• Sonuç bulunamadı

KAYNAKLAR

Afarinkia, K., Cadogan, J. I. G. and Rees, C. W. 1992. Addition of silyl phosphites to α,β-unsaturated imines. Synlett, (2); 123.

Afarinkia, K., Rees, C. W. and Cadogan, J. I. G. 1990. Synthesis of organophosphorus compounds via silyl esters of phosphorus acids. Tetrahedron, 46(20); 7175-7196.

Akbari, J. and Heydari, A. 2009. A sulfonic acid functionalized ionic liquid as a homogeneous and recyclable catalyst for the one-pot synthesis of α-aminophosphonates. Tetrahedron Letters, 50(29); 4236-4238.

Akiyama, T., Matsuda, K. and Fuchibe, K. 2005. Montmorillonite K10-catalyzed nucleophilic addition reaction to aldimines in water. Synthesis, (15); 2606-2608.

Akiyama, T., Sanada, M. and Fuchibe, K. 2003. Bronsted acid-mediated synthesis of α-amino phosphonates under solvent-free conditions Synlett, (10); 1463-1464.

Allen, J. G., Atherton, F. R., Hall, M. J., Hassall, C. H., Holmes, S. W., Lambert, R. W., Nisbet, L. J. and Ringrose, P. S. 1978. Phosphonopeptides, a new class of synthetic antibacterial agents. Nature, 272; 56-58.

Allen, J. G., Atherton, F. R., Hall, M. J., Hassall, C. H., Holmes, S. W., Lambert, R. W., Nisbet, L. J. and Ringrose, P. S. 1979. Phosphonopeptides as antibacterial agents: Alaphosphin and related phosphonopeptides. Antimicrobial Agents and Chemotherapy, 15; 684-695.

Ambica, S. K., Taneja, S. C., Hundal, M. S. and Kapoor, K. K. 2008. One-pot synthesis of alpha-aminophosphonates catalyzed by antimony trichloride adsorbed on alumina. Tetrahedron Letters, 49(14); 2208-2212.

Asano, S., Kitahara, T., Ogawa, T. and Matsui, M. 1973. Synthesis of α-amino phosphonic acids. Agricultural and Biological Chemistry, 37(5); 1193-1195.

Atherton, F. R., Hassall, C. H. and Lambert, R. W. 1986. Synthesis and structure-activity relationships of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminomethyl)phosphonic acid. Journal of Medicinal Chemistry, 29 (1); 29–40.

Atherton, F. R., Hall, M. J., Hassall, C. H., Lambert, R. W., Lloyd, W. J. and Ringrose, P. S. 1979. Phosphonopeptides as antibacterial agents: Mechanism of action of alaphosphin. Antimicrobial Agents and Chemotherapy, 15; 696-705.

Atherton, F. R., Hall, M. J., Hassall, C. H., Lambert, R. W. and Ringrose, P. S. 1979.

Phosphonopeptides as antibacterial agents: Rationale, chemistry, and

structure-activity relationships. Antimicrobial Agents and Chemotherapy, 15; 677-683.

Azizi, N. and Saidi, M. R. 2003. Lithium perchlorate-catalyzed three-component coupling: A facile and general method for the synthesis of α-aminophosphonates under solvent-free conditions. European Journal of Organic Chemistry, 2003(23); 4630–4633.

Bai, S., Song, B., Bhadury, P. S., Yang, S., Hu, D. and Xue, W. 2011. [BMIM]Cl catalyzed one-pot synthesis of α-aminophosphonate derivatives containing a 4-phenoxyquinazoline moiety under microwave irradiation. Chinese Journal of Chemistry, 29(1); 109-117.

Balakrishna, A., Reddy, C. S., Naik, S. K., Manjunath, M. and Raju, C. N. 2009.

Synthesis, characterization and bio-activity of some new α-aminophosphonates. Bulletin of the Chemical Society of Ethiopia, 23(1);

69-75.

Baldwin, I. C., Williams, J. M. J. and Beckett, R. P. 1995. α-Aminophosphonate derivatives as nucleophiles in diastereoselective and enantioselective palladium catalyzed allylic substitution reactions. Tetrahedron: Asymmetry, 6(3); 679-682.

