• Sonuç bulunamadı

On the global attractivity of positive solutions of a rational difference equation

N/A
N/A
Protected

Academic year: 2021

Share "On the global attractivity of positive solutions of a rational difference equation"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Selçuk J. Appl. Math. Selçuk Journal of Vol. 9. No. 2. pp. 3 8, 2008 Applied Mathematics

On The Global Attractivity of Positive Solutions of A Rational Dif-ference Equation

·

Ibrahim Yalcinkaya

Selcuk University, Education Faculty, Mathematics Department, 42090, Konya, Turkey e-mail:iyalcinkaya1708@ yaho o.com

Received: October 07, 2007

Abstract. We study the positive solutions and attractivity of the di¤erence equation xn+1= xn (2k+1)=(1 + xn kxn (2k+1)) where x i(for i = 0; 1; :::; 2k +

1) are nonnegative real numbers.

Key words: Di¤erence Equation; Positive Solutions; Equilibrium Point; Global Attractivity.

2000 Mathematics Subject Classi…cation. 39A10 1. Introduction

Recently there has been a great interest in studying the attractivity, the solu-tions and the periodic nature of non-linear di¤erence equasolu-tions. For example [1-15].

In [3] Cinar studied the positive solutions of the di¤erence equation xn+1=

xn 1

1 + xnxn 1

where x 1and x0 are positive real numbers.

Moreover, in [14] Stevic gave some additional information about behavior of the solutions of this di¤erence equation with the initial values x 1and x0which are

real numbers.

In [11], [12], [13] we solved the following three problems

xn+1= xn 3 1 + xn 1 ; xn+1= xn 5 1 + xn 2 and xn+1= xn 5 1 + xn 1xn 3 for n = 0; 1; 2; :::: where the positive initial values.

Our aim in this paper is to investigate the global attractivity of the positive solutions of the di¤erence equation

(1.1) xn+1=

xn (2k+1)

1 + xn kxn (2k+1)

(2)

where

(1.2) x i (f or i = 0; 1; :::; 2k + 1) are nonnegative real numbers.

Similar to the references in this paper, we de…ne Eq.(1.1) with (1.2) and inves-tigate the solutions of this di¤erence equation. For k = 0; Eq.(1.1) turns into Eq.(1.1) in Cinar’s paper [3]. This paper is motivated by [3] and [14].

2. Main Results

Theorem 1. Suppose that (1:2) holds and let fxng1n= 2k 1 be a solution of

Eq.(1:1) with x i= ai(for i = 0; 1; :::; 2k + 1). Then for n = 0; 1; ::: all solutions

of Eq.(1:1) are the following:

x(2k+2)n+1= a2k+1 n Y i=1 (1+2ia2k+1ak) (1+a2k+1ak) n Y i=1 (1+(2i+1)a2k+1ak) ; x(2k+2)n+2= a2k n Y i=1 (1+2ia2kak 1) (1+a2kak 1) n Y i=1 (1+(2i+1)a2kak 1) ; :::; x(2k+2)n+k= ak+2 n Y i=1 (1+2iak+2a1) (1+ak+2a1) n Y i=1 (1+(2i+1)ak+2a1) ; x(2k+2)n+k+1= ak+1 n Y i=1 (1+2iak+1a0) (1+ak+1a0) n Y i=1 (1+(2i+1)ak+1a0) ; x(2k+2)n+k+2= ak(1+aka2k+1) n Y i=1 ((2i+1)aka2k+1+1) (2aka2k+1+1) n Y i=1 ((2i+2)aka2k+1+1) ; :::; x(2k+2)n+2k+2= a0(1+ak+1a0) n Y i=1 ((2i+1)ak+1a0+1) (2a0ak+1+1) n Y i=1 ((2i+2)a0ak+1+1) :

Proof. x1; x2; :::; x(2k+2)are clear from Eq.(1.1). From our assumption (1.2) all

solutions of Eq.(1.1) are positive. Also, for n = 1 the result holds. Now assume that n > 1 and our assumption holds for (n 1): We shall show that the result holds for n. From our assumption for (n 1); we have

(3)

x(2k+2)n (2k+1)= a2k+1 n 1 Y i=1 (1+2ia2k+1ak) (1+a2k+1ak) nY1 i=1 (1+(2i+1)a2k+1ak) ; :::; x(2k+2)n k= ak(1+aka2k+1) n 1 Y i=1 ((2i+1)aka2k+1+1) (2aka2k+1+1) nY1 i=1 ((2i+2)aka2k+1+1) ; :::; x(2k+2)n= a0(1+ak+1a0) nY1 i=1 ((2i+1)ak+1a0+1) (2a0ak+1+1) nY1 i=1 ((2i+2)a0ak+1+1) :

