• Sonuç bulunamadı

Structure and nanotribology of thermally deposited gold nanoparticles on graphite

N/A
N/A
Protected

Academic year: 2021

Share "Structure and nanotribology of thermally deposited gold nanoparticles on graphite"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Structure

and

nanotribology

of

thermally

deposited

gold

nanoparticles

on

graphite

Ebru

Cihan

a

,

Alper

Özo˘gul

b

,

Mehmet

Z.

Baykara

a,b,∗

aUNAM-InstituteofMaterialsScienceandNanotechnology,BilkentUniversity,Ankara06800,Turkey bDepartmentofMechanicalEngineering,BilkentUniversity,Ankara06800,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22December2014

Receivedinrevisedform18February2015 Accepted14April2015

Availableonline24April2015 Keywords:

Atomicforcemicroscopy Frictionforcemicroscopy Friction

Nanotribology Nanoparticle

a

b

s

t

r

a

c

t

Wepresentexperimentsinvolvingthestructuralandfrictionalcharacterizationofgoldnanoparticles (AuNP)thermallydepositedonhighlyorientedpyrolyticgraphite(HOPG).Theeffectofthermal depo-sitionamount,aswellaspost-depositionannealingonthemorphologyanddistributionofgold on HOPGisstudiedviascanningelectronmicroscopy(SEM)measurements,whiletransmissionelectron microscopy(TEM)isutilizedtoconfirmthecrystallinecharacterofthenanoparticles.Lateralforce mea-surementsconductedviaatomicforcemicroscopy(AFM)underambientconditionsareemployedto investigatethenanotribologicalpropertiesofthegoldnanoparticlesasafunctionofnormalload.Finally, theincreaseinlateralforceexperiencedattheedgesofthenanoparticlesisstudiedasafunctionofnormal load,aswellasnanoparticleheight.Asawhole,ourresultsconstituteacomprehensivestructuraland frictionalcharacterizationoftheAuNP/HOPGmaterialsystem,formingthebasisfornanotribology exper-imentsinvolvingthelateralmanipulationofthermallydepositedAuNPsonHOPGviaAFMunderambient conditions.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Despite the fact that friction is ubiquitous in nature, the

fundamentalphysicalprinciplesthatgovernthisinteresting

phe-nomenonarestillnotwellunderstood.Whilethemacroscopiclaws

offrictioninvolvingalinearlyproportionalrelationshipbetween

thenormalload(Fn)andthefrictionforce(Ff)arisingbetweentwo

objectsincontacthavebeenwellestablishedsincehundredsof

years thankstopioneeringexperimentsbyAmontons,Coulomb

andothers,themacroscopicallyobservedproportionalityconstant

(theso-called frictioncoefficient)cannotbederived fromfirst

principlesasitconstitutesacomplexfunctionofinterface

struc-ture,chemistryandenvironmentalfactorsincludingtemperature

andhumidity[1].Moreover,theunavoidablemulti-asperitynature

of interfacesformed bytwo macroscopicobjects in contact[2]

complicates the physical interpretation of macroscopic friction

experiments,leadingtosubstantialdifficultiesinthe

determina-tionoftheactualcontactarea(A)betweenthetwoobjects,among

others.

Toovercometheabove-mentioneddifficultiesassociatedwith

macroscopictribology(thescienceoffriction,wearandlubrication)

∗ Correspondingauthor.Tel.:+903122903428.

E-mailaddress:mehmet.baykara@bilkent.edu.tr(M.Z.Baykara).

experiments,theresearchfieldofnanotribologyhasbeen

intro-duced relatively soon after the invention of the atomic force

microscope(AFM)[3,4].TheAFM,whichcanbethoughtofasavery

high-resolution mechanical microscope, allows therecording of

(sub-)nanometer-scaletopographyaswellasnormalandlateral

forces experiencedbyaverysharpsingleasperity(radiiof

cur-vature usually onthe order of<10nm)in theform of a tip at

theendofamicro-machinedSi/SiO2/Si3N4cantileverduringthe

raster-scanning of a given sample surface under slight contact

(normalforcesontheorderofafewtotensofnN)[5].Thanksto

thesingle-asperitynatureofthecontactformedbetweentheAFM

tip and the sample surface, various nanotribology experiments

conducted on a largenumber of sample surfacesover thelast

coupleofdecadeshaveresultedintheprecisedeterminationof

the effect of normal load, sliding velocity and temperature on

frictionalbehavioratthenanoscale[6–8].Moreover,phenomena

suchasstick-slip[9]andsuperlubricity[10]havebeenobserved

and largely explained, in many cases with substantial support

fromtheoryandcomputationalwork[11].

Among thematerial systems investigated nanotribologically

usinganAFM-basedapproach,nanoparticlesonlayeredsubstrates

suchashighlyorientedpyrolyticgraphite(HOPG)[12,13]areof

particular interest, primarily due to the fact that they readily

presentaheterogeneoussamplesurfacewheretheeffectof

chang-ing experimental parameters suchas normal loadon frictional

http://dx.doi.org/10.1016/j.apsusc.2015.04.099 0169-4332/©2015ElsevierB.V.Allrightsreserved.

(2)

430 E.Cihanetal./AppliedSurfaceScience354(2015)429–436

behavior canbecompared andcontrasted onthe nanoparticles

themselvesandthesubstrates.Moreover,therehasbeenarecent

increaseinnanotribologyexperimentsinvolvingthedeliberate

lat-eral manipulation of nanoparticleson structurallywell-defined

substratessuchasHOPGandthemeasurementoftheassociated

frictionalforces, asamodel approachtostudyfrictional effects

indevicesfeaturingslidingcomponentsonnano-and

microme-terscales[14–19].Consequently,theneedfor acomprehensive

nanometer-scalecharacterizationofthestructuralandfrictional

propertiesofsuchsamplesystemsarisesasaprerequisiteforthe

correctinterpretationoftheabove-mentionednano-manipulation

experiments,amongothers.