Banik, A., Batta, S., Bandyopadhyay, D. and Banik, B. K. 2010. A highly efficient bismuth salts-catalyzed route for the synthesis of α-aminophosphonates.

Molecules, 15, 8205-8213.

Baraldi, P. G., Guarneri, M., Moroder, F., Pollini, G. P. and Simoni, D. 1982. Synthesis of 1-phthalimidoalkanephosphonates. Synthesis, (8); 653-655.

Bergin, C., Hamilton, R., Walker, B. and Walker, B. J. 1996. Synthesis of diphenyl phosphonate analogs of tyrosine and tryptophan and derived peptides as chymotrypsin inhibitors. Chemical Communications (Cambridge), (10);

1155-1156.

Berlin, K. D., Roy, N. K., Claunch, R. T. and Bude, D. 1968. A novel route to α-aminoalkylphosphonic acids and dialkyl α-aminoalkylphosphonate hydrochlorides. Journal of the American Chemical Society, 90(16); 4494 4495.

Berlin, K. D., Claunch, R. T. and Gaudy, E. T. 1968. α-Aminoarylmethylphosphonic acids and diethyl α-aminoarylmethylphosphonate hydrochlorides.

Aluminum-amalgam reduction of oximes of diethyl aroylphosphonates.

Journal of Organic Chemistry, 33(8); 3090-3095.

Bhagat, S. and Chakraborti, A. K. 2008. Zirconium(IV) compounds as efficient catalysts for synthesis of alpha-aminophosphonates. Journal of Organic Chemistry, 73(15); 6029-6032.

Bhagat, S. and Chakraborti, A. K. 2007. An extremely efficient three-component reaction of aldehydes/ketones, amines, and phosphites (Kabachnik-Fields reaction) for the synthesis of alpha-aminophosphonates catalyzed by magnesium perchlorate. Journal of Organic Chemistry, 72(4), 1263-1270.

Bhanushali, M. J., Nandurkar, N. S., Jagtap, S. R. and Bhanage, B. M. 2009.

ZrOCl2·8H2O: An Efficient Catalyst for One-Pot Synthesis of α-Amino Phosphonates Under Solvent-Free Conditions. Synthetic Communications, 39(5); 845-859.

Bhattacharya, A. K. and Rana, K. C. 2008. Amberlite-IR 120 catalyzed three-component synthesis of alpha-amino phosphonates in one-pot. Tetrahedron Letters, 49(16); 2598-2601.

Birum, G. H. 1974. Urylenediphosphonates. General method for the synthesis of α-ureidophosphonates and related structures. Journal of Organic Chemistry, 39(2); 209-213.

Boduszek, B., Halama, A. and Latajka, R. 2000. A simple one-step synthesis of monoesters of aminophosphonic acids. Phosphorus, Sulfur and Silicon and the Related Elements, 158; 141-149.

Boduszek, B. 1996. The acidic cleavage of pyridylmethyl(amino)phosphonates.

Formation of the corresponding amines. Tetrahedron, 52(38); 12483-12494.

Boduszek, B. 1995. An efficient synthesis of 1-aminophosphonic acids and esters bearing heterocyclic moiety. Phosphorus, Sulfur, and Silicon and the Related Elements, 104(1–4); 63-70.

Bongini, A., Camerini, R. and Panunzio, M. 1996. Efficient synthesis of the four diastereomers of phosphothreonine from lactalhehyde. Tetrahedron:

Asymmetry, 7(5); 1467-1476.

Boroujeni, K. P. 2011. synthesis of α-aminophosphonates using polystyrene supported Al(OTf)3 as a heterogeneous catalyst. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41(2); 173-176.

Boroujeni, K. P. and Shirazi, A. N. 2010. Silica gel and polystyrene supported aluminum chloride as heterogeneous catalysts for the preparation of α-aminophosphonates. Heteroatom Chemistry, 21(6); 418-422.

Boutevin, B., Hervaud, Y., Jeanmaire, T., Boulahna, A. and Elasri, M. 2001.

Monodealkylation des esters phosphoniques synthese de monosels et de monoacides phosphoniques Phosphorus, Sulfur and Silicon, 174(1); 1-14.

Brovarets, V. S., Zyuz, K. V., Budnik, L. V., Solodenko, V. A. and Drach, B. S. 1993.

