• Sonuç bulunamadı

On The B-Scrolls With Time-Like Directrix In 3-Dimensional Minkowski Space E³₁

N/A
N/A
Protected

Academic year: 2021

Share "On The B-Scrolls With Time-Like Directrix In 3-Dimensional Minkowski Space E³₁"

Copied!
12
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Journal of Science and Technology

2 (2), 2008, 206-217

©BEYKENT UNIVERSITY

ON THE B-SCROLLS WITH TIME-LIKE

DIRECTRIX IN 3-DIMENSIONAL MINKOWSKI

SPACE E

1

Şeyda KILIÇOĞLU

Başkent Üniversitesi Eğitim Fakültesi Bağlıca Kampüsü Eskişehir Yolu 20.km, ANKARA

E-Mail:seyda@baskent.edu.tr

Dedicated to Professor Dr. H. Hilmi Hacısalihoğlu

Received: 25 January 2008, Accepted: 28 April 2008

ABSTRACT

In this paper, as special ruled surfaces, b-scrolls with time-like directrix are introduced in 3-dimensional Minkowski space E-j3, [1] and [3]. The generating

vector of b-scroll is space-like V3 binormal vector of time-like directrix curve. The Normal vector, the matrix corresponding to the shape operator, the Gaussian and mean curvatures, I. and II. Fundamental forms, asymptotic lines and curvature lines of b-scrolls together with striction space are studied.

Key words :B-scroll, time-like, ruled surfaces, shape operator.

ÖZET

E3 3 — boyutlu Mikowski uzayında î ] ( I ) time-like dayanak eğrisi boyunca, bu eğrinin space-like V3 binormal vektörü tarafından üretilen bir regle yüzey olarak b-scroll tanımlandı [1] ve [3]. Bu yüzeyin S şekil operatörüne karşılık gelen matris, Gauss eğriliği, ortalama eğriliği hesaplandı. I. ve II. temel formlar, asimptotik çizgileri and eğrilik çizgilerini veren denklemler ifade edildi.

(2)

Şeyda KILIÇOGLU

1. INTRODUCTION

Let n ( I ) be a time-like curve with arc length t in 3-dimensional

Minkowski space Ej3 .If f](t) = V1 is a like vector then T](I) is a time-like curve. That is

(V

1

,V

1

^

= —1 , [7]. The Frenet vectors of T](I) are

V

l

,V

2

,V

3

,

where

V

2 normal vector is like and binormal vector is space-like V . Then

hold.

(V2,V2) = ( V 3 V 3 H

V1V3) = (V

2

,V^ = (V

1

,V^ = 0

I

In 3-dimensional Minkowski space Ej5, natural lorentz metric is (••.,..) = (-,+,+)

so the cross product of

a = ( o j , a2, a3) and b = (bx,b2,b3) is

a A b = (a

2

b

3

- a

3

b

2

, a

j

b

3

- a

3

b

j

, a

2

b

j

- a

x

b

2

),

or this product is given by

a

A

b

or in opposite direction

a

A

b = det

can be used, [9].

Since V1 is time-like vector, V 2 and V3 are space-like vectors in

3-dimensional Minkowski space Ejj, Frenet Formulas, ( [2], [4] and [5] ), can be given by the following equations ,

- V1 V2 V3

det a

1 a2 a3

_ b

b2 b3

""

V1 V2 V3 '

a

1 a2

a

3

_

b

x b2 b3 _ (1) Vi V2

V

kV

k

1

V

1

+ k

2

V

3 2 2

(3)

I7

:

On The B-Scrolls With Time-Like Directrix In 3-Dimensional Minkowski Space J-^i

(2)

3

V

0

ki

0

Vi

V =

ki

0

k2 V2

V

0

k 2

0

V3

is the matrix form of which is L

2. THE B-SCROLLS WITH TIME-LIKE DIRECTRIX IN

3-DIMENSIONAL MINKOWSKI SPACE

E

Let ) be a time-like curve with arc length t, and let V1, V2, V3 be the Frenet vectors. The parametrization of b-scroll whose directrix is the time-like curve n ( I ) and generating vector is the space-like binormal vector V3' is

p(t, u) = n(t) + uV

3

(t)