Motivatedby the discussionabove, we present in this

con-tributionacomprehensivecharacterizationofthestructuraland

nanotribologicalpropertiesofthermallydepositedgold

nanopar-ticles (AuNP) on HOPG substrates. The particular choice of

this sample system is motivated by recently reported

nano-manipulation experiments involving AuNPs under ultrahigh

vacuum(UHV)conditions[18],aswellasthefactthatthegrowth

mechanismsof AuNPs onHOPG havebeen studiedvia various

approachesinthepast[20–24].Inthefollowingsectionsofthis

work,theeffectsofthermaldepositionamount,aswellas

post-depositionannealingonnanoparticlemorphologyanddistribution

arediscussedviascanningelectronmicroscopy(SEM)

measure-ments.Resultsrevealthatatransformationinmorphologyfrom

small,non-uniformlydispersedgoldislandsthatarecoalescedto

formchanneledthinfilmsonHOPGtomuchlarger,well-faceted,

mostly hexagonal AuNPs with much lower substrate coverage

takesplace uponpost-deposition annealing.Furthermore,

high-resolution transmission electron microscopy (TEM) images are

utilizedtoconfirmthecrystallinecharacterofthehexagon-shaped

AuNPs.Anextensivenanotribologicalanalysisinvolvinganumber

ofAuNPsviaAFMperformedinambientconditionsallowsthe

char-acterizationofthefrictionforcemeasuredonthenanoparticlesand

theHOPGsubstrateasafunctionofnormalload.Finally,an

anal-ysisoftheincreaseinlateralforceexperiencedatAuNPedgesis

presentedasafunctionofnormalloadand nanoparticleheight,

revealingalinearlyincreasingtrendforbothparameters.

It is important to emphasize at this point that the results

reported in this paper form a much-needed basis in terms of

a comprehensivestructuralandtribological characterizationfor

futurenano-manipulationexperimentstobeconductedusingthe

AuNP/HOPG materialsystemunder ambientconditions.In fact,

it isobserved that many AuNPsare frequentlymanipulated on

theHOPGsubstrateduringAFMmeasurements,openingtheroute

towards the quantitative characterization of interfacial friction

betweencrystallinesurfaces.Ontheotherhand,thepresentfocus

hasbeenplacedonimmobileAuNPsstuckbetweenHOPGstepsand

otherstructuralfeatures,suitableforacomprehensivestructural

andfrictionalcharacterizationviaAFMandothertechniques.

2. Experimental

2.1. Samplepreparation

HOPGsubstrateshavebeenpreparedbymechanicalcleavingin

airviaadhesivetapeandimmediatelytransferredintothevacuum

chamberofathermalevaporationsystem(VaksisPVDVapor–3S).

Thermalevaporationof999.9puritygoldonHOPGsubstratestook

placeat a basepressure ontheorder of 5×10−6Torrand at a

depositionrateof0.1 ˚A/sfortotaldepositedamountsbetween1 ˚A

and40 ˚A.Duringdeposition,theHOPGsubstratewasheldatroom

temperature.Afterdeposition,thegold-coatedHOPG substrates

were removed fromthe evaporation system for optional

post-depositionannealingandfurtheranalysisviaSEM,TEMandAFM.

Post-depositionannealingattemperaturesrangingfrom400◦Cto

650◦Candforannealingtimesontheorderof30minto4htook

placeinaquartztubefurnace(AlserTeknik/ProTherm).

2.2. SamplecharacterizationviaSEMandTEM

PriortostructuralandnanotribologicalcharacterizationbyAFM,

samplespreparedasdetailedintheprevioussectionhave been

analyzedviaSEM(FEIQuanta200FEG,typicallyoperatedat10kV)

tostudythemorphologyandthedistributionofAuNPsonHOPG.

Additionally, high-resolution TEM (FEI Tecnai G2 F30,typically

operatedat 300kV)hasbeenutilizedtoconfirmthecrystalline

structureofAuNPsviadirectimagingaswellaselectrondiffraction.

TheTEMsampleshavebeenpreparedbymechanicalcleavageofa

thinlayerofthegold-coveredHOPGsampleandsubsequent

sonica-tioninethanol,followedbydrop-castingonaCugrid(300mesh).

2.3. NanotribologicalmeasurementsperformedviaAFM

ComplementarytoSEMandTEMmeasurements,AFM

experi-mentshavebeenutilizedtocharacterizethestructureaswellas

thenanotribologicalpropertiesoftheAuNP/HOPGsamplesystem.

AcommercialAFMinstrument(PSIAXE-100)hasbeenoperated

under ambientconditionsand in thecontact modeto

simulta-neouslymeasurethetopographyof thesamplesurfaceand the

lateralforcesarisingbetweenthetipandthesampleduring

scan-ning.Asinglesiliconcantilever(NanosensorsPPP-CONTRseries,

radiusofcurvature≈10nm)hasbeenusedforallAFM

measure-ments.Toreliablydeterminethenormalaswellasthelateralforces

detectedduringAFMmeasurements,thecantileverhasbeen

cali-bratedaccordingtothemethodsreportedbySaderetal.[25]and

Varenbergetal.[26],respectively,resultinginanormalspring

con-stantkof0.23N/mandacalibrationconstant˛of15.0nN/Vforthe

lateralforcesignal.Whilethedetailsofbothcalibrationtechniques

aredescribedintherespectivereferences,letusindicateherethat

theSaderetal.methodallowsthepracticalcalculationofnormal

springconstantsofAFMcantileversbasedonameasurementof

resonancefrequency,qualityfactorandplan-viewdimensions,

tak-ingintoaccounttheeffectofthesurroundingfluidmedium(air)

oncantileveroscillationviaahydrodynamicfunction[25].Onthe

otherhand,theVarenbergetal.method,sometimesreferred to

astheimprovedwedgemethod,involvesthemeasurementofthe

forwardandbackwardlateralforcesignalsontheslopedandflat

facesofacommercialcalibrationgratingwithknownfeaturesizes

anddimensions,effectivelyallowingthecalculationoflateralforce

calibrationconstantsusingforceequilibrium argumentsin

con-junctionwiththedeterminationoffrictionloopwidthandoffset

valuesatfixednormalloads[26].Inaccordancewithliterature,the

reportedfrictionforcesinourexperimentshavebeencalculated

byconsideringthehalf-widthofthefrictionloopsformedbythe

recordingoflateralforcesduringforwardandbackwardscans[27].

