• Sonuç bulunamadı

8. SONUÇLAR VE SONUÇLARIN TARTIŞILMASI

8.1 Sonuçlar

Yapılan bu tez çalışmasında enerji kesintisi anında iki kat arasında asansörün akülerle beslenen inverter yardımıyla kata kadar getirilmesi tasarlanmış ve gerçekleştirilmiştir. Öncelikle inverterin çıkışına üç adet 24 ohm değerinde saf omik yük üçgen bağlanmıştır. Bu deneyde alınan gerilim ve akım sinyalleri Şekil 8.6’da görülmektedir. Deneyde alınan değerler Tablo 8.1’de görülmektedir.

Şekil 8.6 Üçgen bağlı 24ohm saf omik yük karşısında oluşan akım ve gerilim sinyalleri

Akü gerilimi (V) Aküden çekilen akım (A) İnverter giriş Gücü (W) . P U I= Fazlararası çıkış gerilimi (V) Çıkış bir faz akımı (A) Çıkış gücü (W) 3. . P= U I Sistem verimi 54 4,8 259 43,5 3,1 233,3 0,9 55 4,15 228 44 2,8 213 0,93

Tablo 8.1 Deneyde alınan değerler ve sistemin verimi Hat akım sinyali

Gerçekleştirilen devre sahada gerçek şartlar altında denemeden önce laboratuarda bulunan motor- generator deney seti üzerinde test edilmiştir. Test düzeneğinde kullanılan asenkron motorun etiket değerleri 1,1kW 400V 4,8A’dır. Motor-Generator deney setine ait fotoğraflar Şekil 8.1’de görülmektedir.

IR2132 mosfet sürücü entegresinin çıkışından IRFP250N mosfetlere giden kapı sinyalleri Şekil8.2’de görülmektedir.

Şekil 8.2 Mosfetlere uygulanan kapı sinyalleri

İnverter yüksüz iken fazlar arasında oluşan gerilimin dalga şekli Şekil 8.3’de görülmektedir.

Şekil 8.3 Boşta iken fazlararası gerilim sinyali.

Boşta çalışma deneyinden sonra inverterin çıkışına 1,1kW gücünde bir asenkron motor bağlanmıştır ve miline akuple edilmiş 1,5kW gücündeki DC generatör ile motor anma gücünde yüklenmiştir. Bu şartlar altında invertere uygulanan gerilim sinyalleri ve inverterden çekilen akım dalga şekilleri Şekil 8.4’de görülmektedir.

T1 kapı sinyali

T3 kapı sinyali

U-V arası gerilim sinyali

Şekil 8.4 Tam yüklü iken akım sinyali üstte, fazlararası gerilim sinyali altta görülmektedir. Yukarıda belirtilen deneylerin ardından gerçek şartlarda tam yük altında (12kW’lık bir motora sahip 640kg kapasiteli bir yük asansöründe) denemeler yapılmıştır. Bu deneyde kullanılan asansör makina-motor grubu Şekil 8.5’de görülmektedir.

Şekil 8.5 Deneyde kullanılan 12kW gücündeki asansör makina-motor grubu.

Acil kurtarma sistemi ile asansörün kumanda panosu arasında gerekli bağlantılar yapıldıktan sonra asansöre çağrı verilmiş ve asansörün hareketi sırasında, kabin iki kat arasında iken enerji ana pano üzerinden kesilmiştir. Acil kurtarma sistemi enerjinin kesildiğini anlamasıyla birlikte kurtarma sürecini başlatmış, motora enerji vererek asansörü bir alt kata kadar getirmiştir.

Hat akım sinyali

Ardından asansörün kapısını açarak kurtarma işlemini başarıyla tamamlamıştır. Kabin boş iken yapılan denemelerin ardından kabine 8 kişi bindirilmiştir. Acil kurtarma sistemi, içerisinde 8 kişi bulunan asansörü bir alt kata kadar getirmeyi başarmıştır. Acil kurtarma sisteminin bu koşullar altında tam dolu aküler ile hiçbir şarj işlemi gerçekleştirmeden asansörü arka arkaya üç kez kurtarabildiği gözlemlenmiştir. Akülerin kapasitesi arttırılarak bu sayıyı arttırmak mümkündür. Ancak ard arda oluşacak enerji kesintileri arasında akülerin şarj olacağı kadar bir süre olması sistemin sorunsuz olarak çalışması için yeterlidir. Pratikte enerji kesintilerinin çok sık olmadığı göz önünde bulundurulduğunda bu durum bir problem teşkil etmemektedir.

