• Sonuç bulunamadı

Bu ¸calı¸sma hiperbolik-Schr¨odinger denklemleri i¸cin lokal olmayan sınır-de˘ger prob- lemlerinin kararlılı˘gı i¸cin ayrılmı¸stır. C¸ alı¸sma sonunda a¸sa˘gıdaki ¨ozg¨un sonu¸clar elde edilmi¸stir:

• Hilbert uzayında hiperbolik-Schr¨odinger denkleminin lokal olmayan sınır-de˘ger problemlerinin ¸c¨oz¨um¨u i¸cin kararlılık kestirimleri ¨uzerindeki temel teorem ispat- lanmı¸stır,

• hiperbolik-Schr¨odinger denklemlerinin lokal olmayan sınır-de˘ger problemlerinin ¸c¨oz¨um¨u i¸cin kararlılık kestirimlerindeki teoremler elde edilmi¸stir,

• hiperbolik-Schr¨odinger denklemlerinin lokal olmayan sınır-de˘ger problemlerinin yakla¸sık ¸c¨oz¨um¨u i¸cin birinci ve ikinci basamaktan do˘gruluklu fark ¸semaları sunulmu¸stur, • hiperbolik-Schr¨odinger denklemlerinin lokal olmayan sınır-de˘ger problemlerinin

yakla¸sık ¸c¨oz¨um¨u i¸cin kurulan birinci ve ikinci basamaktan do˘gruluklu fark ¸semalarının yakla¸sık ¸c¨oz¨umleri i¸cin kararlılık kestirimlerindeki temel teorem kanıtlanmı¸stır, • hiperbolik-Schr¨odinger denklemleri i¸cin kurulan fark ¸semalarının ¸c¨oz¨um¨u i¸cin kararlılık

kestirimlerindeki teoremler elde edilmi¸stir,

• bu fark ¸semalarının teorik ifadeleri n¨umerik deneylerle desteklenmi¸stir,

• ¸calı¸smanın bir b¨ol¨um¨u akademik bir dergide yayınlanmı¸stır. C¸ alı¸smanın di˘ger b¨ol¨um¨u ise, uluslararası bir konferansta sunulmak ¨uzere bir bildiri olarak hazırlanmı¸stır.

Hiperbolik-Schr¨odinger denklemleri i¸cin lokal olmayan sınır-de˘ger problemleri b¨ol¨um¨unde elde edilen kararlı ¸c¨oz¨umler a¸sa˘gıdaki;

                               d2u dt2 + Au (t) = f (t) (0 ≤ t ≤ 1) , idu dt + Au (t) = g (t) (−1 ≤ t ≤ 0) , Au (−1) = N X j=1 αju µj + ϕ, 0 < µj ≤ 1, 1 ≤ j ≤ N

H Hilbert uzayındaki pozitif tanımlı ¨oz-e¸slenik A operat¨or¨u ile karma tipli diferansiyel denklemin ¸cok noktalı lokal olmayan sınır de˘ger problemi i¸cin de elde edilebilir.

KAYNAKLAR

M. S. Salakhitdinov, Equations of Mixed-Composite Type, Tashkent: FAN, 1974. (Russian).

T. D. Djuraev, Boundary Value Problems for Equations of Mixed and Mixed-Composite Types, Tashkent: FAN, 1979. (Russian).

M. G. Karatopraklieva, “On a nonlocal boundary value problem for an equation of mixed type”, Differensial’nye uravneniya, vol. 27, no. 1, pp. 68–79, 1991. (Russian).

D. Bazarov and H. Soltanov, Some Local and Nonlocal Boundary Value Problems for Equations of Mixed and Mixed-Composite Types, Ashgabat: Ylym, 1995. (Russian).

S. N. Glazatov, “Nonlocal boundary value problems for linear and nonlinear equa- tions of variable type”, Sobolev Institute of Mathematics SB RAS, Preprint no. 46, 1998. (Russian).

A. Ashyralyev and N. Aggez, “A note on difference schemes of the nonlocal boundary problems for hyperbolic equations”, Numerical Functional Analysis and Optimization, vol. 25, no. 5-6, pp. 439–462, 2004.

A. Ashyralyev and Y. Ozdemir, “On nonlocal boundary value problems for hyperbolic- parabolic equations”, Taiwanese Journal of Mathematics, vol. 11, no. 4, pp. 1075–1089, 2007.

A. Ashyralyev and O. Gercek, “Nonlocal boundary value problems for elliptic- parabolic differential and difference equations”, Discrete Dynamics in Nature and So- ciety, vol. 2008, pp. 1–16, 2008.

A. Ashyralyev and A. Sirma, “Nonlocal boundary value problems for the Schrodinger equation”, Computers and Mathematics with Applications, vol. 55, no. 3, pp. 392–407, 2008.