3. Resultsanddiscussion

3.1. Effectofdepositionamountandpost-depositionannealing

onmorphology

In order to obtain a heterogeneous sample system suitable

fornanotribologicalinvestigationviaAFMconsistingof

individ-ualAuNPsofdefinedshapeandreasonablelateralseparationon

HOPG,thefirstpreparationstepinvolvedthethermalevaporation

ofgoldontofreshlycleavedHOPGsubstrates.Thegrowth

kinet-icsandmorphologicalcharacteristicsofthinfilmsofgoldonHOPG

havereceivedparticularattentioninthepast,wheretypically

non-uniformsurfacecoverageshavebeenobservedduetotherelatively

(3)

Fig.1. SEMimagesofas-depositedAuthinfilmsonHOPGfortotaldeposition amountsof20 ˚A(a),10 ˚A(b),5 ˚A(c)and1 ˚A(d).Thermalevaporationhasbeen performedwiththeHOPGsubstrateatroomtemperature,atarateof0.1 ˚A/s.

facetedandmostlyhexagonalortriangular-shapedAu

nanopar-ticles are obtained when evaporation is performed at elevated

substrate temperatures, deposited films consisting of

intercon-nected,elongatedislandsleadingtoachanneledmorphologyare

expectedfordepositionswherethesubstrateisheldatroom

tem-perature.

Fig.1demonstrates theeffectofthermal depositionamount

on the resulting thin film morphology for film thicknesses of

20 ˚A,10 ˚A,5 ˚Aand1 ˚AviaSEMimagesrecordedpost-deposition.

Starting froma thicknessof20 ˚A, closetofull surfacecoverage

isobserved; whileat increasinglysmallerfilmthicknesses,thin

filmmorphologiescomprisinginter-connected,non-uniformly

dis-persedandirregularly-shapedgoldislandsarevisible.Thesurface

coverageandaverageislandsizegraduallydropwithsmaller

depo-sitionamounts, untiluncoveredregions ofthesubstrateonthe

orderofseveralhundredsofnmbecomeobservableata

deposi-tionamountof1 ˚A.Thefactthatanaccumulationofgoldislands

alongcertainlinearfeaturesonthesubstratesbecomesdetectable

atsmalldepositionamountssuchas1 ˚Asupportstheargumentthat

nucleationandgrowthprimarilyoccursatsurfacedefectssuchas

stepedgesandgrainboundaries,inaccordancewithresultsfrom

theliterature[24].

While theSEM studypresentedinFig.1regarding the

mor-phology ofgoldthinfilmsonHOPGasafunctionof deposition

amountprovidesusefulinformation,theresultingmaterial

sys-tem is unsuitable for precise nanotribological investigationvia

AFMduetothelackofstructurallywell-defined(faceted),large

(hundredsofnmacross)AuNPsatreasonableseparations(atleast

severalhundredsofnm)fromeachother.Inordertotransform

theas-deposited goldfilmsinto facetedAuNPs, post-deposition

annealing in a quartz furnacehas beenperformedat

tempera-tures rangingfrom400◦C to650◦Cand forannealing timeson

theorderof30minto4h.Pleasenotethatduetotherelatively

lowsurfacecoverage,samplescomprising1 ˚Aofdepositedgoldon

HOPG(Fig.1(d))havebeenemployedforannealing.Theresults

indicatethatpost-depositionannealinghasadrasticeffectonthe

morphologyanddistributionofgoldonHOPG,leadingtoasevere

Fig.2. SEMimagesoftheAuNP/HOPGsamplesystemafterpost-deposition anneal-ing at(a)500◦Cfor 30min,(b,c) 600Cfor2hand (d)650Cfor 2h. The SEMimagepresentedin(c)isazoomed-inviewoftheregionofthesample surfacedesignatedbythedashedwhiterectanglein(b).Theformationof well-defined,hexagonal/elongated-hexagonalAuNPsatelevatedtemperaturesisreadily observed.

reductionofsurfacecoverageandsignificantcoalescence.While

annealingtemperaturesupto500◦Conlyresultintheobservation

ofnon-facetedgoldislandsinelongatedshapes(Fig.2(a))upto4h

of annealingtime;well-faceted, hexagonal/elongated-hexagonal

AuNPsof50–180nmheightandupto500nminlateraldimensions

areobtainedatannealingtemperaturesof600–650◦C(Fig.2(b–d)),

inaccordancewithrecentstudiesperformedongoldthinfilmson

multilayergraphene[28].Annealingathighertemperatures(700◦C

and above)hasbeenobservedtoresultinminorbutdetectable

morphologicaldamageontheHOPGsurfaceandisthusprevented.

Duetothefactthatthinfilmsandclustersofmetalsdeposited

onvarioussubstrates(including,butnotlimitedtometaloxides

andlayeredmaterialssuchasmicaandHOPG)present

opportu-nitiesfordeviceswithelectronic,opticalandmagneticproperties

thatcanbefine-tunedonthenanometerscale,thegrowthkinetics

ofsuchsystemshavebeenstudiedasafunctionoffilmthickness

andannealingtemperatureinvariousstudiesinthepast[29–32].

Inparticular,thegrowthofAufilmsonSi(111)couldbedescribed

bythedynamicscalingtheoryofgrowinginterfaces,involvingfour

stagesthatcanbesummarizedasnucleation,lateralgrowth,

coales-cenceandverticalgrowth;leadingtoanAvrami-typerelationship

betweensurfacecoverageandfilmthickness,whichis

character-izedbyrapidlateralgrowthatlowcoverages,followedbyadamped

coverage ratewithincreasingfilm thickness[29]. On theother

hand,severalcarefulpost-depositionannealingexperimentsofAu

ondifferentsubstrateswereutilizedtointerpretclusterformation

withintheframeworkofstandardripeningmodelsandresultedin

thedeterminationofsurfacediffusioncoefficientsandgrain/cluster

sizedistributions[29–32].