8.2 Öneriler

Proje geliştirilirken karşılaşılan problemler, bir Ar-Ge çalışması yaparken seçilen bir mikrokontrolörün üstün niteliklere sahip olmasının yetmediğini, bunun yanında geliştirme platformunun da ne kadar önemli olduğunu açıkça ortaya koymuştur. Maddi imkânsızlıklar sebebiyle bu projede nitelikli bir derleyici kullanılamamıştır. Bu projede kullanılan derleyici demo olarak tedarik edilen bir derleyicidir. Derleyicide olan küçük hatalar (buglar) sebebiyle proje gerçek anlamda dsPIC ile değil, PIC mikrokontrolörü ile gerçekleştirilmiştir. Benzer çalışma yapacak araştırmacılar için nitelikli geliştirme platformlar üzerinde çalışmaları tavsiye edilmektedir.

Bir hız kontrol cihazının doğrultucu, DC bara ve kıyıcı olarak üç ana kısımdan oluştuğu düşünülürse, bu çalışmada besleme doğrudan akülerden sağlandığı için hız kontrol cihazı ile ilgili olarak yapılan çalışmaların bir bölümü olarak düşünülebilir. Bu noktadan sonra gerçekleştirilen bu projeyi geliştirirken yeni bir acil kurtarma sistemi tasarımı yapmak yerine, bir hız kontrol cihazı tasarlamak, enerji kesildiği anda akülerin doğrudan DC barayı beslemesini sağlamak ve acil kurtarma işlemini hız kontrol cihazı üzerinden yapmak düşünülmektedir. Böylece asansör sistemlerinde iki farklı cihaz yerine tek bir cihaz her iki işlemi de gerçekleştirebilir olacaktır.

9. KAYNAKLAR

HAMILTON, R.A. AND LEZAN, G. R., 1967, Thyristor adjustable frequency power supplies for hot strip mill run-out tables, IEEE Trans. on Industry and general applications, Vol. IGA-3, No. 2, pp.168-175.

SHEPHERD, W., STANWAY, J., 1967, An Experimental Closed-loop Variable Speed Drive Incorporating a Thyristor Driven Induction Motor', IEEE Trans. on Industry and general applications, Vol. IGA-3, No. 6, pp. 559-565.

BODUROĞLU, T., 1968, Elektrik Makinası Dersleri, İTÜ. Matbaası

SARIOĞLU, M., K., 1969, Elektrik Makinalarının Temelleri, Özarkadaş Matbaası BODUROĞLU, T., 1970, Elektrik Makinaları Deneyleri, İTÜ. Matbaası

ALGER, P. L., 1970, Induction Machines, Gordon And Breach Science Publishers (book), Second edition.

BLASCHKE, F., 1972, The Principle Of Field Orientation As Applied To The New Transvektor Closed-Loop Control System For Rotating-Field Machines, Siemens Review, Vol.34, pp. 217- 220.

ABBONDANTİ, A., 1977, Method of flux control in induction motors driven by variable frequency, variable voltage supplies, IEEE/IAS Intl. Semi. Power Conv. Conf., pp. 177-184. BOWES, S.R., 1981, Microprocessor Control of PWM Inverters, IEE Proc., Vol.128, Pt.B, No.6, pp.293-305.

M. VARNONITSKY, "A microcomputer-based control signal generator for a three-phase switching power inverter," IEEE Trans. Ind. Appl., vol. 19, no. 2, pp. 228-234, Mar./Apr. 1983. KOGA, K., UEDA, R. AND SONODA, T., 1989, Achievement of high performances for general purpose inverter drive induction motor system’, IEEE/IAS Conference record, pp.415-425. SAÇKAN, A., H., 1990, Elektrik Makinaları 3, Milli Eğitim Basımevi

VADIVEL, S., BHUVANESWARI, G., SRIDHARA, G., 1991, A Unified Approach to the Real- Time Implementation of Microprocessor-based PWM Waveforms, IEEE Transactions on Power Electronics, Vol.6, No.4, pp.565-575.