Then, from Eq.(1.1) and the above equality, we have x(2k+2)n+1= x(2k+2)n (2k+1) 1+x(2k+2)n kx(2k+2)n (2k+1) = a2k+1 n 1 Y i=1 (1+2ia2k+1ak) (1+a2k+1ak) n 1 Y i=1 (1+(2i+1)a2k+1ak) 1+ ak(1+aka2k+1) n 1 Y i=1 ((2i+1)aka2k+1+1) (2aka2k+1+1) nY1 i=1 ((2i+2)aka2k+1+1) a2k+1 n 1 Y i=1 (1+2ia2k+1ak) (1+a2k+1ak) nY1 i=1 (1+(2i+1)a2k+1ak) = a2k+1 n 1 Y i=1 (1+2ia2k+1ak) (1+a2k+1ak) n 1 Y i=1 (1+(2i+1)a2k+1ak) 2na2k+1ak+1 (2n+1)a2k+1ak+1 = a2k+1 n Y i=1 (1+2ia2k+1ak) (1+a2k+1ak) n Y i=1 (1+(2i+1)a2k+1ak) Hence, we have x(2k+2)n+1= a2k+1 n Y i=1 (1 + 2ia2k+1ak) (1 + a2k+1ak) n Y i=1 (1 + (2i + 1)a2k+1ak)

Similarly, one can easily obtain x(2k+2)n+i (for i = 2; 3; :::; k + 1): Therefore,

(4)

x(2k+2)n+k+2= x(2k+2)n k 1+x(2k+2)n+1x(2k+2)n k = ak(1+aka2k+1) n 1 Y i=1 ((2i+1)aka2k+1+1) (2aka2k+1+1) n 1 Y i=1 ((2i+2)aka2k+1+1) 1+ a2k+1 n Y i=1 (1+2ia2k+1ak) (1+a2k+1ak) n Y i=1 (1+(2i+1)a2k+1ak) ak(1+aka2k+1) n 1 Y i=1 ((2i+1)aka2k+1+1) (2aka2k+1+1) n 1 Y i=1 ((2i+2)aka2k+1+1) = ak(1+aka2k+1) n Y i=1 ((2i+1)aka2k+1+1) (2aka2k+1+1) n Y i=1 ((2i+2)aka2k+1+1) Hence, we have x(2k+2)n+k+2= ak(1 + aka2k+1) n Y i=1 ((2i + 1)aka2k+1+ 1) (2aka2k+1+ 1) n Y i=1 ((2i + 2)aka2k+1+ 1)

Similarly, one can easily obtain x(2k+2)n+i (for i = k + 3; k + 4; :::; 2k + 2):

Therefore, they will be omitted. Thus, the proof is completed by induction. Lemma 1. Eq.(1:1) has a unique equilibrium point which is the number zero. Corollary 1. If x i > 0 (for i = 0; 1; :::; 2k + 1); then 0 xn xn 2k for all

n > 0:

Theorem 2. Every positive solution of Eq.(1.1) converges to zero.

Proof. Let fxng1n= 2k 1 be an arbitrary solution of Eq.(1.1). It is enough to

prove that the subsequences x(2k+2)n+i(for i = 1; 2; :::; 2k + 2) converge to zero

as n ! 1: Since n X i=1 1

1+(2i+1)a2k+1ak ! +1 as n ! 1 and the series

1 X i=n0 (1 i2) is conver-gent, x(2k+2)n+1= a2k+1 1+a2k+1ak n Y i=1 (1+2ia2k+1ak) n Y i=1 (1+(2i+1)a2k+1ak) = a2k+1 1+a2k+1akexp n X i=1 ln( 1+2ia2k+1ak 1+(2i+1)a2k+1ak) !

(5)

= a2k+1 1+a2k+1akexp n X i=1 ln(1 a2k+1ak 1+(2i+1)a2k+1ak) ! = a2k+1 1+a2k+1akk(n0) exp a2k+1ak n X i=n0 (1+(2i+1)a1 2k+1ak+ ( 1 i2)) ! ! 0; as n ! 1:

Here k(ni) is a positive constant depending on ni2 N (for i = 0; 1; :::; 2k + 1):

Similarly, we obtain x(2k+2)n+i! 0; as n ! 1 (for i = 2; 3; :::; k + 1). Also, x(2k+2)n+k+2 = ak(1+aka2k+1) (2a2k+1ak+1) n Y i=1 ((2i+1)a2k+1ak+1) n Y i=1 ((2i+2)a2k+1ak+1) = ak(1+aka2k+1) 2a2k+1ak+1 exp n X i=1 ln((2i+1)a2k+1ak+1 (2i+2)a2k+1ak+1) ! = ak(1+aka2k+1) 2a2k+1ak+1 exp n X i=1 ln(1 a2k+1ak 1+(2i+2)a2k+1ak) ! = a2k+1 1+a2k+1akk(nk+1) exp a2k+1ak n X i=nk+1 (1+(2i+2)a1 2k+1ak + ( 1 i2)) ! ! 0; as n ! 1: Similarly, we obtain x(2k+2)n+k+i! 0; as n ! 1 (for i = 3; 4; :::; k + 2) as desired.