While thefocus of ourcurrent workis ona comprehensive

structural and nanotribologicalcharacterization ofwell-faceted,

hexagonalAuNPsonHOPGandnotonadetailedinvestigationof

growthkineticsassociatedwiththismaterialsystem,wehave

nev-erthelessinvestigatedthecoverageoftheHOPGsubstratebyAuasa

functionoffilmthickness(Fig.3(a)),aswellasthelateralsize

(4)

432 E.Cihanetal./AppliedSurfaceScience354(2015)429–436

Fig.3. (a)SurfacecoverageofAuonHOPGasafunctionoffilmthickness.An Avrami-typefitrepresentedbytheredsolidcurvereasonablydescribesfilmgrowth[29]. (b)AuNPsizedistributionafterpost-depositionannealingat600–650◦C.Lateral particlesizesupto500nmareobserved.Thesolidredcurveisafitbythelog-normal function[29].

annealing(Fig.3(b)).Ourresultsregardingsurfacecoverageasa

functionof filmthickness arein linewiththepreviously

men-tioneddynamic scalingtheoryof growinginterfaces,favoring a

lateralgrowthandsurface-diffusion-drivencoalescenceprocess,

owingtotherelativelyweakchemicalinteractionsbetweenthe

adsorbedAuatomsandtheHOPGsurface(Fig.3(a))[29].

More-over,weobservearelativelywidedistributionofAuNPsizesup

to500nm(Fig.3(b)),withameanparticlesizeof168±106nm.

Themaindifferencebetweenthepost-deposition-annealedAuNPs

inourexperimentsandthosethathavebeenobtainedon

differ-entsubstratesis thattheAuNPs inourexperimentsaremostly

hexagonal,whereasAuNPsobtainedonsubstratessuchasmica,

Si(111)and SiO2 are mostly sphericalin nature[29–31].

Post-depositionannealingexperimentsofAufilmsongraphenesamples

of different layernumbers have alsoled to theobservation of

hexagonal/triangularAuNPs,validatingthepropositionthatweak

interactionsbetweentheadsorbedAuatomsandthesubstratelead

tothepreferentialgrowthofcrystalline,facetedAuNPs[28].Let

usfinallyindicatethatthewidedistributionofAuNPlateralsize

isfavorablefornanotribologicalinvestigations,asitleadstothe

opportunityofperformingfuturenano-manipulationexperiments

whereinterfacialfrictionforcesactingonAuNPsofdifferentsize

shallbequantified.

Tosumup,theexperimentalresultspresentedinthissection

constituteanalternativemethodforobtainingwell-facetedAuNPs

onHOPGsubstratesintheabsenceof thecapabilitytoincrease

substratetemperaturesduringthermalevaporation.

Fig.4.TEMmeasurementsperformedonasingle,well-facetedAuNP(a).While high-resolutionimagingattheedgeoftheAuNPrevealscrystallineorder char-acterizedbyatomicstripes(b),diffractiondatapresentedin(c)providesfurther confirmationforthecrystallinityoftheAuNP.

(5)

3.2. ConfirmationofnanoparticlecrystallinityviaTEM

It has been shown via a number of experiments and first

principlescalculationsthatfrictionoccurringbetweentwo

bod-ies in contact is a function of the physical properties of the

interface- mainly itsstructure [17,18,33].As such, in order to

studycarefullytheeffectofinterfacestructureonfrictionatthe

nanoscale,structurallywell-defined,i.e.crystalline,surfacesare

a prerequisite.While theaccuratedeterminationofthe

atomic-scalestructureandchemistryassociatedwithtypicalSicantilever

apices employed in AFM measurements remains a challenge,

nanotribologyexperimentsinvolvingthelateralmanipulationof

nanoparticlesviaAFMhaverecentlyemergedasaviableapproach

where, e.g., the real contact area during sliding (the size of

thenanoparticle–substrateinterface) canbereadilydetermined

[19].Pioneeringnano-manipulationexperimentsconductedinthis

fashionprimarilyfocusedonSbnanoparticles,whichundergoa

size-dependentphasetransitionfromamorphoustocrystallineat

a particlesize of∼15,000nm2 and are unavoidablycoveredby

anamorphousantimonyoxideshellwhenexposedtothe

ambi-ent [17]. In contrast, AuNPs on substratessuch as HOPG have

veryrecentlyemergedasanalternativematerialsystemfor

nano-manipulationexperiments,wherethecrystallinityoftheinterface

should be conserved even under ambient conditions, allowing

investigationsregarding,e.g.,structurallubricitytobeperformed

underwell-definedconditions[18].

Basedontheideathattheresultswepresentinthisworkshould

constitutea comprehensive structuraland frictional

characteri-zationof theAuNP/HOPG material system,we have performed

TEMmeasurement toconfirmthe crystallinecharacterof

ther-mallydeposited andpost-deposition annealedAuNPs onHOPG.

TheresultsofTEMinvestigationsinvolvingsamplespreparedas

detailed in Section 2.2 are reported in Fig. 4. While the

high-resolutionTEMimagerecordedattheedgeofahexagonalAuNP

revealsthe crystallineorder of Au atoms (Fig. 4(a and b)), the

associatedcharacteristicdiffractionpattern(Fig.4(c))provides

fur-therconfirmationforthecrystallinityofAuNPs.Basedonthefact

thattheAuNPsinvestigatedintheTEMstudyreportedherehave

beenexposedtoambientconditionsforseveralweeks,the

possi-bilityfortheformationofanoxidelayeronAuNPsduringrelevant

timeframesforpost-depositionAFMexperimentscanbereadily

excluded.

3.3. NanotribologicalpropertiesoftheAuNP/HOPGsystem

investigatedviaAFM

Despite thefactthat thenanotribologicalproperties of

vari-ousmaterialsinvestigated viaAFMhavebeendiscussed widely

intheliterature,therearesurprisinglyfewexperimentalreports

on the nanotribology of metallic surfaces [34–37]. In addition

toAFM experimentsperformed underultrahigh vacuum(UHV)

conditionsonAu(111)surfacespointingtowardsaverylow

fric-tionregimeundersmallappliedloadsfollowedbya substantial

increase infrictionaccompaniedbywear[34],thecapabilityto

controlthenanoscalefrictionalpropertiesoftheAu(111)surface

immersedinanionicliquidviatheapplicationofanelectric

poten-tialhasbeendemonstrated[37].Ontheotherhand,anextensive

analysisof nanoscalefrictional properties ofgold nanoparticles

thermally evaporated on HOPGhas not been performedso far

underambientconditions.Consideringthatmicro-andnano-scale

functionaldevicesfeaturingslidingcomponentswouldbemostly

usedunderambientconditionsforpracticalpurposes,theneedto

performananotribologicalstudyofrelatedmaterialsundersuch

conditions–albeitattheexpenseofinterfacecleanliness–arises.