HOLTZ, J., and BEYER, B., 1994, Optimal pulsewidth modulation for ac servos and low-cost industrial drive,” IEEE Trans. Ind. Applicat., vol. 30, pp.1039–1047.

BOSE, B.K., 1996, Power Electronics and Variable Frequency Drives, (book), IEEE Press. PATTERSON, M.M., 1996, On The Efficiency of Electrical Submersible Pumps Equipped with Variable Frequency Drives:A Field Study, SPE Production and Facilities, pp.61-64.

MUÑOZ-GARCÍA, A., LIPO, T.A., NOVOTNY, D.W., 1997, A New Induction Motor Open- Loop Speed Control Capable Of Low Frequency Operation, IEEE Industry Applications Society Annual Meeting New Orleans, Louisiana.

LUDTKE, I., 1998, The Direct Control of Induction Motors, Thesis, Department of Electronics and Information Technology. University of Glamorgan.

SCHIBLI, N. P., NGUYEN, T., VE RUFER, A.C., 1998, A Three-Phase Multilevel Converter For High-Power İnduction Motors, IEEE Transactions on Power Electronics, Vol. 13, No.5, pp.978-986.

VAS, P., 1999, Artificial Intelligence Based Electrical Machines and Dives. Application of fuzzy, neural, fuzzy-neural, and genetic-algorithmbased techniques, Oxford Science Publications.

HAVA, A.M., KERKMAN, R.J., LIPO, T.A., 1999, Simple Analytical And Graphical Methods For Carrier-Based PWM-VSI Drives, Ieee Transactıons On Power Electronics, Vol. 14, No.1, pp.49-61.

LIANG, B., PAYNE, B., BALL, A., 1999, Detection and Diagnosis of Faults in Induction Motors Using Vibration and Phase Current Analysis, Proceedings of the 1st International Conference on the Integration of Dynamics, Monitoring and Control (DYMAC '99), Manchester, UK, pp.337-341.

B. HUO, A. TRZYNADLOWSKI, I. PANAHI, A. MOHAMMED and Z. YU, "Novel Random Pulse Width Modulator with Constant Sampling Frequncy Band on the TMS320F240 DSP Controller," IEEE , 1999, pp. 342-347

MOYNIHAN, F., 2000, Fundamentals of DSP-Based Control for AC Machines, Embedded Control Systems Group

ANDRADE, D. A., FINZI NETO, R. M., FREITAS, L. C., VIEIRA JR. J. B., FARIAS. V. J., 2000, A Soft Switched Current Controlled Three Phase Inverter for Induction Machine Driving, Department of Electrical Engineering, University of Uberlândia – Brazil.

BOWES, S.R., GREWAL, S.S., HOLLIDAY, D.M.J., 2000, High Frequency PWM Technique For Two And Three Level Single-Phase Inverters, IEE Proceedings on Electric Power Applications, 147, 3, pp.181-191.

FAIZ J., 2001, Comparison Of Different Switching Patterns İn Direct Torque Control Technique Of İnduction Motors, M.B.B. Sharifian Electric Power Systems Research, 60, pp.63–75.

LYSHEVSKI, S.E., 2001, Control of high performance induction motors: theory and practice, Energy Conversion and Management , 42, (7), pp.877-898.

MURAT, E., AKIN, E, ERTAN, B., 2002, Matlab Simulink Gerçek Zaman Arabirimi Ve Uzay Vektör Darbe Genişlik Modülasyon Tekniğini Kullanan Sayısal İşaret İşlemci Kontrollü Evirici İle Asenkron Motorun Skalar Kontrolü, ELECO’2002, Elektrik-Elektronik-Bilgisayar Mühendisliği Sempozyumu, pp.145-150.