New approach to the synthesis of [1-(acylamino)alkenyl]phosphonic acids, their analogs, and their derivatives. Zhurnal Obshchei Khimii, 63(6); 1259-1265.

Cabella, G., Jommi, G., Pagliarin, R., Sello, G. and Sisti, M. 1995. Alkylation of chiral phosphonoglycine equivalents: Asymmetric synthesis of diethyl α-amino-α-alkylphosphonates. Tetrahedron, 51(6); 1817-1826.

Campbell, M. M., Carruthers, N. I. and Mickel, S. J. 1982. Aminophosphonic and aminophosphinic acid analogs of aspartic acid. Tetrahedron, 38(16); 2513-2524.

Campbell, M. M. and Carruthers, N. 1980. Synthesis of aminophosphonic and α-aminophosphinic acids and derived dipeptides from 4-acetoxyazetidin-2-ones. Journal of the Chemical Society, Chemical Communications, (15);

730-731.

Cameron, D. G., Hudson, H. R. and Pianka, M. 1983. Organophosphorus comppounds as potential fungucides. Part II1. Aminoalkane-, guanidioalkane-, and thioureidoalkane-phosphonic acids: Preparation, spectroscopy, and fungucidal activity. Phosphorus Sulfur, 83; 21-37.

Chakraborty, S. K. and Engel, R. 1991. A novel synthesis of 1-aminoalkylphosphonates. Synthetic Communications, 21(8-9); 1039-1046.

Chalmers, M. E. and Kosolapoff, G. M. 1953. The synthesis of amino-substituted phosphonic acids. III. Journal of the American Chemical Society, 75; 5278-5280.

Chambers, J. R. and Isbell, A. F. 1964. A new synthesis of amino phosphonic acids.

Journal of Organic Chemistry, 29(4); 832-836.

Chandrasekhar, S., Prakash, S. J., Jagadeshwar, V. and Narsihmulu, C. 2001. Three component coupling catalyzed by TaCl5-SiO2: Synthesis of alpha-amino phosphonates. Tetrahedron Letters, 42(32); 5561-5563.

Chavane, V. 1948. Researches on aminomethanephosphonic acid. Bulletin de la Societe Chimique de France, 774-777.

Chen, M. H., Chen, Z., Song, B. A., Bhadury, P. S., Yang, S., Cai, X. J., Hu, D. Y., Xue, W. and Zeng, S. 2009. Synthesis and antiviral activities of chiral thiourea derivatives containing an alpha-aminophosphonate moiety. Journal of Agricultural and Food Chemistry, 57(4); 1383-1388.

Chen, W. H., Li, W. S. and Li, Z. J. 2008. One-pot synthesis of α-amino phosphonates under solvent-free conditions catalyzed by sulfamic acid. Yingyong Huaxue, 25(7); 859-861.

Chollet-Gravey, A. M., Vo-Quang, L., Vo-Quang Y. and Le Goffic, F. 1991. A preparative synthesis of 1-amino-3-hydroxypropylphosphonic acid (phosphonic analog of homoserine). Synthetic Communications, 21(18-19);

1847-1858.

Chuangfang, Z., Xinlei, G. and Haiyan, X. 1997. Synthesis and corrosion-inhibition property of aminobenzyl phosphonic acid. Huaxue Tongbao, (5); 48-51.

Cottier, L., Descotes, G., Gonera, G., Grabowski, G., Lewkowski, J. and Skowro ski, R.

1996. Synthesis of 1-aminoalkanephosphonic acid derivatives containing furan moiety. Part II: First synthesis of (2-furyl)aminomethane phosphonic acid1. Phosphorus, Sulfur, and Silicon, 118(1); 181–188.

Cristau, H.-J., Lambert, J.-M. and Pirat, J.-L. 1998. Synthesis and characterization of new Cα,α-disubstituted (diarylaminomethyl)phosphonates. Synthesis, (8);

1167-1170.

Curic, M., Tusek-Bozic, L., Vikic-Topic, D., Scarcia, V., Furlani, A., Balzarini, J. and De Clercq, E. 1996. Palladium(II) complexes of dialkyl α-anilinobenzylphosphonates. Synthesis, characterization, and cytostatic activity. Journal of Inorganic Biochemistry, 63(2); 125-142.