Inordertoperformacomparativestudyoftheloaddependence

ofnanoscalefrictiononAuNPsand HOPGsubstrates,individual

Fig.5.Topographicalmapofa∼75nmhighAuNPtrappedbetweenHOPGsteps acquiredviacontact-modeAFM(a)andits3Drepresentation(b).Smallmounds (<10nminlateraldimensions)ontopoftheAuNPsurfacearehighlighted.

nanoparticleshavebeenimagedviacontactmodeAFMusingthe

experimentalmethodologyandequipmentdetailedinSection2.3.

DuetothefactthatAuNPsontheHOPGsubstratesarefrequently

manipulatedlaterallyduringscanningbasedontheplowingaction

exhibitedbytheAFMtip,effortshavebeendirectedatfocusing

onindividualAuNPstrappedbetweenthestepedgesoftheHOPG

substrate.Infact,manysuchnanoparticlescanbeobserved

dur-ingAFMexperiments,presumablyowingtotheincreasedmobility

exhibitedbythecoalescinggoldclustersonthelow-surface-energy

HOPGsubstrateatelevatedtemperaturesreachedduring

anneal-ing, resulting in lateral motionof AuNPs on thesubstrate and

eventualtrappingbetweenstepedges.Fig.5depicts a

topogra-phyimageassociatedwithsuchahexagon-shapednanoparticle,

togetherwithathree-dimensionalrepresentation.Whilethe

spe-cificnanoparticledepictedhereexhibitsaheightof∼75nm,AuNPs

of50–180nmheighthavebeenobservedduringtheexperiments.

BeforeswitchingtoadiscussionoflateralforcesrecordedonAuNPs,

it shouldbeindicatedthat topographyimagesofcertainAuNPs

revealtheexistenceofsmallroundmoundsonthetopsurface

(usu-ally∼10nmacrossand<10nminheight),suchasthosehighlighted

inFig.5(a).Whiledeterminingtheexactnatureofthesefeaturesis

(6)

434 E.Cihanetal./AppliedSurfaceScience354(2015)429–436

Fig.6.(a)Frictionforce(Ff)maprecordedataregionofthesamplesurfacecontainingahexagonalAuNPataconstantnormalloadofFn=2.3nN.StudyingtheFfprofile recordedalongthedashedblackarrowin(a)revealsvanishinglysmall(tensofpN)frictionvaluesfortheHOPGsubstratewhereassubstantiallyhigherfrictionvalues(0.60nN) areobservedontheAuNP(b).Pleasenotetheincreasedlateralforcesexperiencedbythecantileverduetoadditionaltwistingattheedgeofthe∼50nmhighparticle.

mechanismisrelatedtothecoalescenceandgrowthcharacteristics

exhibitedbytheAuNPsduringpost-depositionannealing.

ToinvestigatethenanotribologicalpropertiesoftheAu/HOPG

samplesystem,lateralforcesactingbetweenthetipandthesample

surfaceduringcontactmodeimaginghavebeenrecordedaccording

toestablishedproceduresintheliteratureasindicatedinSection

2.3.Atypicallateralforcemaprecordedonaregionofthesample

surfacecontainingananoparticleispresentedinFig.6(a).Astudy

ofthecalibratedlateralforcesignalalongthedashedsection

pre-sentedinFig.6(b)demonstratesasubstantialdifferenceinfriction

forceontheorderof0.60nNmeasuredontopoftheAuNPas

com-paredtotheHOPGsubstrate,whichexhibitsvanishingfriction.As

expected,thelateralforcevaluedetectedattheedgeoftheAuNP

exhibitsasuddenincrease(∼2.5nN)duetothe

height-difference-inducedadditionaltwistingofthecantilever[38].

The dependence of thefriction force onthe normal loadat

nanoscalecontactsinvolvingasingleasperity(suchastheAFM

tip) onvarious substrateshas beena topic of intenseresearch

sincetheestablishmentofthenanotribologyfield,mostlydueto

themainargumentthatunderstandingthefrictionalbehaviorof

extendedmacro-scale, multi-asperitycontactscouldbeenabled

bytheproperunderstandingofthephysicalmechanisms

responsi-bleforfrictionatsingleasperities.WhileseveralAFMexperiments

haverevealedaspecific“2/3”powerlawdependence(Ff ∼Fn2/3),

arisingfromtheassumptionofa constantshearstress(=Ff/A)

withinaHertziancontactmechanicsapproach[39–43],therehave

been reports of linear dependence on certain sample surfaces,

aswell[44]. Inorder tofurthercontribute totheexperimental

investigationoffrictionmechanismsatnanoscaleasperitiesand

tospecificallycharacterizethenanotribologicalbehaviorofAuNPs

in ambientconditions, thefriction forces detectedon20

sepa-rateAuNPshavebeenstudiedasafunctionofnormalloadinour

experiments(Fig.7).Resultsrevealthattheloaddependenceof

frictionforcesonallAuNPsinvestigatedunderambientconditions

followsa “2/3”powerlawwithintheerrorbarsassociatedwith

ourmeasurements,verifyingtheassumptionofaconstantshear

stressanda Hertz-typedeformationmodelfor thissample

sys-tem.Animportantpointtoindicateistheexistenceofanon-zero

Ff(0.37nN±0.11nN)atzeronormalloadasaresultofthefinite

adhesionforceactingbetweenthetipandAuNPsurfacesunder

ambientconditionsduetotheexistenceofawatermeniscusat

thetip-samplecontact[44].Consequently,Ff becomeszeroonly

ataneffectivelynegativenormalload(−1.80nN),corresponding

tothepull-offforcethatneedstobeappliedtothecantileverto

overcomeadhesionandseparateitfromthesamplesurface.Letus

notethatforce-distancespectroscopyexperimentsperformedon

AuNPsonseparatedayshaveresultedinpull-offforcesof

magni-tude2.80±1.30nN,whicharein-linewithourestimatedvalueof

1.80nN.Itshouldbeemphasizedthattheobservationofa“2/3”

powerlawstemmingfromHertziancontactmechanicsinanAFM

experimentrequiresthetipapextocloselyresembleaspherical

geometry(i.e.,single-asperity)[42].Ontheotherhand,tipapices

ofmulti-asperitycharacterareexpectedtoresultinalinear

rela-tionshipbetweenFfandFn,especiallyatFnvaluesseveralorders

ofmagnitudehigherthan1nN[42].Basedonthefactthatourdata

validatesa “2/3”powerlawrelationshipbetweenFfand Fnand

hasbeenacquiredatloads<25nN,itisconcludedthatthespecific

tipapexgeometryinourexperimentscanbeconsideredtobeof

spherical,single-asperitycharacter.