MAAZİZA, M.K., MENDESB, E., BOUCHERA, P., 2002, A new nonlinear multivariable control strategy of induction motors, Control Engineering Practice, 10, pp.605–613.

SARIOĞLU, M., K., GÖKAŞAN, M., BOĞOSYAN, O., S., 2003, Asenkron Makinalar ve Kontrolü, Birsen Yayınevi

EKLER

Ek 1. IR2132 IGBT sürücüsüne ait katalog bilgileri.

Ek 2. TC4426’ya ait katalog bilgileri.

Features

nFloating channel designed for bootstrap operation Fully operational to +600V

Tolerant to negative transient voltage dV/dt immune

nGate drive supply range from 10 to 20V

nUndervoltage lockout for all channels

nOver-current shutdown turns off all six drivers

nIndependent half-bridge drivers

nMatched propagation delay for all channels

nOutputs out of phase with inputs

Description

The IR2132 is a high voltage, high speed power MOSFET and IGBT driver with three independent high and low side referenced output channels. Proprietary HVIC technology enables ruggedized monolithic con- struction. Logic inputs are compatible with 5V CMOS or LSTTL outputs. A ground-referenced operational amplifier provides analog feedback of bridge current via an external current sense resistor. A current trip function which terminates all six outputs is also de- rived from this resistor. An open drain FAULT signal indicates if an over-current or undervoltage shutdown has occurred. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use at high frequencies. The floating chan- nels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which oper- ate up to 600 volts.

3-PHASE BRIDGE DRIVER

Product Summary

VOFFSET 600V max.

IO+/- 200 mA / 420 mA

VOUT 10 - 20V

ton/off (typ.) 675 & 425 ns

Deadtime (typ.) 0.8 µs

Packages

Typical Connection

B-166 CONTROL INTEGRATED CIRCUIT DESIGNERS’ MANUAL

Parameter Value

Symbol Definition Min. Max. Units

VB1,2,3 High Side Floating Supply Voltage VS1,2,3 + 10 VS1,2,3 + 20

VS1,2,3 High Side Floating Offset Voltage Note 1 600

VHO1,2,3 High Side Floating Output Voltage VS1,2,3 VB1,2,3

VCC Low Side and Logic Fixed Supply Voltage 10 20

VSS Logic Ground -5 5

VLO1,2,3 Low Side Output Voltage 0 VCC

VIN Logic Input Voltage (HIN1,2,3 , LIN1,2,3 & ITRIP) VSS VSS + 5

VFLT FAULTOutput Voltage VSS VCC

VCAO Operational Amplifier Output Voltage VSS 5

VCA- Operational Amplifier Inverting Input Voltage VSS 5

TA Ambient Temperature -40 125 °C

Parameter Value

Symbol Definition Min. Max. Units

VB1,2,3 High Side Floating Supply Voltage -0.3 525

VS1,2,3 High Side Floating Offset Voltage VB1,2,3 - 25 VB1,2,3 + 0.3

VHO1,2,3 High Side Floating Output Voltage VS1,2,3 - 0.3 VB1,2,3+ 0.3

VCC Low Side and Logic Fixed Supply Voltage -0.3 25

VSS Logic Ground VCC - 25 VCC+ 0.3

VLO1,2,3 Low Side Output Voltage -0.3 VCC+ 0.3

VIN Logic Input Voltage (HIN1,2,3 , LIN1,2,3 & ITRIP) VSS - 0.3 VCC+ 0.3

VFLT FAULT Output Voltage VSS - 0.3 VCC+ 0.3

VCAO Operational Amplifier Output Voltage VSS - 0.3 VCC+ 0.3

VCA- Operational Amplifier Inverting Input Voltage VSS - 0.3 VCC+ 0.3

dVS/dt Allowable Offset Supply Voltage Transient — 50 V/ns

PD Package Power Dissipation @ TA≤ +25°C (28 Lead DIP) — 1.5

(28 Lead SOIC) — 1.6 W

(44 Lead PLCC) — 2.0

RθJA Thermal Resistance, Junction to Ambient (28 Lead DIP) — 83

(28 Lead SOIC) — 78 °C/W

(44 Lead PLCC) — 63

TJ Junction Temperature — 150

TS Storage Temperature -55 150 °C

TL Lead Temperature (Soldering, 10 seconds) — 300

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage param- eters are absolute voltages referenced to VS0. The Thermal Resistance and Power Dissipation ratings are measured

under board mounted and still air conditions. Additional information is shown in Figures 50 through 53.

