• Sonuç bulunamadı

GLOBAL BEHAVIOUR OF SOLUTIONS TO NONLINEAR WAVE EQUATION

N/A
N/A
Protected

Academic year: 2021

Share "GLOBAL BEHAVIOUR OF SOLUTIONS TO NONLINEAR WAVE EQUATION"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

83

GLOBAL BEHAVIOUR OF SOLUTIONS TO NONLINEAR WAVE EQUATION

Şevket GÜR, Sema BAYRAKTAR

Sakarya Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü Sakarya, Türkiye E-posta:sgur@sakarya.edu.tr

ABSTRACT

This paper gives uniform stabilization of the energy of the solutions to nonlinear wave equation.

Key words: Global behaviour, nonlinear wave equation.

LİNEER OLAMAYAN DALGA DENKLEMİNİN ÇÖZÜMLERİNİN UZUN ZAMAN DAVRANIŞI

ÖZET

Bu çalışmada lineer olmayan dalga denkleminin çözümlerinin düzgün kararlılığı incelenmiştir.

Anahtar Kelimeler: genel davranış, lineer olmayan dalga denklemi.

1. INTRODUCTION

We consider the following initial boundary value problem

2

Ω, 0,

tt t t t

u    uu u    u xt  (1)

  , 0

0

  ,

t

  , 0

1

  , Ω, u xu x u xu x x  (2)

0, Ω, 0.

ux  t  (3)

where

Ω  R ,

n

n  3

bounded region with smooth boundary

 Ω

,

 and

and

positive constants.

(2)

84

This damped wave equation were suggested for a problem which is used to describe vibration with viscosity. Last term on the left-hand side of (1) is replaced

f u  

was studied by Webb [1] in 1980. He proved the existence of a global strong solution to (1)-(3) for

n  1, 2,3

under four conditions regarding

f u  

. In [2], the above conditions were weakened by taking out two of above four conditions in [1]. In [3], for

n  4

the existence of a global strong solution was obtained under some assumptions. Asymptotic behaviour of solutions to (1)-(3) under some assumptions was studied by Runzhang and Yacheng [5]. In this paper we aimed to give the global behaviour of solutions to problem with respect to coefficients of the nonlinear and damped terms.

Let us introduce certain notations used in this paper:

p stands for the norm in

L

p

  Ω

. If

p 2

we write

instead of

2 and

  ,

is the

innerproduct in

L

2

  Ω

. 2

   

01

 

Ω ,

1

Ω ,

H H H

are the usual

Sobolev spaces.

Here is the important inequalities which we will use next.

Young's inequality with

:

 

p

1

q

q p

ab a b

p q

 

(4)

for each

a b , ,   0

with

,1 1

q p p

p   

Poincare' inequality:

ud

0

u

(5)

for all

uH

10

  Ω

where

d

0is the Poincare coefficient which depends on the region

Ω

.

Sobolev inequality:

q 1

udu

(6)

(3)

85

for al l

uH

10

  Ω

and

q  2.

Ladyzhenskaya inequality:

1 1

2 2

4 2

ud uu (7)

for all

uH

10

  Ω

.

d i

i

  0,1, 2

are the constant related to inequalities.

Now let us remark that the following important lemma:

Lemma 1 (Lagnese,Haraux)

Let

E R :

R

be a non-increasing function and assume that there exist a constant

T  0

such that

    ,

t

E s ds TE t t R

  

 (8)

Then

    0

1 Tt

,

E tE e

  t T (9)

Proof. See [4]

2.

Behaviour of Solutions

Teorem 1.

Let

u

0

H

01

  Ω , u

1

L

2

  Ω

and

4  d

2

c d

1 0

 0. Then

    0

1 Tt0

E t E e

(10)

Where T

0

 0

(4)

86

Proof. Suppose that u x t is a solution of equation (1) and   ,

satisfying the boundary conditions (2)-(3). Multiply the equation (1) by u and integrate over

t

Ω . Due to boundary conditions we find

2 2 2 4

Ω

1 1

2

t

2

t t

0

d u u u u dx

dt              (11)

Let us multiply the equation (1) by u and integrate over Ω we get

 

2 2 2 3

Ω

, 0

t

2

t t

d d

u u u u u u udx

dt dt

 

        (12)

By integrating (12) over (S,T) we obtain the relation

 

2 2 2 3

Ω

, | |

2

T T T

T T

t S S t t

S S S

u dt u uu u dtu udxdt

      

   (13)

From (11) we have

   

2 4

Ω

t t

d E t u u dx

dt       

where   1

2

1

2

2

t

2

E tu   u is the energy integral of equation (1). Thus E t is nonincreasing. So  

 