The absence of an ultralow friction regime and an abrupt

increaseinfrictionaccompaniedbysubstantialwearobservedon

AusurfacesunderUHVconditions[34]isofparticularscientific

Fig.7.Experimentaldatademonstratingthedependenceoffrictionforce(Ff)on normalload(Fn)forAuNPsaswellastheHOPGsubstrate.WhiletherecordedFf valuesfortheHOPGsubstratearevanishinglysmall,AuNPsexhibitcomparatively significantfrictionforces,whichevolveaccordingtoa“2/3”powerlawwith increas-ingnormalload,correspondingtotheassumptionofaconstantshearstressandthe validityofHertziancontact.ErrorbarsfortheFfvaluesonAuNPsarecalculated basedonmeasurementsperformedon20separatenanoparticleswiththesame cantileveronseparatedays.Pleasenotethepull-offforceof−1.80nN,representing theeffectofadhesionbetweenthetipapexandtheAuNPs.

(7)

Fig.8. Experimentaldatademonstratingthedependenceofincreasedfriction forcesatAuNPedges(Ff,edge)onnormalload(Fn)forarepresentativeAuNPof 128nmheight.Asexpectedfromanalyticalcalculationsregardingtheratcheteffect occurringduringAFMmeasurementsonslopedsurfaces[38],Ff,edgeincreases sub-stantiallywithincreasingFn,followingareasonablylineartrend.

interest.Inthementionedexperiments,thesepeculiar

character-istics regardingfriction onAusurfaceshave beenexplainedby

theformationofaneckbetweentheAFMtipandthecleangold

surfaceduetothesignificantmobilityexhibitedbyAuatomsat

roomtemperature,and associatedplastic deformations[35]. As

themostprobablemechanismforthelackofsimilarobservations

inourexperimentsperformedinambientconditions,the

exist-enceofacontaminationlayeradsorbedontheAuNPsurfacesisof

importance,anargumentwhichisfurthersupportedbynanoscale

frictionexperimentsperformedonAusurfacesmodifiedwith,e.g.,

self-assembledmonolayers of alkanethiols which are devoidof

effectsassociatedwithneckformation[45].Finally,itcanbereadily

inferredfromFig.7thatthefrictionforcevaluesmeasuredonHOPG

aresignificantlylowerthanonAuNPs,owingtotheoutstanding

lubricationpropertiesofthislayeredmaterial[39].Whilea

discus-sionofthefundamentalprinciplesassociatedwiththeexceptional

lubricationpropertiesofHOPG[46] isbeyondthescopeofthis

work,itshouldbeindicatedthatthefunctionalformofthe

depend-enceofFfonFnonHOPGisnotstraight-forwardtodeterminedue

tothevanishinglysmallfrictionvaluesmeasured[39].

It is well-known in the nanotribology community that

topography-induced effects on the friction signal recorded

viaAFMarecommonlyencountered,especiallyonmaterial

sys-tems thatfeaturesuddenchangesin topographyin thevertical

direction. The AuNP/HOPG sample system investigated in our

experimentspresentsanidealopportunitytostudyrelatedeffects,

asitcomprisesnanoparticlesof50–180nmheightsituatedona

substratewithwide,atomicallyflatterraces.Thesharpincreasein

lateralforcesencounteredat,e.g.,theedgeofaAuNPasdepictedin

Fig.6(b),canbeattributedtotheso-calledratcheteffect,involving

thepartialcontributionofappliednormalloadtothelateralforce

signalonaslopedsurface,aswellasthecollision/impact

under-goneby thetipupon encounteringa slopedsurface,leading to

additionaltwistingofthecantilever[38].Utilizingthelateralforce

mapsrecordedontheAuNP/HOPGsysteminourexperiments,we

haveperformedastudyoftheincreasedlateralforcesencountered

at theedges of AuNPs (Ff,edge)as a function of normal loadFn

and particleheighth.Measurementsperformedon20 separate

AuNPswithdifferentheightspointtowardsalinearlyproportional

relationshipbetweenFnandFf,edge−therelateddataforatypical

AuNPof128nmheightisdepictedinFig.8.Finally,Fig.9presents

Fig.9.Experimentaldatademonstratingthedependenceofincreasedfrictionforces atAuNPedges(Ff,edge)onnanoparticleheight(h),acquiredatafixednormalloadFnof 13.8nN.Asitcanbereadilyinferredfromthedatapresentedfor20separateAuNPs withheightsrangingfrom50nmto166nm,Ff,edgedisplaysalinearlyproportional relationshipwithh.TheerrorbarsforFf,edgehavebeencalculatedbyconsideringa largenumberoffrictionforceprofiles(suchastheonepresentedinFig.6(b))along thescanningdirectionofthecantileverforeachAuNPatthegivenconstantload.

an investigation towards the dependence of increased lateral

forcesdetectedatnanoparticleedgesFf,edgeonnanoparticleheight

h.Asonecaninferfromtheexperimentallyobtaineddata,Ff,edge

increasessubstantiallywithincreasingh,followingalineartrend

withintheerrorbarsofourmeasurements.

4. Conclusions

Wehavepresentedtheresultsofanexperimentalinvestigation

aimedata comprehensivestructuraland nanotribological

char-acterizationofthermallydepositedgoldnanoparticlesonHOPG.