Note 1: Logic operational for VS of (VS0 - 5V) to (VS0 + 600V). Logic state held for VS of (VS0 - 5V) to (VS0 - VBS).

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to VS0. The VS offset rating is tested

with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figure 54.

V

CONTROL INTEGRATED CIRCUIT DESIGNERS’ MANUAL B-167

Parameter Value

Symbol Definition Figure Min. Typ. Max. Units Test Conditions

VIH Logic “0” Input Voltage (OUT = LO) 21 2.2 — —

VIL Logic “1” Input Voltage (OUT = HI) 22 — — 0.8

VIT,TH+ ITRIP Input Positive Going Threshold 23 400 490 580

VOH High Level Output Voltage, VBIAS - VO 24 — — 100 mV VIN = 0V, IO = 0A

VOL Low Level Output Voltage, VO 25 — — 100 VIN = 5V, IO = 0A

ILK Offset Supply Leakage Current 26 — — 50 VB = VS = 600V

IQBS Quiescent VBS Supply Current 27 — 15 30 VIN = 0V or 5V

IQCC Quiescent VCC Supply Current 28 — 3.0 4.0 mA VIN = 0V or 5V

IIN+ Logic “1” Input Bias Current (OUT = HI) 29 — 450 650 VIN = 0V

IIN- Logic “0” Input Bias Current (OUT = LO) 30 — 225 400 µA VIN = 5V

IITRIP+ “High” ITRIP Bias Current 31 — 75 150 ITRIP = 5V

IITRIP- “Low” ITRIP Bias Current 32 — — 100 nA ITRIP = 0V

VBSUV+ VBS Supply Undervoltage Positive Going 33 7.5 8.35 9.2

Threshold

VBSUV- VBS Supply Undervoltage Negative Going 34 7.1 7.95 8.8

Threshold

VCCUV+ VCC Supply Undervoltage Positive Going 35 8.3 9.0 9.7

Threshold

VCCUV- VCC Supply Undervoltage Negative Going 36 8.0 8.7 9.4

Threshold

Ron,FLT FAULTLow On-Resistance 37 — 55 75 Ω

Parameter Value

Symbol Definition Figure Min. Typ. Max. Units Test Conditions

ton Turn-On Propagation Delay 11 500 675 850

toff Turn-Off Propagation Delay 12 300 425 550 VIN= 0 & 5V

tr Turn-On Rise Time 13 — 80 125 VS1,2,3= 0 to 600V

tf Turn-Off Fall Time 14 — 35 55

titrip ITRIP to Output Shutdown Prop. Delay 15 400 660 920 VIN, VITRIP= 0 & 5V

tbl ITRIP Blanking Time — — 400 — VITRIP= 1V

tflt ITRIP to FAULTIndication Delay 16 335 590 845 VIN, VITRIP= 0 & 5V

tflt,in Input Filter Time (All Six Inputs) — — 310 — VIN= 0 & 5V

tfltclr LIN1,2,3 to FAULTClear Time 17 6.0 9.0 12.0 VIN, VITRIP= 0 & 5V

DT Deadtime 18 0.4 0.8 1.2 VIN= 0 & 5V

SR+ Operational Amplifier Slew Rate (+) 19 4.4 6.2 —

SR- Operational Amplifier Slew Rate (-) 20 2.4 3.2 —

VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic electrical characteristics are defined in Figures 3 through 5.

Static Electrical Characteristics

VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The VO and IO parameters

are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.

