• Sonuç bulunamadı

Host-sensitized phosphorescence of Mn4+, Pr-3+,Pr-4+ and Nd3+ in MgAl2Si2O8

N/A
N/A
Protected

Academic year: 2021

Share "Host-sensitized phosphorescence of Mn4+, Pr-3+,Pr-4+ and Nd3+ in MgAl2Si2O8"

Copied!
4
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Host-sensitized

phosphorescence

of

Mn

4+

,

Pr

3+,4+

and

Nd

3+

in

MgAl

2

Si

2

O

8

Esra

C¸ırc¸ır

a

,

Nilgun

Ozpozan

Kalaycioglu

b,

*

aDepartmentofMaterialsScienceandEngineering,FacultyofEngineering,Karamanog˘lu MehmetbeyUniversity,Karaman,70200,Turkey bDepartmentofChemistry,FacultyofScience,ErciyesUniversity,Kayseri38039,Turkey

1. Introduction

Luminescentmaterialswithlongafterglowarekindsofenergy storagematerialsthatcanabsorbbothUVandvisiblelightfrom thesunandgraduallyreleasethisenergyinthedarkatacertain wavelength. These kinds of long lasting phosphors have been widelystudiedbymanyresearchers[1–3].

Silicatesthereforearesuitablehostsforphosphorsbecauseof theirhighphysicalandchemicalstability.Theluminescenceofrare earthionsinthesilicatehosthasbeenstudiedforalongtime.In recentyears,silicatephosphorshavebeenreportedbyresearchers [4–13].

In this paper, MgAl2Si2O8:Mn4+,Pr3+,4+ and MgAl2Si2O8: Mn4+,Nd3+ based phosphors were synthesized 13008C. Their thermalbehavior,crystalstructure,morphologicalcharacterization, photoluminescencepropertiesandexcitationmechanismwerethen investigated.

2. Experimental

MgAl2Si2O8:Mn4+,Pr3+,4+ and MgAl2Si2O8:Mn4+,Nd3+ phos-phors were synthesized at 13008C. All the starting materials, 4MgCO3Mg(OH)25H2O (A.R.), Al2O3 (99.0%), SiO2 (99.8%), MnO2 (99.0%), Pr6O11 (99.99%) and Nd2O3 (99.99%) were weighed according to the nominal compositions of (Mg0.84Mn0.10Pr0.06)Al2Si2O8 and (Mg0.88Mn0.10Nd0.02)Al2Si2O8.

Thesepowdersweremixedhomogeneouslyinanagatemortar for 3h.Smallquantitiesof H3BO3 (A.R.) wereaddedas a flux duringthemixing.Asmallamountofeachsamplewastakenfor thermalanalysis(DTA/TG)tostudythephase-formingprocess. Thermogravimetry(TG)anddifferentialthermalanalysis(DTA) were carried out by using a DTA/TG system (Perkin Elmer Diamondtype).Thesampleswereheatedatarateof108Cmin1 fromroomtemperatureto13008C,inthenitrogenatmosphere. Afterwards,thesinteringconditionsofthephosphors,including the pre-firing temperature and synthesizing temperature, were determined intotwo steps: first, the mixtures werepre-fired at 9008Cfor3hinaporcelaincrucibleinair,andthenthepre-fired samplesweresinteredat13008Cfor3hinair,inaporcelaincrucible. Aftertheseproceduresthephosphorswereobtainedandtheircrystal structureswereexaminedbyX-raydiffraction(XRD)analysisusinga BrukerAXSD8Advancediffractometerwhichwasrunat20–60kV and6–80mA,2

u

=10–908andastepof0.0028usingCuK

a

X-ray. Scanningelectronmicroscopy(SEM)imagesandEDXanalysis wereperformedonaLEO440modelscanningelectronmicroscope usinganacceleratingvoltageof20kV.

The decay time, excitation and emission spectra of the phosphors were recorded by a Perkin Elmer LS 45 model luminescencespectrophotometerwithxenonlamp.

3. Resultsanddiscussion

3.1. Thermalbehavior,crystallizationandmorphology

Fig.1illustratestheDTA/TGcurvesofnominalcompositionfor MgAl2Si2O8: Mn4+,Pr3+,4+. The curves below 2008C include the

MaterialsResearchBulletin47(2012)1138–1141

ARTICLE INFO

Articlehistory:

Received31October2011

Receivedinrevisedform21November2011 Accepted8February2012

Availableonline16February2012

Keywords: Mn4+ Pr3+,4+ Nd3+ MgAl2Si2O8phosphors Aluminosilicates ABSTRACT

Mn4+dopedandPr3+,4+,Nd3+co-dopedMgAl

2Si2O8-basedphosphorswerefirstofallsynthesizedabout

13008C.Theywerecharacterizedbythermogravimetry(TG),differentialthermalanalysis(DTA),X-ray powder diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM). The luminescencemechanismofthephosphors,whichshowedbroadredemissionbandsintherangeof610– 715nmandhadadifferentmaximumintensitywhenactivatedbyUVillumination,wasdiscussed.Sucha redemissioncanbeattributedtotheintrinsicd–dtransitionsofMn4+.