Well-faceted,hexagonal/elongated-hexagonalAuNPswereformed

uponpost-depositionannealinginaquartzfurnaceat600–650◦C,

instrongcontrasttoas-depositedthinfilmsexhibitingachanneled,

irregularappearancewithnon-uniformcoverage.Thecrystalline

characterofthenanoparticleswasconfirmedviahigh-resolution

TEM imaging and diffraction measurements.To investigate the

nanotribological properties of the nanoparticles as well as the

substrate,AFMmeasurementsperformedviaasingle,calibrated

cantileverhavebeenutilized.IncontrasttoUHVmeasurementsof

nanoscalefrictionongoldsurfaces,ourmeasurementsperformed

underambientconditionspointtowardsa“2/3”powerlaw

depend-enceoffrictiononnormalloadforAuNPs,inaccordancewiththe

assumptionofaconstantshearstressduringslidingandHertzian

contactmechanicsinthepresenceofadhesion.Finally,astudyof

increasedlateralforcesatAuNPedgesasafunctionofnormalload

andparticleheighthasbeenperformed,revealingalinearly

propor-tionaldependenceforbothparameters.Ourexperimentsprovide

acomprehensivecharacterizationofthestructuralandfrictional

propertiesoftheAuNP/HOPGsamplesystem,whichemergesasan

idealcandidateforfuturenano-manipulationexperimentsaimed

atstudyingthefundamentalmechanismsoffrictionunderambient

conditions.

Acknowledgements

FinancialsupportfromtheMarieCurieActionsoftheEuropean

Commission’s FP7 Program in the form of a Career Integration

Grant (grant agreement no.PCIG12-GA-2012-333843), the

Out-standing Young Scientist program of the Turkish Academy of

(8)

436 E.Cihanetal./AppliedSurfaceScience354(2015)429–436

(TheScientific andTechnologicalResearchCouncilof Turkey)is

gratefullyacknowledged.

References

[1]B.Bhushan,IntroductiontoTribology,Wiley,NewYork,2013.

[2]J.A.Greenwood,J.B.P.Williamson,Contactofnominallyflatsurfaces,Proc.R. Soc.Lond.A295(1966)300.

[3]B.Bhushan,J.N.Israelachvili,U.Landman,Nanotribology:friction,wearand lubricationattheatomicscale,Nature374(1995)607.

[4]C.M.Mate,TribologyontheSmallScale:ABottomUpApproachtoFriction, Lubrication,andWear,OxfordUniversityPress,Oxford,2008.

[5]P.J.Eaton,P.West,AtomicForceMicroscopy,OxfordUniversityPress,Oxford, 2010.

[6]R.W.Carpick,M.Salmeron,Scratchingthesurface:fundamentalinvestigations oftribologywithatomicforcemicroscopy,Chem.Rev.97(1997)1163. [7]I.Szlufarska,M.Chandross,R.W.Carpick,Recentadvancesinsingle-asperity

nanotribology,J.Phys.DAppl.Phys.41(2008)123001.

[8]H.Holscher,A.Schirmeisen,U.D.Schwarz,Principlesofatomicfriction:From stickingatomstosuperlubricsliding,Philos.Trans.R.Soc.A366(2008)1383. [9]H.Holscher,U.D.Schwarz,O.Zworner,R.Wiesendanger,Consequencesofthe

stick-slipmovementforthescanningforcemicroscopyimagingofgraphite, Phys.Rev.B57(1998)2477.

[10]M.Dienwiebel,G.S.Verhoeven,N.Pradeep,J.W.M.Frenken,J.A.Heimberg,H.W. Zandbergen,Superlubricityofgraphite,Phys.Rev.Lett.92(2004)126101. [11]N.J.Mosey,M.H.Mueser,AtomisticModelingofFriction,Rev.Comput.Chem.

25(2007)67.

[12]B.Stegemann,C.Ritter,B.Kaiser,K.Rademann,Crystallizationofantimony nanoparticles:Patternformationandfractalgrowth,J.Phys.Chem.B108(2004) 14292.

[13]N.Vandamme,E.Janssens,F.Vanhoutee,P.Lievens,C.V.C.M.Haesendonck, Scanningprobemicroscopyinvestigationofgoldclustersdepositedon atomi-callyflatsubstrates,J.Phys.Condens.Matter15(2003)S2983.

[14]P.E.Sheehan,C.M.Lieber,NanotribologyandnanofabricationofMoO3 struc-turesbyforcemicroscopy,Science272(1996)1158.

[15]C.Ritter,M.Heyde,B.Stegemann,K.Rademann,U.D.Schwarz,Contact-area dependenceoffrictionalforces:movingadsorbedantimonynanoparticles, Phys.Rev.B71(2005)085405.

[16]D.Dietzel,C.Ritter,T.Monninghoff,H.Fuchs,A.Schirmeisen,U.D.Schwarz, Fric-tionaldualityobservedduringnanoparticlesliding,Phys.Rev.Lett.101(2008) 125505.

[17]C.Ritter,etal.,Nonuniformfriction-areadependencyforantimonyoxide sur-facesslidingongraphite,Phys.Rev.B88(2013)045422.

[18]D.Dietzel,M.Feldmann,U.D.Schwarz,H.Fuchs,A.Schirmeisen,Scalinglaws ofstructurallubricity,Phys.Rev.Lett.111(2013)235502.

[19]D. Dietzel, U.D. Schwarz, A. Schirmeisen, Nanotribological studies using nanoparticlemanipulation:Principlesandapplicationtostructurallubricity, Friction2(2014)114.

[20]T.P.Darby,C.M.Wayman,Nucleationandgrowthofgoldfilmsongraphite:I. Effectsofsubstrateconditionandevaporationrate,J.Cryst.Growth28(1975) 41.

[21]C.M.Wayman,T.P.Darby,Nucleationandgrowthofgoldfilmsongraphite:II. Theeffectofsubstratetemperature,J.Cryst.Growth28(1975)53.

[22]R.Anton,I.Schneidereit,InsituTEMinvestigationsofdendriticgrowthofAu particlesonHOPG,Phys.Rev.B58(1998)13874.

[23]R.Anton,P.Kreutzer,InsituTEMevaluationofthegrowthkineticsofAu parti-clesonhighlyorientedpyrolithicgraphiteatelevatedtemperatures,Phys.Rev. B61(2000)16077.