(3)

in 3-dimensional Minkowski space E3. Let M be the surface whose ordered

basis vectors pt and pu at the point Tj(t) are given by

Pt = V - uk2V2

Pu

V

Denote the asymptotic bundel by A(t) = Sp{V2, V3} is and the tangentian

bundel by T (t ) = S p f a . V ^ } . Because of

dim A(t) * dimT(t),

there is not an edge space but there is a striction (curve) space, [8]. Let p(t) is any curve with equation

p(t) = n(t)+u(t)V

3

(t) (4)

on surface M. Differantiating p(t) with respect to t

p(t) = uv

3

+uV

3

= V + uV

3

- uk

2

V

2

is obtained. The solution vectors u of the equation

i ^ p ( t ) , d - [ u ( t ) V

3

( t = (Vi + UV

3

-uk

2

V

2

,UV

3

- u k

2

V

2

) = 0

^ e the position vectors of striction (curve) space[10].This equation implies

u2 = 0 and u2k22 = 0 . If u = 0, then u is constant. Hence, if u = 0 ,then striction curve is T](I) itself. If k2 = 0, then striction curve does not have a torsion. That is, striction curve is a plane curve.

The parametrization of surface M is

(4)

Çeyda KILIÇOGLU

P(t, u) = Jj(t ) + uV

3

(t)

Since then

— V - uk

2

V

2

, —

Pt =- ~T and Pu

( u 2 k2 -

1)

: \\Pu

Pu =

V3

(

Pu) =

°-That is

p

t

, p

u are ortonormal tangent vectors and

%(M) = Sp{p

t

,

p

u

}

The

(6) Normal vector of the surface M is

N

P

t *Pu

N = det

-

Vi

1

P

t *Pu

V

uk

2 1 1

(-1 + u

2

k

22

)

2

(-1 + u

2

k

22

)

2

0 0

V3

0

1

P

t *Pu

1.

Therefore we obtain N = u k2V1 - V2

( - 1

+

u

2

k

2

)2

(7) Using this Normal vector we can find the matrix S corresponding to the shape operator. We know that

S (Pt ) = ^rPt + X

2

P

U

^ S (Pt ),Pt

^ Ä2={S (Pt ) , P

S

(P„

) =

^1Pt + ^ 2

Pu ^ A = (

S

(Pu

),Pt

^

^2 = (. S

(Pu

),

Pu

Using the following formula

S

(Pt)

1

3N

(8)

P\\

DT (U2k22 - 1 ) 2 d t ' under the condition u k2 - 1 > 0 , we have

(5)

On The B-Scrolls With Time-Like Directrix In 3-Dimensional Minkowski Space

E

3

_ (k

i

— uk

2

— u

2

k

i

k

22

V + (u

2

k

2

k

2

— uk

i

k

2

+ u

3

k

l

k-l)V

2

+(k

2

— u

2

kl V

S (Pt ) =

The values of \ and A2 are found as

(u

2

k

2

—I)

2

A _ ( 5 ( p ) , p ) _ 5(p),

.— V — uk

2

V

2

\ _ k i uk&2 u kik

and Ä2

=

(u

2

k

22

— i)

2

/ (u

2

k^ — i)

\ \

ko P

_

2 , 2 !

u k^ — i

respectively. Using the formula

— DN

S (Pu ) = S (Pu ) = —

du

we compute

dN _ — k

2

Vju

2

k

2

— i + (uk

2

V — V

2

u

2

k

22

+1)

du

u k

2

— i

(9) (i0) ( i i ) Thus, for the value of ß is

—\ _ — k

2

V

i

+ uk

22

V

2

5 (p

B

)_

(u X— if

2

ßi

_ (5 (P„ ),p)

ß _

(

5 (Pu )Pu) — J

ß

_

i ( u 2 k22 — i )

_

A

and the value of j2 is

j

2

=

0

-As a result, the matrix corresponding to the shape operator S is

5_

A

A " A

ß _

A

0

(i2) (i3) (i4) 2

(6)

Şeyda KILIÇOGLU

S =

k

1

— uk

2

— u

2 ( u ^k2 —

l)

J 2 , 2 i

u k

2

—1

— j

u

2 kl —

1

(15)

3. GAUSSIAN CURVATURE:

Gaussian curvature of b-scroll whose directrix is time-like curve and generating vector is space-like binormal vector, is denoted by K ,whic is non negative [6], in 3-dimensional Minkowski space E1

K = £

1

det S = det S

( 1 6 )

k o

( u 2 k2 - 1)2

where

e1

= { N, ^ = - 1

and N is the time-like Normal of bscroll.