ß2012ElsevierLtd.Allrightsreserved.

*Correspondingauthor.Tel.:+905056441170;fax:+903524374933. E-mailaddress:nozpozan@erciyes.edu.tr(N.OzpozanKalaycioglu).

ContentslistsavailableatSciVerseScienceDirect

Materials

Research

Bulletin

j our na l ho me pa g e : w ww . e l se v i e r . com / l oca t e / m a tr e sbu

0025-5408/$–seefrontmatterß2012ElsevierLtd.Allrightsreserved. doi:10.1016/j.materresbull.2012.02.009

(2)

dehydrationof4MgCO3Mg(OH)25H2Oandthedecompositionof H3BO3whichchangesintoB2O3.Thefirstendothermicpeakis(at 2408C,pointA)attributedtothedeviationofthehydroxylgroup fromMg(OH)2.Thesecondendothermicpeak shows(at 4378C, pointB)thedecompositionofMgCO3whichchangesintoMgO.

FromtheaboveDTA/TGanalysis,wecarriedoutthesinteringof thephosphorsintwosteps:first,thesampleswerepre-firedat 9008C for 3h to achieve the dehydration and decomposition ofH3BO3,MgCO3andMg(OH)2,andtohelpthedopedMn4+and

rare-earthionstosubstitute;nextthephosphorswereprepared at 13008C for 3h in air. Actually, the crystal systems were not observed at 9008C, but at 13008C for 3h the (Mg0.84Mn0.10Pr0.06)Al2Si2O8 and (Mg0.88Mn0.10Nd0.02)Al2Si2O8 tricliniccrystalsystemswereobserved(Fig.2).

TheXRDpatternsofphosphorsobtainedat9008Cand13008C for3hinairareshowninFig.2(a)and(b).Theunitcellparameters ofphosphorcrystallizedinthetriclinicsystemarelistedinTable1. Figs.3and4showtheimagesandEDXanalysisobtainedfrom thescanningelectronmicroscopy(SEM)ofthephosphorscalcined at13008Cfor3h.Themicrostructuresofthephosphorconsistedof regularfinegrainswithanaveragesizeofabout0.5–2.5

m

m. 3.2. Photoluminescenceproperties

Fig. 5 shows the excitation and emission spectra of the MgAl2Si2O8:Mn4+,Pr3+,4+ phosphor annealed at 13008C. The excitation spectrum of the MgAl2Si2O8:Mn4+,Pr3+,4+ phosphor observedwithMn4+emissionsat662nm(d–dtransitions)consists ofanexcitationbandwithamaximumat258nm.Under258nm UV excitation, the MgAl2Si2O8:Mn4+,Pr3+,4+ phosphor shows a strong red luminescence ranging from 600 to 750nm with a maximum;at662nmandsomelines(611,634,and710nm)inthe longerwavelengthregion.Theredemissionat662nm,whichcan be viewed as a typical Mn4+ emission, was ascribed to d–d transitions[14].Theemissionbandsat611nmand634nmaredue to the transitions of Pr3+ (1D

2!3H4) and Pr4+ (1D2!3P0), respectively[15].Inordertoidentifytheoriginoftheemission band of the MgAl2Si2O8:Mn4+,Pr3+,4+ phosphor at 710nm, we compared the emission spectrum of the undoped MgAl2Si2O8 sample under the same excitation conditions (258nm). We

Fig.1.TG/DTAcurvesofMgAl2Si2O8:Mn4+,Pr3+,4+phosphor.

Fig.2.XRDpatternsof(a)(Mg0.84Mn0.10Pr0.06)Al2Si2O8,(b)(Mg0.88Mn0.10Nd0.02)Al2Si2O8.

Fig.3.SEMimageof(a)(Mg0.84Mn0.10Pr0.06)Al2Si2O8,(b)(Mg0.88Mn0.10Nd0.02)Al2Si2O8phosphors.

(3)

reported the spectrum of the undoped MgAl2Si2O8 in the our previousarticle[16].Itshowedanemissionrangingfrom600to 800nmwiththethreemaximumat617,710and720nm(Fig.6). The broad MgAl2Si2O8 emission band can be attributed to the recombinationofanelectronandadonor.Therecombinationwas caused by crystal defects which occurred in the undoped MgAl2Si2O8duringtheprocess.Theemissionbandat710nmin theMgAl2Si2O8:Mn4+,Pr3+,4+phosphorhasthesameprofileasthat oftheundopedMgAl2Si2O8(Fig.6);thus,itcanbeascribedtothe hostemission.