[24]Q.M.Guo,P.Fallon,J.L.Yin,R.E.Palmer,N.Bampos,J.M.Sanders,Growthof denselypackedgoldnanoparticlesongraphiteusingmoleculartemplates,Adv. Mater.15(2003)1084.

[25]J.E.Sader,J.W.M.Chon,P.Mulvaney,Calibrationofrectangularatomicforce microscopecantilevers,Rev.Sci.Instrum.70(1999)3967.

[26]M.Varenberg,I.Etsion,G.Halperin,Animprovedwedgecalibrationmethod forlateralforceinatomicforcemicroscopy,Rev.Sci.Instrum.74(2003)3362. [27]U.D.Schwarz,P.Koster,R.Wiesendanger,Quantitativeanalysisoflateralforce

microscopyexperiments,Rev.Sci.Instrum.67(1996)2560.

[28]H.Zhou,etal.,Thetransformationofagoldfilmonfew-layergrapheneto produceeitherhexagonalortriangularnanoparticlesduringannealing,Carbon 52(2013)379.

[29]F.Ruffino,M.G.Grimaldi,Atomicforcemicroscopystudyofthegrowth mech-anismsofnanostructuredsputteredAufilmonSi(111):Evolutionwithfilm thicknessandannealingtime,J.Appl.Phys.107(2010)104321.

[30]F.Ruffino,A.Canino,M.G.Grimaldi,F.Giannazzo,C.Bongiorno,F.Roccaforte, V.Raineri,Self-organizationofgoldnanoclustersonhexagonalSiCandSiO2 surfaces,J.Appl.Phys.101(2007)064306.

[31]F.Ruffino,V.Torrisi,G.Marletta,M.G.Grimaldi,Atomicforcemicroscopy inves-tigationofthekineticgrowthmechanismsofsputterednanostructuredAufilm onmica:towardsananoscalemorphologycontrol,NanoscaleRes.Lett.6(2011) 112.

[32]I.Beszeda,E.G.Gontier-Moya,A.W.Imre,SurfaceOstwald-Ripeningand Evap-orationofGoldBeadedFilmsonSapphire,Appl.Phys.A81(2005)673. [33]Y.F.Mo,K.T.Turner,I.Szlufarska,Frictionlawsatthenanoscale,Nature457

(2009)1116.

[34]N.N.Gosvami,T.Filleter,P.Egberts,R.Bennewitz,Microscopicfrictionstudies onmetalsurfaces,Tribol.Lett.39(2010)19.

[35]R.Bennewitz,F.Hausen,N.N.Gosvami,Nanotribologyofcleanandmodified goldsurfaces,J.Mater.Res.28(2013)1279.

[36]Q.Y.Li,Y.L.Dong,A.Martini,R.W.Carpick,Atomicfrictionmodulationonthe reconstructedAu(111)surface,Tribol.Lett.43(2011)369.

[37]J.Sweeney,etal.,ControlofNanoscaleFrictiononGoldinanIonicLiquidbya Potential-DependentIonicLubricantLayer,Phys.Rev.Lett.109(2012)155502. [38]S.Sundararajan,B.Bhushan,Topography-inducedcontributionstofriction forcesmeasuredusinganatomicforce/frictionforcemicroscope,J.Appl.Phys. 88(2000)4825.

[39]U.D.Schwarz,O.Zworner,P.Koster,R.Wiesendanger,Quantitativeanalysisof thefrictionalpropertiesofsolidmaterialsatlowloads.I.Carboncompounds, Phys.Rev.B56(1997)6987.

[40]U.D.Schwarz,O.Zworner,P.Koster,P.Wiesendanger,Quantitativeanalysisof thefrictionalpropertiesofsolidmaterialsatlowloads.II.Micaandgermanium sulfide,Phys.Rev.B56(1997)6997.

[41]M.Enachescu,etal.,AtomicForceMicroscopyStudyofanIdeallyHard Con-tact:TheDiamond(111)/TungstenCarbideInterface,Phys.Rev.Lett.81(1998) 1877.

[42]E.Meyer,R.Luthi,L.Howald,M.Bammerlin,M.Guggisberg,H.J.Guntherodt, Site-specificfrictionforcespectroscopy,J.Vac.Sci.Technol.B14(1996)1285. [43]C.A.J.Putman,M.Igarashi,R.Kaneko,Single-asperityfrictioninfrictionforce

microscopy:thecomposite-tipmodel,Appl.Phys.Lett.66(1995)3221. [44]U.D.Schwarz,W.Allers,G.Gensterblum,R.Wiesendanger,Low-loadfriction

behaviorofepitaxialC60monolayersunderHertziancontact,Phys.Rev.B52 (1995)14976.

[45]N.N.Gosvami,P.Egberts,R.Bennewitz,Molecularorderanddisorderinthe frictionalresponseofalkanethiolself-assembledmonolayers,J.Phys.Chem.A 115(2011)6942.

[46]M.Z.Baykara, et al., Exploring atomic-scale lateral forces in the attrac-tiveregime:acasestudy ongraphite(0001),Nanotechnology23(2012) 405703.

Referanslar

Benzer Belgeler

Jonson, living and writing during the last years of the sixteenth century and the beginning of the seventeenth century, comments on political and social changes

This study was an experimental study on the immediate and delayed effects of two types of keyword vocabulary learning methods (teacher-provided and student-generated)

The new contributions of the paper are a compositional class of FSPNs, the compact representation of the transition matrix after spatial discretization, the integration of the

In this regard, the EDX spectra of the nano fibers produced at the constant HP-β-CD content and various Laponite contents (between 0.62 and 3.12 wt%) revealed higher peak intensities

The GW band gaps of the stable materials are computed which restore the wide band gap values in addition to their high dielectric constants.. DOI: 10.1103/PhysRevB.74.193201 PACS

11 (b), the change of the laser power P, used to the processing of the Ti layer at a certain constant scanning speed υ in the NLL method, has a strong impact on the value of the

To assess suitability of the resulting InP/ZnS core-shell NCs as emitters for QD-LED application, a device structure of ITO/PEDOT:PSS/poly-TPD/QDs/TPBi/LiF/Al was fabricated, for

(a) Tuning color rendering index from Sample 1 to 4 by controlling the layer-by-layer assembly of polyfluorene and NC emitters and (b) emission spectra of blue polyfluorene