Dadapeer, E., Reddy, S. S,, Rao, V. K. and Raju, C. N. 2008. Synthesis of new α-aminophosphonates by one pot reaction using tetramethyl guanidine (TMG)-as a catalyst. Oriental Journal of Chemistry, 24(2), 513-520.

Das, B., Satyalakshmi, G., Suneel, K. and Damodar, K. 2009. Studies on novel synthetic methoids. Part 195. Organic Reactions in Water: A Distinct Novel Approach for an Efficient Synthesis of α-Amino Phosphonates Starting Directly from Nitro Compounds. Journal of Organic Chemistry, 74(21);

8400-8402.

Denmark, S. E., Chatani, N. and Pansare, S. V. 1992. Asymmetric electrophilic amination of chiral phosphorus-stabilized anions. Tetrahedron, 48(11);

2191-2208.

Drescher, M., Li, Y. F. and Hammerschmidt, F. 1995. Enzymes in organic chemistry.

Part 2. Lipase-catalyzed hydrolysis of 1-acyloxy-2-arylethylphosphonates and synthesis of phosphonic acid analogs of phenylalanine and L-tyrosine. Tetrahedron, 51(17); 4933-4946.

Dong, L. T., Li, Y. C. and Yan, M. 2006. Iodine-catalyzed synthesis of α-amino phosphonates. Chinese Chemical Letters, 17(6); 733-735.

Elhaddadi, M., Jacquier, R., Petrus, F. and Petrus, C. 1989. A new and convenient synthesis of 1-(benzyloxyamino)alkanephosphonic and -phosphinic acids from oximes. Phosphorus, Sulfur and Silicon, 45(3-4), 161-164.

Elmakssoudi, A., Zahouily, M., Mezdar, A., Rayadh, A. and Sebti, S. 2005. Na2CaP2O7 a new catalyst for the synthesis of α-amino phosphonates under solvent-free conditions at room temperature. Comptes Rendus Chimie, 8(11-12); 1954-1959.

Engelmann, M. and Pikl, J. 1942. Phosphonic acids derived from organic acylamidomethyl compounds. US 2304156 19421208.

Erion, M. D. and Walsh, C. T. 1987. 1-Aminocyclopropanephosphonate: Time-dependent inactivation of 1-aminocyclopropanecarboxylate deaminase and Bacillus stearothermophilus alanine racemase by slow dissociation behavior. Biochemistry, 26(12); 3417-3425.

Failla, S., Finocchiaro, P. and Consiglio, G. A. 2000. Syntheses, characterization, stereochemistry and complexing properties of acyclic and macrocyclic compounds possesing α-amino or α-hydroxyphosphonate units: A review article. Heteroatom Chemistry, 11(7); 493-504.

Fang, D., Yang, J. and Ni, C. 2011. Dicationic ionic liquids as recyclable catalysts for one-pot solvent-free synthesis of α-aminophosphonates. Heteroatom Chemistry, 22(1); 5-10.

Fang, D., Jiao, C. and Ji, B. 2010. One-Pot, Three-Component Synthesis of α-Aminophosphonates Catalyzed by Acyclic Acidic Ionic Liquids.

Phosphorus, Sulfur and Silicon and the Related Elements, 185(12); 2520-2526.

Fang, D., Jiao, C. and Ni, C. 2010. SO3H-functionalized ionic liquids catalyzed the synthesis of α-aminophosphonates in aqueous media. Heteroatom Chemistry, 21(7); 546-550.

Fields, E. K. 1952. The synthesis of esters of substituted amino phosphonic acids.

Journal of the American Chemical Society, 74 (6); 1528–1531.

Firouzabadi, H., Iranpoor, N. and Sobhani, S. 2004. Metal triflate-catalyzed one-pot synthesis of α-aminophosphonates from carbonyl compounds in the absence of solvent. Synthesis, (16); 2692-2696.

Flynn, G. A., Beight, D. W., Bohme, E. H. W. and Metcalf, B. W. 1985. The synthesis of fluorinated aminophosphonic acid inhibitors of alanine racemase.