Remark 1. Note that the di¤erence equation xn+1=

xn (2k+1)

1 + xn kxn (2k+1)

for n = 0; 1; 2; :::

where and are positive real numbers, can be reduced to Eq.(1:1) by the change of variables xn=

q yn:

Acknowledgement

I am grateful to the anonymous referees for their valuable suggestions that improved the quality of this study.

(6)

References

1. Abu-Saris R., De Vault R. (2003): On the asymptotic behaviour of xn+1=axnnxn1;

Journal of Mathematical Analysis and Applications, 280, 148 -154.

2. Berenhaut K. S., Stevic S. (2007): The global attractivity of high order rational di¤erence equation, Journal of Mathematical Analysis and Applications, 326, 940 -944. 3. Cinar C. (2004): On the positive solutions of the di¤erence equation xn+1 =

xn 1

1+xnxn 1, Applied Mathematics and Computation, 150, 21-24.

4. Cinar C. (2004): On the periodic cycle ofxn+1=acnn+bxnnx1n, Applied Mathematics

and Computation, 150, 1-4.

5. Cinar C. (2004): On the positive solutions of the di¤erence equation xn+1 = xn 1

1+xnxn 1, Applied Mathematics and Computation, 158, 813-816.

6. Cinar C. (2004): On the positive solutions of the di¤erence equation xn+1 = axn 1

1+bxnxn 1, Applied Mathematics and Computation, 156, 587-590.

7. Devault R., Kent C., Kosmala, W. (2003): On the recursive sequence xn+1 =

p +xn k

xn ;Journal of Di¤erence Equations and Applications, 9, 721 -730.

8. El-A…… M. M. (2004): On the recursive sequencexn+1= Bx+ xn+Cxn+ xnn11;Applied

Mathematics and Computation, 147, 617-628.

9. Hamza E. H. (2006): On the recursive sequence xn+1 = + xnxn1; Journal of

Mathematical Analysis and Applications, 322, 668 -674.

10. Peny Y. (2006): Global asymptotic stability of nonlinear di¤erence equation, Applied Mathematics and Computation, 182, 67-72.

11. Simsek D., Cinar C., Yalcinkaya I. (2006): On the recursive sequencexn+1 = xn 3

1+xn 1;Int. Journal of Contemporary Math. Sciences, 10, 475-480.

12. Simsek D., Cinar C., Karatas R., Yalcinkaya I. (2006): On the recursive sequence xn+1=1+xxnn52;Int. Journal of Pure and Applied Math., 9-12, 481-487.

13. Simsek D., Cinar C., Karatas R., Yalcinkaya, I. (2006): On the recursive sequence xn+1=1+xxnn15xn 3;Int. Journal of Pure and Applied Math., 28, 117-124.

14. Stevic S. (2004): More on a rational recurrence relation, Applied Mathematics E-Notes, 4, 80-84.

15. Yang X., Evans D. J., Megson G. M. (2006): On two rational di¤erence equations, Applied Mathematics and Computation, 176, 422-430.

Referanslar

Benzer Belgeler

Furthermore, we construct a three stage (9−point, 5−point, 5−point) difference method for approximating of the solution and its first and second derivatives of the

While a balanced amplifier provide an input port with a high return loss, it degrades the noise parameters even when an ideal divider is used when | i | is nonzero.. With an

Katılımcılar bagajların robotlar tarafından taşınması, otelin ortak alanlarının robotlar tarafından temizlenmesi ve otel odalarının robotlar tarafından

FIRST ORDER DIFFERENTIAL

In this paper we aimed to give the global behaviour of solutions to problem with respect to coefficients of the nonlinear and damped terms. Here is the important inequalities which

Rehberlikle ilgili hizmet içi eğitime katılmış sınıf rehber öğretmenlerinin, katılmayanlara kıyasla sadece psikolojik danışma ve rehberliğe yönelik tutumlarının

SÜT TÜREVLERİNİN BESLENMEMİZDEKİ YERİ 41 yağ ise yağ oranlan buna bağlı olarak enerjileri yüksek, buna kar­ şın kullanılan miktarlarına oranla diğer besin

Literatürde, Rose ve Yellen (1989), reel döviz kurunun dış ticaret bilançosu üzerindeki etkisini incelemiş, istatistikî olarak böyle bir nedensel bulgunun