A. Ashyralyev and O. Yildirim, “On multipoint nonlocal boundary value problems for hyperbolic differential and difference equations,” Taiwanese Journal of Mathematics, vol. 14, no. 1, pp. 165–194, 2010.

A. Ashyralyev and B. Hicdurmaz, “A note on the fractional Schrodinger differential equation”, Kybernetes, vol. 40, no. 5-6, pp. 736–750, 2011.

A. Ashyralyev and F. Ozger, “The hyperbolic-elliptic equation with the nonlocal condition”, AIP Conference Proceedings, vol 1389, pp. 581–584, 2011.

Y. Soykan, Fonksiyonel Analiz, Nobel Yayınevi:Ankara, 978-605-133-200-0, 2012. H. Kızıltun¸c, Geni¸slemeyen D¨on¨u¸s¨umlerin Sabit Noktalarının ˙Iterasyon Metotlarıyla Elde Edilmesi, Atat¨urk ¨Universitesi, Fen Bilimleri Enstit¨us¨u, Doktora Tezi, 2007.

Z. Zheng and Y. Xuegang, “Hyperbolic Schrodinger equation”, Advance in Applied Clifford Algebras, vol. 14, no. 2, pp. 207–213, 2004.

A. A. Oblomkov and A. V. Penskoi, “Laplace transformations and spectral the- ory of two-dimensional semi-discrete and discrete hyperbolic Schrodinger operators”, International Mathematics Research Notices, no. 18, pp. 1089–1126, 2005.

A. Avila and R. Krikorian, “Reducibility or nonuniform hyperbolicity for quasiperi- odic Schrodinger cocycles”, Annals of Mathematics, vol. 164, pp. 911–940, 2006.

M. Kozlowski and J. M. Kozlowska, “Development on the Schrodinger equation for attosecond laser pulse interaction with planck gas”, Laser in Engineering, vol. 20, no. 3-4, pp. 157–166, 2010.

K. Tselios and T. E. Simos, “Runge-Kutta methods with minimal dispersion and dis- sipation for problem arising from computational acoustics”, Journal of Computational and Applied Mathematics, vol. 175, no. 1, pp. 173-181, 2005.

D. P. Sakas and T. E. Simos, “Multiderivative methods of eighth algebraic order with minimal phase-lag for the numerical solution of the radial Schrodinger equation”, Journal of Computational and Applied Mathematics, vol. 175, no. 1, pp. 161-172, 2005. G. Psihoyios and T. E. Simos, “A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions”, Journal of Computa- tional and Applied Mathematics, vol. 175, no. 1, pp. 137-147, 2005.

Z. A. Anastassi and T. E. Simos, “An optimized Runge-Kutta method for the so- lution of orbital problems”, Journal of Computational and Applied Mathematics, vol. 175, no. 1, pp. 1-9, 2005.

T. E. Simos, “Closed Newton-Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems”, Applied Mathematics Letters, vol. 22, no. 10, pp. 1616-1621, 2009.

S. Stavroyiannis and T. E. Simos, “Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs”, Applied Numerical Mathematics, vol. 59, no. 10, pp. 2467-2474, 2009.

T. E. Simos, “Exponentially and trigonometrically fitted methods for the solution of the Schrodinger equation”, Acta Applicandae Mathematicae, vol. 110, no. 3, pp. 1331-1352, 2010.

H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, Notas de Matematica, North-Holland, 1985.

S. Piskarev and Y. Shaw, “On certain operator families related to cosine operator function”, Taiwanese Journal of Mathematics, vol. 1, no. 4, pp. 3585–3592, 1997.

P. E. Sobolevskii, Difference Methods for the Approximate Solution of Differential Equations, Izdat, Voronezh Gosud Univ., Voronezh, 1975. (Russian).

A. A. Samarskii and Nikolaev, E. S., Numerical Methods for Grid Equations vol. 2: Iterative Methods, Birk¨auser: Basel, Switzerland, 1989.

EKLER

5.1

Algoritma

1. Basamak Zaman artı¸sı τ = 1

N ve uzay artı¸sı h = 1

M girilir.

2. Basamak Birinci dereceden do˘gruluklu fark ¸semasını kullan ve matris for- munda yaz.

Aun+1+ Bun+ Cun−1 = Dϕn, 0 ≤ n ≤ M.

3 Basamak A,B,C ve D matrislerinin girdilerini belirle. 4 Basamak α1, β01’i bul.

5 Basamak αn+1, βn+1’i hesapla.

6 Basamak Un’s (n = M − 1, · · · , 2, 1) ,



UM = ~0



’i a¸sa˘gıdaki form¨ul¨u kulla- narak

Un= αn+1Un+1+ βn+1

hesapla.

5.2

Birinci Basamaktan Do˘gruluklu Fark S¸eması i¸cin Matlab

Programı

Benzer Belgeler