Gajda, T. and Matusiak, M. 1992. An efficient synthesis of diethyl aminoalkylphosphonate hydrochlorides via the intermediate diethyl 1-azidoalkylphosphonates. Synthetic Communications, 22(15); 2193-2203 Gajda, T. and Matusiak, M. 1992. An expedient synthesis of diethyl

1-azidoalkylphosphonates via the Mitsunobu reaction. Synthesis, (4), 367-368.

Galkin V. I., Zveneva, E. R., Sobanov, A. A., Galkina, I. V. and Cherkasov, R. A. 1993.

Kinetics and mechanism of Kabachnik-Fields reaction in a dialkyl phosphite-benzaldehyde-aniline system. Zhurnal Obshchei Khimii, 63(10);

2224-2227.

Galkina, I. V., Zvereva, E. R., Galkin V. I. and Cherkasov, R. A. 1998. Kinetics and mechanism of the Kabachnik-Fields reaction: III. Effect of the nature of the carbonyl compound on the kinetics and mechanism of the Kabachnik-Fields reaction. A unified reaction mechanism. Russian Journal of General Chemistry (Translation of Zhurnal Obshchei Khimii), 68(9); 1391-1397.

Galkina, I. V., Zvereva, E. R., Galkin, V. I., Sobanov, A. A. and Cherkasov, R. A. 1998.

Kinetics and mechanism of the Fields reaction: II. Kabachnik-Fields reaction in the system dialkyl hydrogen phosphite-benzaldehyde-cyclohexylamine. Russian Journal of General Chemistry (Translation of Zhurnal Obshchei Khimii), 68(9); 1387-1390.

Gallardo-Macias, R. and Nakayama, K. 2010. Tin(II) compounds as catalysts for the Kabachnik-Fields reaction under solvent-free conditions: Facile synthesis of alpha-aminophosphonates. Synthesis (1); 57-62

Gancarz, R. 1995. Nucleophilic addition to carbonyl compounds. Competition between hard (amine) and soft (phosphite) nucleophile. Tetrahedron, 51(38); 10627-10632.

Gancarz, R. 1993. Unexpected products in a Kabachnik-Fields synthesis of aminophosphonates. Phosphorus, Sulfur and Silicon and the Related Elements, 83(1-4); 59-64.

Gancarz, R. and Gancarz, I. 1993. Failure of aminophosphonate synthesis due to facile hydroxyphosphonate - phosphate rearrangement. Tetrahedron Letters, 34(1);

145-148.

Gancarz, R. and Wieczorek, J. S. 1977. A useful method for the preparation of 1-aminoalkanephosphonic acids. Synthesis, (9); 625.

Genet, J. P., Mallart, S., Greck, C. and Piveteau, E. 1991. Electrophilic amination: First direct transfer of NHBoc with lithium tert-butyl-N-tosyloxycarbamate.

Tetrahedron Letters, 32(21); 2359-2362.

Genet, J. P., Juge, S., Besnier, I., Uziel, J., Ferroud, D., Kardos, N., Achi, S., Ruiz-Montes, J. and Thorimbert, S. 1990. Synthesis of carboxylic and phosphonic

α-amino acids using palladium allylic alkylation. Bulletin de la Societe Chimique de France, (Nov.-Dec.), 781-786.

Genet, J. P., Uziel, J., Touzin, A. M. and Juge, S. 1990. Synthesis of diethyl (1-aminoalkyl)phosphonates under solid-liquid phase-transfer catalysis conditions. Synthesis, (1); 41-43.

Genet, J. P., Uziel, J. and Juge, S. 1988. Synthesis of α-aminophosphonic acids by palladium(0) alkylation of diethyl aminomethylphosphonate Schiff bases.

Tetrahedron Letters, 29(36); 4559-62.

Ghosh, R., Maiti, S., Chakraborty, A. and Maiti, D. K. 2004. In(OTf)3 catalyzed simple one-pot synthesis of alpha-amino phosphonates. Journal of Molecular Catalysis A: Chemical, 210(1-2), 53-57.

Gilmore, W. F. and McBride, H. A. 1972. Synthesis of an optically active α-aminophosphonic acid. Journal of the American Chemical Society, 94(12);

4361.