The excitation and emission spectra of the MgAl 2-Si2O8:Mn4+,Nd3+phosphor areshowninFig.7.Underexcitation at258nm,theMgAl2Si2O8:Mn4+,Nd3+phosphorexhibitsastrong red luminescence. The excitation spectrum of the MgAl 2-Si2O8:Mn4+,Nd3+phosphor(Fig.7)observedwithMn4+emission at675nm(d–dtransitions)showsastrongexcitationbandwith

maximum at 258nm. When the phosphor was excitated at 258nm, only one emission peak located around 675nm was observedontheemissionspectrum.Suchabroadredemissionat 675nmcanbeviewedasthetypicalemissionofd-dtransitionsof Mn4+.TypicalemissionpeaksofNd3+werenot observedinthe emissionspectrumoftheMgAl2Si2O8:Mn4+,Nd3+phosphor.

Whenconsideringtheexcitationmechanism,inFigs.5–7,there isonly onepossibleexplanationfor theexcitation bandsofthe MgAl2Si2O8:Mn4+,Pr3+,4+ and MgAl2Si2O8:Mn4+,Nd3+ phosphors: thisishostcrystalabsorption.Theexcitationspectraofthehost MgAl2Si2O8(Fig.6)areinagreementwiththeexcitationspectraof the MgAl2Si2O8:Mn4+,Pr3+,4+ (Fig. 5) and MgAl2Si2O8:Mn4+,Nd3+ (Fig.7)phosphors.Thisindicatesthatalloftheexcitationbandof the MgAl2Si2O8:Mn4+,Pr3+,4+ and MgAl2Si2O8:Mn4+,Nd3+ phos-phorsat258nmarisefromhostlatticeabsorption.Theexcitation energyat258nmisfirstcapturedandthentransferredtotheMn4+

Table1

Unitcellparametersofphosphors.

Phosphor a(pm) b(pm) c(pm) V(106

pm3

) a(8) b(8) g(8) (Mg0.84Mn0.10Pr0.06)Al2Si2O8 598.27 1074.64 1480.16 737.70 83.84 79.79 125.31

(Mg0.88Mn0.10Nd0.02)Al2Si2O8 554.01 1123.27 1536.98 641.96 53.20 63.65 58.70

Fig.4.EDXanalysisof(a)(Mg0.84Mn0.10Pr0.06)Al2Si2O8,(b)(Mg0.88Mn0.10Nd0.02)Al2Si2O8phosphors.

Fig. 5. The excitation and emission spectra of (Mg0.86Mn0.10Pr0.06)Al2Si2O8

phosphor. Fig.6.TheexcitationandemissionspectraofMgAl2Si2O8phosphor.

E.C¸ırc¸ır,N.OzpozanKalaycioglu/MaterialsResearchBulletin47(2012)1138–1141 1140

(4)

andPr3+,4+ionsbythehostcrystal.ThepresenceoftheMgAl 2Si2O8 host crystal’s excitation band in the excitation spectra of MgAl2Si2O8:Mn4+,Pr3+,4+ and MgAl2Si2O8:Mn4+,Nd3+ phosphors showsthat anenergytransfertakes placefromtheMgAl2Si2O8 hostcrystaltotheMn4+andPr3+,4+ions.Theexcitationenergyof thehostcrystalMgAl2Si2O8dopedwithMn4+andPr3+,4+ionscan benonradiativelytransferredtoMn4+andPr3+,4+ions.Asshownin Fig.7 theenergy transferfromtheMgAl2Si2O8 to Mn4+ionsis complete.However,Fig.5showsthattheemissionbandat710nm from the MgAl2Si2O8 host lattice can still be observed in the emissionspectrumMgAl2Si2O8:Mn4+,Pr3+,4+.Thereforetheenergy transferfromtheMgAl2Si2O8hostcrystaltotheMn4+ionsisnot

complete.In addition,thereis noenergytransferfromthehost crystalMgAl2Si2O8totheNd3+ions.

TheluminescencedecaycurveoftheMgAl2Si2O8:Mn4+,Pr3+,4+ phosphor isshowninFig.8.Decaytimecanbecalculatedbya curvefitting methodbasedon thefollowing singleexponential equation:

I¼A1exp t

t

1  

þC

whereIisphosphorescenceintensity;A1,Careconstants;tistime; and

t

1isthelifetimefortheexponentialcomponents.Decaytime (

t

1)forexponentialcomponentofMgAl2Si2O8:Mn4+,Pr3+,4+ phos-phorwas9.12ms.TheMgAl2Si2O8:Mn4+,Pr3+,4+phosphor shows muchlonger afterglowthan theundopedMgAl2Si2O8 phosphor whichindicatesthatMn4+,andPr3+,4+ionsplayanimportantrole inprolongingtheafterglow.