2

 

2 3

Ω

2 2 , | |

2

T T T

T T

t t S S t

S S S

E t dtu dtu u    u   u udxdt

   (15)

(5)

87

Using the nonincreasing property of E t , the Cauchy-Schwarz  

inequality and definition of E t we have,  

   

 

       

2 2 2 2

0

2 2

0

0 0

1 1 1

, 2 2 2

1 1

max 1,

2 2

max 1, max 1,

t t t

t

u u u u d u u

d u u

d E t d E S

    

 

      

 

(16)

     

2

2 u E t E S S t

       (17)

     

2 0 2 4

4

0 0

T T

t t t

S S

u dt d u u dt

d d

E S E t E S

 

 

 

    

      

 

(18)

Using inequalities (4),(5),(6),(7) and the nonincreasing property of

 

E t we obtain the following estimates;

3 4 4

Ω Ω

4

Ω

T T T

t t

S S S

u udxdt u dxdtu dxdt

       (19)

4 2 2

2

4

Ω

T T

S S

u dxdt d u u dt

     

2 2 2

2 1 0

T

S

du u u dt

     

(6)

88

 

2

2 1 2 2 1 0

2

1 0 T

T T

S S

S

dc u d t dc d u dt dc d E s ds

      

where c

1

u

1 2

  u

0 2

. Thus,

   

3

2 1 0

Ω

T T

t

S S

u udxdt E S d c d E s ds

       (20)

Using these estimates, we conclude from (15)

 2

2 1 0

   2 max 1,    

0

   

0

 

T

S

dc d E t dt d E SE SE S d E S

      

 

0 0

 

2 max 1, d

d   E S

 

        (21)

       

 

0 0

2 1 0

0

2 2 max 1,

2

T

S

E t dt d d E S

d c d T E S

   

 

        

(22)

where

   

0

0 0

2 1 0

2 2 max 1,

2

T d d

d c d  

 

 

        

Letting T   this yields the following estimates:

 

0

 

S

E t dt T E S

(23)

(7)

89 and from lemma we have

    0

1 Tt0

E t E e

.

3. KAYNAKLAR

[1]. Webb, G.F., “Existence and Asymptotic Behavior for a Strongly Damped Nonlinear Wave Equation”, Canadian Jounal of Mathematics, 32, 634- 643, 1980.

[2]. Yacheng, L., Dacheng,L., Initial value problem of equation

 

tt t

u    u    u f u

, Journal of Huazhang University of Science and Technology 16(6) ,169-173, 1988.

[3]. Yacheng, L., Wang Feng, Dacheng, L.,”Strongly damped nonlinear wave equation in arbitrary dimensions(I)”, Mathematical Applicata 8 (3),262-266, 1995.

[4]. Komornik, V., “Exact Controllability and Stabilization, The Multiplier Method”, J.Wiley Publ., 1994.

[5]. Runzhang,X., Yacheng, L.,” Asymptotic Behavior of Solutions for Initial Boundary Value Problem for Strongly Damped Nonlinear Wave Equations”, Nonlinear Analysis 69,2492-2495, 2008.

Referanslar

Benzer Belgeler

To prove our long-time existence result we start by converting (1) into a perturbation of the symmetric hyperbolic linear system and obtain the energy estimates for the

Among the problems that attracted the attention of many mathematicians around the world, we mention obtaining of the necessary and sufficient conditions of oscillation of all

Existence and uniqueness of solutions of the Dirichlet Problem for first and second order nonlinear elliptic partial dif- ferential equations is studied.. Key words:

Young people and low-inco- me smokers are two-to-three times more likely to quit or smoke less than other smokers after price increases, because these groups are the most

Dok­ san altı yaşında gözlerini yu­ man Celâl Esat Arseven’in «sı­ fat» larına şöyle bir göz atarsak, yüz yılı dolduran yaşamına sığ­ dırdığı

Tuzlada deniz kenarından tiren yolu üzerindeki yarmalara ve buradan göl kenarına gidip gelme (3) araba ücreti.(fuzlada tetkik heyetine dahil olan­ lar İrof.libarla

Çoğunluğu Türkçe, İngilizce ve Fransızca kırk kadar kitabın ve gene bu dillerde ayrıca bir kesimi Almanca, İtalyanca, İspanyolca, Katalanca, Çince binin

Literatürde, Rose ve Yellen (1989), reel döviz kurunun dış ticaret bilançosu üzerindeki etkisini incelemiş, istatistikî olarak böyle bir nedensel bulgunun