Glowiak, T., Sawka-Dobrowolska, W., Kowalik, J., Mastalerz, P., Soroka, M. and Zoń, J. 1977. Absolute configuration of optically active aminophosphonic acids.

Tetrahedron Letters, 18(45); 3965-3968.

Golovanov, A. V., Maslennikov, I. G., Shubina, T. V., Kirichenko, L. N. and Lavrent'ev, A. N. 1987. (N-Glycylmethyl)phosphonic acid. Zhurnal Obshchei Khimii, 57(1); 231.

Gouverneur, V. and Lalloz, M. N. 1996. N-hydroxy-α-amino phosphonate derivatives as potential haptens for eliciting catalytic antibodies. Tetrahedron Letters, 37(35); 6331-6334.

Greck, C., Bischoff, L., Ferreira, F. and Genet, J. P. 1995. Preparation and reactivity of allyl n-[(arylsulfonyl)oxy]carbamates, new reagents for electrophilic transfer of an NHalloc group. Journal of Organic Chemistry, 60(21); 7010-7012.

Green, D., Elgendy, S., Patel, G., Baban, J. A., Skordalakes, E., Husman, W., Kakkar, V. V. and Deadman, J. 1996. The facile synthesis of 1-aminophosphonates from 1-nitrophosphonate precursors. Phosphorus, Sulfur and Silicon and the Related Elements, 113(1-4); 303-306.

Green, D., Patel, G., Elgendy, S., Baban, J. A., Claeson, G., Kakkar V. V. and Deadman J. 1994. The synthesis of 1-aminobenzylphosphonic acids from benzylidenediphenyl methylamines, for use as structural units in

Gröger, H., Saida, Y., Sasai, H., Yamaguchi, K., Martens, J. and Shibasaki, M. 1998. A new and highly efficient asymmetric route to cyclic α-amino phosphonates:

The first catalytic enantioselective hydrophosphonylation of cyclic imines catalyzed by chiral heterobimetallic lanthanoid complexes. Journal of the American Chemical Society, 120(13); 3089–3103.

Gröger, H., Saida, Y., Arai, S., Martens, J., Sasai, H. and Shibasaki, M. 1996. First catalytic asymmetric hydrophosphonylation of cyclic imines: Highly efficient enantioselective approach to a 4-thiazolidinylphosphonate via chiral titanium and lanthanoid catalysts. Tetrahedron Letters, 37(52); 9291-9292.

Grzywa, R., Sokol, A. M., Sien´czyk, M., Radziszewicz, M., Kos´ciołek, B., Carty, M.

P. and Oleksyszyn, J. 2010. New aromatic monoesters of α-aminoaralkylphosphonic acids as inhibitors of aminopeptidase N/CD13.

Bioorganic & Medicinal Chemistry, 18 (8); 2930–2936.

Gu, D. G., Ji, S. J., Shi, H. B. and Zhou, M. F. 2005. One-pot synthesis of 1-aminoalkyl phosphonates under microwave irradiation. Hecheng Huaxue, 13(2); 185-186.

Ha, H. J. and Nam, G. S. 1992. An efficient synthesis of anilinobenzylphosphonates.

Synthetic Communications, 22(8); 1143-1148.

Ha, H. J., Nam, G.-S. and Park, K. P. 1990. A new route to N-substituted aminomethanephosphonates. Bulletin of the Korean Chemical Society, 11(6); 485-486.

Hamilton, R., Walker, B. and Walker, B. J. 1998. Synthesis and proteinase inhibitory properties of diphenyl phosphonate analogues of aspartic and glutamic acids. Bioorganic & Medicinal Chemistry Letters, 8(13); 1655-1660.

Hanessian, S. and Bennani, Y. L. 1994. Electrophilic amination and azidation of chiral α-alkyl phosphonamides: Asymmetric syntheses of α-amino α-alkyl phosphonic acids. Synthesis, (Spec. Issue); 1272-1274.

Harger, M. J. P. and Sreedharan-Menon, R. 1998. Alkoxide induced rearrangement of alkyl bromomethylphosphonamidates: Steric influences on the direction of ring opening of the azaphosphiridine oxide intermediate. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry, (2); 211-216.