ThedecaytimeoftheMgAl2Si2O8:Mn4+,Nd3+phosphorcannot bedetectedandcalculatedinthesameconditions.

4. Conclusion

In this report, (Mg0.84Mn0.10Pr0.06)Al2Si2O8 and (Mg0.88Mn0.10Nd0.02)Al2Si2O8 redphosphors werefirst prepared at13008Cfor 3h.Thephosphorshada tricliniccrystalsystem. Under UV excitation at 258nm, MgAl2Si2O8:Mn4+,Pr3+,4+ and MgAl2Si2O8:Mn4+,Nd3+ phosphors showed strong red lumines-cence. Themechanism of excitationin MgAl2Si2O8-based phos-phorswasexplainedbyanenergytransferfromtheMgAl2Si2O8 hostcrystaltotheMn4+andPr3+,4+ions.

Acknowledgement

ThisworkwassupportedbyErciyesUniversityEUBAPunder ProjectNo.FBD-09-804.

References

[1]Y.Lin,Z.Tang,Z.Zhang,C.Nan,J.AlloysCompd.348(2003)76.

[2]Y.Wang,Z.Wang,P.Zhang,Z.Hong,X.Fan,G.Qian,Mater.Lett.5(2004)3308. [3]C.K.Chang,D.L.Mao,ThinSolidFilms460(2004)48.

[4]G.Blasse,W.L.Wanmaker,J.W.terVrugt,A.Bril,PhilipsRes.Rep.23(1968)189. [5]T.L.Barry,J.Electrochem.Soc.115(1968)733.

[6]T.L.Barry,J.Electrochem.Soc.115(1968)1181. [7]P.B.Moore,T.Araki,Am.Miner.57(1972)1355.

[8]K.Yamazaki,H.Nakabayashi,Y.Kotera,A.Ueno,J.Electrochem.Soc.133(1986) 657.

[9]S.H.M.Poort,H.M.Reijnhoudt,G.Blasse,J.AlloysCompd.241(1996)75. [10]L.Huang,X.Zhang,X.Liu,J.AlloysCompd.305(2000)14.

[11]S.Ye,Z.Liu,X.Wang,J.Wang,L.Wang,X.Jing,J.Lumin.129(2009)50. [12]F.Clabau,A.Garcia,P.Bonville,D.Ganbeau,T.Mercier,P.Deniard,etal. J.Solid

StateChem.181(2008)1456.

[13]Y.Ding,Y.Zhang,Z.Wang,W.Li,D.Mao,H.Han,J.Lumin.129(2009)294. [14]T.Murataa,T.Tanoueb,M.Iwasakib,K.Morinagaa,T.Hasec,J.Lumin.114(2005)

207–212.

[15]D.Jia,Chem.Phys.Lett.363(2002)241–244.

[16]N.OzpozanKalaycioglu,E.C¸ırc¸ır,J.AlloysCompd.510(2012)6–10. Fig. 7. The excitation and emission spectra of (Mg0.88Mn0.10Nd0.02)Al2Si2O8

phosphor.

Fig.8.Thedecaycurvesofthe(Mg0.84Mn0.10Pr0.06)Al2Si2O8phosphor.

Şekil

Fig. 5 shows the excitation and emission spectra of the MgAl 2 Si 2 O 8 :Mn 4+ ,Pr 3+,4+ phosphor annealed at 1300 8C
Fig. 5. The excitation and emission spectra of (Mg 0.86 Mn 0.10 Pr 0.06 )Al 2 Si 2 O 8
Fig. 8. The decay curves of the (Mg 0.84 Mn 0.10 Pr 0.06 )Al 2 Si 2 O 8 phosphor.

Referanslar

Benzer Belgeler

Marketing channel; describes the groups of individuals and companies which are involved in directing the flow and sale of products and services from the provider to the

Radyoiyot tedavisi veya tiroid cerrahisi için hazırlığın amacı, genellikle birkaç hafta veya ay süren normal serbest triiyodotronin (fT3) ve serbest tiroksin (fT4) serum

Adli diş hekimi tarafından ölüm öncesi diş kayıtları ile ölüm sonrası diş bulgularının karşılaştırılması bir cesedin kimliğinin tespit edilmesinde en etkili,

Researchers that develop stochastic models are often motivated by either modeling EV behavior to generate travel patterns and charging profiles to aide other researchers; develop

As the probability (π) that a gift is the officer’s most preferred choice increases, it is more likely that the dishonest client offers that gift as bribe and achieves his bribery

The plasma parameters deduced from thermal Comptonization models are identical to those obtained during previous observations performed when the source was in a similar spectral

Please read the poems in the links and discuss/answer the following questions1. What are the settings of

They suggested that, since ventricular dysfunction associated with pericardiocentesis was not a common finding in clinical practice, transient myocardial dysfunction