4. MEAN CURVATURE

Mean curvature of b-scroll whose directrix is time-like curve and generating vector is space-like binormal vector is denoted by H in 3-dimensional Minkowski space E3

H = trS

(17)

4

ki uk&2 u k^2

(u

2k2

1)

5. I. FUNDAMENTAL FORM:

I.Fundamental form of b-scroll whose directrix is time-like curve and generating vector is space-like binormal vector, is defined by

I _ (dp, d^jand dp _ p

t

dt + p

u

du,

hence ,

I _ (p

t

,p

t

)dtdt + 2(p

t

,p

u

)dtdu + p

u

,p

u

)dudu

which results in

I _ (u

2

k

22

— i)dtdt + dudu

,thus we can write this quadratic form as the matrix form

(18) 2

(7)

On The B-Scrolls With Time-Like Directrix In 3-Dimensional Minkowski Space J-^i

u

2

kn — i 0

(i9)

I

0

i

det I = u

2

k

22

- 1 .

6. II. FUNDAMENTAL FORM:

II.Fundamental form of b-scroll whose directrix is time-like curve and generating vector is space-like binormal vector is

II = {S(dP), dP with dP = P

t

dt + P

u

du

from which

II = (S (P

t

)dt + S (P

U

)du,P

t

dt + P

u

du)

= (S (P

t

), P

t

)dtdt + (S (P

t

), P

u

)dtdu

+ (S (P

u

), P

t

)dudt + (S (P

u

),P

u

)dudu

is computed and hence

II = A

l

(u

2

k

22

-1)

2

dtdt + 2l

1

(u

2

k

22

-1)

2

dtdu + 0dudu

resulting in

-

2k,

II _

k

—i^c^—

u kik2

dtdt + "

V2 1

dtdu.

(u

2

k

22

-1)2 (u

2

k

22

- 1 )

We can write this quadratic form as a matrix

II

ki uk&2 u kik-

2 2 2 — i

(u

2

k

2

— i)

2

(u

2

k

2

— i)

k

— j

(u

2

k

2

— i)

2

0

and (20) (2i)

det II _

— j

u

2

k

22

— i

2 2 2

7. ASYMPTOTIC LINES:

In 3-dimensional Minkowski space Ej3, asymtotic lines of b-scroll whose directrix is time-like curve and generating vector is space-like binormal vector, are curves with the following equation

(8)

§eyda KILigOGLU

II = (S (dp), dp = 0

(22) TT

ki fyfc^ U ki k2 , ,

II = -i

2

-Ia dtdt + -

2L

(u

2

k

22

- l )

(u

2

k

22

- 1 )

dtdu = 0.

It can be shown that this equation becomes

f .

2 2 k1 — u k& 2 - u k1k2 — 2 k2

\

(u

2

k

22

—1)2 (u

2

k

22

— l)

du

(23)

dt = 0

after some computations. Therefore, we investigate the following two cases: i) If dt = 0, then asymtotic lines are the mainlines with equation t = c1.

ii) otherwise the asymtotic lines have the following equation kl uk&2 u kik

dt + -

2k

(u

2

k

2

—1)2 (u

2

k

2

—l)

du = 0.

(24)

8. CURVATURE LINES:

In 3-dimensional Minkowski space E13, if T is a tanget vector of any curve in surface M we know that T e %(M) = Sp{pt, pu } and differantial equation

of Curvature lines is ST = ÄT . First, we find tanget vector T .From which

dp = p

t

dt + p

u

du

T

(V

1

— uk

2

V

2

)dt + V

3

du

dt + V du

V1 — u k 2V2 (25)

is computed and hence

T

( u l k

\

— 1 )

dt

( u 2 k22 — l )

r P +

du

pu

The matrix form of tanget vector T is

T =

dt

(u

2

k

22

—iß

du

Replacing this value on the equation S T = ^T ,we get

(9)

E 3 On The B-Scrolls With Time-Like Directrix In 3-Dimensional Minkowski Space J-^i

(26)

A A2

A 0

It can be shown that this equation becomes

A — A

" dt ~

Adt

(u X

2

— l)

2

du

= (u X

2

— l)

2

Adu

(u2

k

22

— l)

A

- dt + A

2

du = 0

(u X —l)

dt

Adu = 0

(27)

after some computations.Therefore we investigate the following equations

dt

2

dt

A(A — A) ^ + A

(u

2

k

2

— l)

2

(u

2

k

2

— l)

[A(A—A) + A2}

dt

= 0

( u 2

k2

—1) where there is two results

i) If dt = 0, curvature lines are the mainlines with equation ^ t = Cl

ii) Otherwise, the quadratic equation — A2 + AlA + A = 0 , since Aa = Aj2 + 4A2 is always positive, we have two distinct roots

A

—A+V A

2

+4A2

2A

(28)

If we replace A and A2 in the equation,then the other curvature lines have been obtained.