V V/µs µs ns V µA

B-168 CONTROL INTEGRATED CIRCUIT DESIGNERS’ MANUAL

Parameter Value

Symbol Definition Figure Min. Typ. Max. Units Test Conditions

IO+ Output High Short Circuit Pulsed Current 38 200 250 — VO = 0V, VIN= 0V

PW ≤ 10 µs

IO- Output Low Short Circuit Pulsed Current 39 420 500 — VO = 15V, VIN= 5V

PW ≤ 10 µs

VOS Operational Amplifer Input Offset Voltage 40 — — 30 mV VS0 = VCA- = 0.2V

ICA- CA- Input Bais Current 41 — — 4.0 nA VCA- = 2.5V

CMRR Op. Amp. Common Mode Rejection Ratio 42 60 80 — VS0=VCA-=0.1V & 5V

PSRR Op. Amp. Power Supply Rejection Ratio 43 55 75 — VS0 = VCA- = 0.2V

VCC = 10V & 20V

VOH,AMP Op. Amp. High Level Output Voltage 44 5.0 5.2 5.4 V VCA- = 0V, VS0 = 1V

VOL,AMP Op. Amp. Low Level Output Voltage 45 — — 20 mV VCA- = 1V, VS0 = 0V

ISRC,AMP Op. Amp. Output Source Current 46 2.3 4.0 — VCA- = 0V, VS0 = 1V

VCAO = 4V

ISRC,AMP Op. Amp. Output Sink Current 47 1.0 2.1 — VCA- = 1V, VS0 = 0V

VCAO = 2V

IO+,AMP Operational Amplifier Output High Short 48 — 4.5 6.5 VCA- = 0V, VS0 = 5V

Circuit Current VCAO = 0V

IO-,AMP Operational Amplifier Output Low Shor t 49 — 3.2 5.2 VCA- = 5V, VS0 = 0V

Circuit Current VCAO = 5V

VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The VO and IO parameters

are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.

mA

dB

mA

Lead Assignments

28 Lead DIP 44 Lead PLCC w/o 12 Leads 28 Lead SOIC (Wide Body)

IR2132 IR2132J IR2132S

CONTROL INTEGRATED CIRCUIT DESIGNERS’ MANUAL B-169

Lead

Symbol Description

Logic inputs for high side gate driver outputs (HO1,2,3), out of phase Logic inputs for low side gate driver output (LO1,2,3), out of phase

Indicates over-current or undervoltage lockout (low side) has occurred, negative logic VCC Low side and logic fixed supply

ITRIP Input for over-current shutdown CAO Output of current amplifier CA- Negative input of current amplifier VSS Logic ground

VB1,2,3 High side floating supplies

HO1,2,3 High side gate drive outputs VS1,2,3 High side floating supply returns

LO1,2,3 Low side gate drive outputs

VS0 Low side return and positive input of current amplifier

Functional Block Diagram

Lead Definitions

LIN1,2,3 HIN1,2,3

 2003 Microchip Technology Inc. DS21422B-page 1

M

TC4426/TC4427/TC4428

Features

• High Peak Output Current – 1.5A

• Wide Input Supply Voltage Operating Range: - 4.5V to 18V

• High Capacitive Load Drive Capability – 1000 pF in 25 nsec (typ.)

• Short Delay Times – 40 nsec (typ.) • Matched Rise and Fall Times • Low Supply Current:

- With Logic ‘1’ Input – 4 mA - With Logic ‘0’ Input – 400 µA • Low Output Impedance – 7Ω

• Latch-Up Protected: Will Withstand 0.5A Reverse Current

• Input Will Withstand Negative Inputs Up to 5V • ESD Protected – 4 kV

• Pinouts Same as TC426/TC427/TC428

Applications

• Switch Mode Power Supplies • Line Drivers

• Pulse Transformer Drive

General Description

The TC4426/TC4427/TC4428 are improved versions of the earlier TC426/TC427/TC428 family of MOSFET drivers. The TC4426/TC4427/TC4428 devices have matched rise and fall times when charging and dis- charging the gate of a MOSFET.

These devices are highly latch-up resistant under any conditions within their power and voltage ratings. They are not subject to damage when up to 5V of noise spik- ing (of either polarity) occurs on the ground pin. They can accept, without damage or logic upset, up to 500 mA of reverse current (of either polarity) being forced back into their outputs. All terminals are fully protected against electrostatic discharge (ESD) up to 4 kV.

