7) where n

(

*, ns

)

C Cψ Z E is determined by (2.1).

Proof. In [1], we know that if fCψ, we have

(

)

0

(

)

1

(

( )

( )

)

1 1 ; 1 cos sin s n s n k k Z f x A x t k kt k kt dt n π π ϕ π − = −       = + +    +      

  (2.8) and

( )

0

(

)

( )

( )

1 1 cos sin k f x A x t k kt k kt dt π π ϕ π ∞ = −   = + + +

  (2.9) where

( )

t 1, ( )t dt 0 π π ϕ ϕ − ≤

= .

From (2.8) and (2.9), we have

( )

( )

(

)

1

(

( )

( )

)

1 1 ; cos sin s n s n k k f x Z f x x t k kt k kt n π π ϕ π − = −    − = +    + +   

 

(6)

( )

( )

(

)

1

(

) ( )

cos sin : k n k kt k kt dt x t A t dt π π ϕ π ∞ = −  + + = + 

 

Hence

(

)

2

(

) ( )

1 0 1 ; s sup n n C C C Z x t A t dt ∞ π ψ ∞ ϕ ≤ = ϕ + ≤ π

E

(

)

(

( )

( )

)

2 1 1 0 1 1 1

sup cos sin

n s s k x t k k kt k kt n π ϕ π ϕ − ≤ =  ≤ + + + 

     

( )

( )

(

cos sin

)

k n C k kt k kt dt ∞ =  +

 +   +    

(

)

(

(

( )

( )

)

(

( )

( )

)

)

2 1 1 0 1 1 1

sup cos sin

n s s k x t k k k kt k k kt n π ϕ π ϕ − ≤ =  +

+ 

 +  +        

( )

( )

(

)

(

( )

( )

)

(

cos sin

)

: k n C k k kt k k kt dt ∞ =  +

 +  =        

(

) ( )

(

)

(

)

2 2 * 1 0 1 0 1 1 : sup sup , C C x t A t dt x t B t dt π π ϕπ ϕ ϕπ ϕ =

+ +

+  (2.10) Due to (2.10), we have

(

)

2

(

) ( )

* 2

(

)

(

)

1 0 1 0 1 1 ; s sup sup , n n C C C C Z x t A t dt x t B t dt ∞ ∞ π π ψ ∞ ϕ ≤ ϕ ≤ ≥ ϕ + − ϕ + π

π

 E (2.11) Since,

(

) ( )

* 2 * 1 0 1 ; s sup n n C C Cψ Z x t A t dt ∞ π ∞ ϕ ≤   = ϕ +   π  

E (2.12) owing to (2.10)-(2.12), we conclude

(

)

( )

*

( )

, s s n n n n n C C Cψ Z = C Zψ +O F E E (2.13) where

(

)

(

)

2 1 0 1 sup , n C F x t B t dt π ϕπ ϕ =

+ .

(7)

Let’s estimate O F : In view of Lemma 2.2, for

( )

n kn, we have

( )

*

( )

, 1, 2 i k = i k i=   . Thus we obtain

(

)

(

(

( )

( )

)

(

( )

( )

)

)

2 1 1 0 1 1 1

sup cos sin

n s n s k F x t k k k kt k k kt n π ϕ π ϕ − ≤ =  = + + + 

         

( )

( )

(

)

(

( )

( )

)

(

cos sin

)

k n C k k kt k k kt dt ∞ =  +

 +  ≤        

(

( )

( )

( )

( )

)

§ ¨ 2 1 1 0 1 1 M s 1 s s k k k k k k dt O n n π π + =     + =     

          (2.14)

Consequently, we get (2.7) from (2.13) and (2.14). According to Lemma 2.1 we know that

(

*

)

*

( )

* ˆ , s n n n n C C Z t dt ∞ ψ ∞ −∞ = τ

+ γ E .

Therefore the proof is completed.

References

[1] A. I. Stepanets, “Methods of Approximation Theory” Boston., VSP., 2005, p.880. [2] D. N. Bushev, “Approximation of Classes of Continuous Periodic Functions

Zygmund Sums [in Russian]”, Institute of Mathematics, Ukrainian Academy of

Referanslar

Benzer Belgeler

由臺北醫學大學醫學資訊研究所、臺灣生命倫理學 會以及印尼加札馬達大學(Gadjah Mada University) 共同舉辦之「2011 東南亞區域共同研究暨培訓型國 際合作工作坊」於 9

and Demirci, K., Approximation in statistical sense to B-continuous functions by positive linear operators, Studia Scientiarum Mathematicarum Hungarica 47 (2010) 289-298.. [6] Erku¸

Lokal Morrey-Lorentz uzaylar¬nda Hilbert dönü¸ sümü, maksimal operatör, Calderon-Zygmund singüler integral operatörü ve Riesz potansiyelinin s¬n¬rl¬l¬¼ g¬ve

Recently, two generic column-and-row generation schemes based on Lagrangian relaxation have been developed by Sadykov and Vanderbeck ( 2011 ) and Frangioni and Gendron ( 2010 ),

exact order of approximation, quantitative Voronovskaja-type theorems, simultaneous approximation properties for complex q-Bernstein - Kantorovich polynomials ,

„Çevre Eğitimi için Uygun Animasyon Filmlerin Belirlenmesi ve Fen Bilimleri Dersi Öğretim Programı ile İlişkilendirilmesi‟ araştırmasının amacı,

Türk Dil Kurumunca kaos için Yabancı Sözlere Karşılıklar Kılavuzu’nda karmaşa kelimesi karşılık olarak gösterilmiş.. Aynı yayında sıfatı kaotik

Literatürde karın ağrısı portal ven birlikteliği bildirilmekle birlikte olgumuzda olduğu gibi karın ağrısı, NBA, MTFHR- C677T gen polimorfizminin eşlik ettiği portal