Example1: In 3-dimensional Minkowski space E^

,cos t,sin t)

is a time-like curve.The parametrization of b-scroll with directrix T](t) and generating V3(t) is

<p(t, u) = 7j(t) + uV

3

(t)

p(t, u) = (V2t — u,cos t + uV2sin t,sin t — uV2cos t)

Here V3(t) is space-like binormal vector of the time-like curve tf(t).

2

(10)

Şeyda KILIÇOGLU

Example 2: In 3-dimensional Minkowski space E3

t

3 t2 t3

n(t) = (t + — , — , — )

6 2 6

is a time-like curve.The parametrization of b-scroll with directrix T](t) and generating V3(t) is

<p(t, u) = 7](t) + uV

3

(t)

3 2 2 3 2

, , , t t t t t \

(p(t,u) = (t + + u —,—+ ut, + u -u—)

6 2 2 6 2

(11)
(12)

Şeyda KILIÇOĞLU

REFERENCES

[1] Alias, L.J., Ferrandez, A., Lucas, P. 2-type surfaces in S31 and H31 Tokyo J. Math. 17 (1994) 447-454

[2] Ekmekçi, N. and 1 larslan, K. 1998. Higher curvatures of a regular curve in Lorentzian space. Jour. of Inst. of Math & Camp. Sci. (Math. Ser) Vol. 11, No.2; 97-102.

[3] Graves, L.K. 1979. Codimension one isometric immersions between Lorentz spaces.Trans. Amer. Math. Soc., 252; 367-392

[4] Ikawa, T. 1985. On curves and submanifolds in an indefinite-Riemannian manifold. Tsukuba J. Math. Vol. 9 No.2; 353-371

[5] larslan, K. 2002. Öklid olmayan manifoldlar üzerindeki baz özel e g riler. Doktora tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, 118 s., Ankara

[6]. Nassar, H.A.A. Rashad A.A and Fathi, M.H. 2004. Ruled surfaces with time-like rullings. Appl.Math.Comput. 147, 241-253

[7] O'Neill, B. 1983. Semi-Riemannian geometry with applications to relativity.

m°d* l-

8

cm

Academic Press, 468 p., New York.

[8] Sabuncuo g lu, A. 1982. Genelle s tirilmis regle yüzeyler. Doçentlik tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, 60 s., Ankara

3

_

[9] Turgut, A. 1995. J Boyutlu Minkowski uzayında space-like ve time-like regle yüzeyler. Doktora tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, 97 s., Ankara.

g

[10] Turgut, A. and Hac saliho ö lu, H.H. 1997. Time like ruled surfaces in the Minkowski 3 _ space. Far East. J. Math. Sci., 5(1); 83-90.

Referanslar

Benzer Belgeler

In particular, using harmonic maps the degree of freedom on the M' manifold is exploited to add scalar and electromagnetic fields to Bonnor's nonsingular solution.. It is

27 Nevertheless, in the previous studies, the Rabi splitting energy of the plexcitonic nanoparticles is not tunable 10 and thus their optical properties cannot be tailored, which

Both rectangular antennas served as a single bright mode and the disk served as a second bright mode, and we achieved PIR by the coupling/detuning of these modes.. In the second

15 Temmuz darbe girişimi sonrasında, geçmiş 38 yılda eğitim başta olmak üzere, devletin bütün kademelerinde iktidar tarafından en kilit noktalara

Araştırma sonuçlarına gore okul yöneticilerinin karar verme stillerinin alt boyutları cinsiyet değişkenine incelendiğinde dikkatli, kaçıngan, erteleyici karar

Buna göre; 1988 yılında T-S puan türü ile öğrenci alan Kütüphanecilik Anabilim Dalına yerleştirilen adayların oranı (bu puan türü ile bir yükseköğretim

Biz de yaptığımız bu çalışmada Kaldirik (Trachystemon orientalis) bitkisinden ekstrakte edilen Polifenol oksidaz enziminin optimum pH ve optimum sıcaklık

Mevcut konut piyasası dışında, hane halkı gelirleri ile konut maliyetleri arasındaki ilişkiye göre, alt gelir gruplarına yönelik konut sunumunu öngören bir kavram