The TC4426/TC4427/TC4428 MOSFET drivers can easily charge/discharge 1000 pF gate capacitances in under 30 nsec and provide low enough impedances in both the ‘ON’ and ‘OFF’ states to ensure the MOSFET's intended state will not be affected, even by large transients.

Other compatible drivers are the TC4426A/TC4427A/ TC4428A family of devices. The TC4426A/TC4427A/ TC4428A devices have matched leading and falling edge input-to-output delay times, in addition to the matched rise and fall times of the TC4426/TC4427/ TC4428 devices. Package Types 8-Pin SOIC/MSOP/PDIP/CERDIP 1 2 3 4 NC 5 6 7 8 OUT A OUT B NC IN A GND IN B VDD TC4426 NC = No Connection 2,4 7,5 Inverting 2 7 Complementary 4 5 2,4 7,5 Non-Inverting 1 2 3 4 NC 5 6 7 8 OUT A OUT B NC IN A GND IN B VDD TC4427 1 2 3 4 NC 5 6 7 8 OUT A OUT B NC IN A GND IN B VDD TC4428

DS21422B-page 2  2003 Microchip Technology Inc. Functional Block Diagram

Effective Input C = 12 pF (Each Input) TC4426/TC4427/TC4428 Output Input GND VDD 300 mV 4.7V Inverting Non-Inverting

Note 1: TC4426 has two inverting drivers; TC4427 has two non-inverting drivers;

TC4428 has one inverting and one non-inverting driver.

 2003 Microchip Technology Inc. DS21422B-page 3

1.0 ELECTRICAL

CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage ...+22V Input Voltage, IN A or IN B

... (VDD + 0.3V) to (GND – 5V) Package Power Dissipation (TA ≤ 70°C)

PDIP... 730 mW CERDIP ... 800 mW MSOP ... 340 mW SOIC ... 470 mW Storage Temperature Range... -65°C to +150°C Maximum Junction Temperature ... +150°C

† Stresses above those listed under "Absolute Maximum

Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

PIN FUNCTION TABLE

DC CHARACTERISTICS Name Function NC No Connection IN A Input A GND Ground IN B Input B OUT B Output B VDD Supply Input OUT A Output A NC No Connection

Electrical Specifications: Unless otherwise noted, TA = +25ºC with 4.5V ≤ VDD ≤ 18V.

Parameters Sym Min Typ Max Units Conditions

Input

Logic ‘1’, High Input Voltage VIH 2.4 — — V Note 2

Logic ‘0’, Low Input Voltage VIL — — 0.8 V

Input Current IIN -1.0 — +1.0 µA 0V ≤ VIN ≤ VDD

Output

High Output Voltage VOH VDD – 0.025 — — V DC Test

Low Output Voltage VOL — — 0.025 V DC Test

Output Resistance RO — 7 10 Ω IOUT = 10 mA, VDD = 18V

Peak Output Current IPK — 1.5 — A VDD = 18V

Latch-Up Protection Withstand Reverse Current

IREV — >0.5 — A Duty cycle ≤ 2%, t ≤ 300 µsec VDD = 18V

Switching Time (Note 1)

Rise Time tR — 19 30 nsec Figure 4-1 Fall Time tF — 25 30 nsec Figure 4-1

Delay Time tD1 — 20 30 nsec Figure 4-1 Delay Time tD2 — 40 50 nsec Figure 4-1 Power Supply

Power Supply Current IS — — — — 4.5 0.4 mA VIN = 3V (Both inputs) VIN = 0V (Both inputs)

Note 1: Switching times ensured by design.

DS21422B-page 4  2003 Microchip Technology Inc.

DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, over operating temperature range with 4.5V ≤ VDD ≤ 18V.

Parameters Sym Min Typ Max Units Conditions

Input

Logic ‘1’, High Input Voltage VIH 2.4 — — V Note 2

Logic ‘0’, Low Input Voltage VIL — — 0.8 V

Input Current IIN -10 — +10 µA 0V ≤ VIN ≤ VDD

Output

High Output Voltage VOH VDD – 0.025 — — V DC Test Low Output Voltage VOL — — 0.025 V DC Test

Benzer Belgeler