Harger, M. J. P. and Williams, A. 1989. Evidence for cyclic azaphosphiridine oxide intermediates in the methoxide-induced rearrangements of N-alkyl chlorophosphonamidates: Formation of phosphoramidates as well as α-aminophosphonates. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry, (3); 563-569.

Hägele, G. 2000. In aminophosphonic and aminophosphinic acids chemistry and biological activity, Kukhar, V. P., and Hudson H. R., Eds. Physical properties and NMR-spectroscopic characterization of aminophosphonates and aminophosphinates. John Wiley: Chichester, 219.

Hilderbrand, R. L. 1983. The Role of Phosphonates in Living Systems, CRC Press, Boca Raton, FL.

Heydari, A., Khaksar, S. and Tajbakhsh, M. 2009. Trifluoroethanol as a metal-free, homogeneous and recyclable medium for the efficient one-pot synthesis of α-amino nitriles and α-amino phosphonates. Tetrahedron Letters, 50(1); 77-80.

Heydari, A. and Arefi, A. 2007. One-pot three-component synthesis of alpha-amino phosphonate derivatives. Catalysis Communications, 8(7), 1023-1026.

Heydari, A., Hamadi, H. and Pourayoubi, M. 2007. A new one-pot synthesis of alpha-amino phosphonates catalyzed by H3PW12O40. Catalysis Communications, 8(8); 1224-1226.

Horiguchi, M., Rosenberg, H. 1975. Phosphonopyruvic acid, a probable precursor of phosphonic acids in cell-free preparations of Tetrahymena. Biochimica et Biophysica Acta, General Subjects, 404(2); 333-40.

Horiguchi, M. and Kandatsu, M. 1959. Isolation of 2-aminoethylphosphonic acid from rumen protozoa. Nature (London, United Kingdom), 184(12); 901-902.

Hosseini-Sarvari, M. 2008. Uncatalyzed and solvent-free one-pot three component synthesis of α-amino phosphonates. Journal of the Iranian Chemical Society, 5(Suppl.); S118-S124.

Hosseini-Sarvari, M. 2008. TiO2 as a new and reusable catalyst for one-pot three-component syntheses of alpha-aminophosphonates in solvent-free conditions. Tetrahedron, 64(23); 5459-5466.

Hou, J. T. Gao, J. W. and Zhang, Z. H. 2011. NbCl5: An efficient catalyst for one-pot synthesis of α-aminophosphonates under solvent-free conditions. Applied Organometallic Chemistry, 25(1); 47-53.

Hu, D. Y., Wan, Q. Q., Song, Y., Song, B. A., Bhadury, P. S., Jin, L. H., Yan, K., Liu, F., Chen, Z. and Xue, W. 2008. Synthesis and antiviral activities of amide derivatives containing the alpha-aminophosphonate moiety. Journal of Agricultural and Food Chemistry, 56(3); 998-1001.

Huber, R., Knierzinger, A., Obrecht, J. P. and Vasella, A. 1985. 181. Nucleophilic additions to n-glycosylnitrones asymmetric synthesis of a-aminophosphonic acids. Helvetica Chimica Acta, 68; 1730-1747.

Hubert, C., Oussaid, B., Etemad-Moghadam, G., Koenig, M. and Garrigues, B. 1994.

Improved synthesis of new α-aminophosphonic acids by sonochemical activation. Synthesis, 1994(1); 51-55.

Iimura, S., Nobutou, D., Manabe, K. and Kobayashi, S. 2003. Mannich-type reactions in water using a hydrophobic polymer-supported sulfonic acid catalyst.

Chemical Communications (Cambridge, United Kingdom), (14), 1644-1645.

Jafari, A. A., Nazarpour, M. and Abdollahi-Alibeik M. 2010. CeCl3·7H2O-catalyzed one-pot Kabachnik-Fields reaction: A green protocol for three-component synthesis of α-aminophosphonates. Heteroatom Chemistry, 21(6); 397-403.

Jagodic, V. and Tusek, L. 1972. Synthesis of some benzene azo derivatives of phosphonic acid monoesters. Journal of Organic Chemistry, 37(8); 1222-1223.

Jagodic, V. and Herak, M. J. 1970. Synthesis and physical properties of a novel aminophosphonic acid as an extracting agent for metals. Journal of Inorganic and Nuclear Chemistry, 32(4); 1323-1332.

Jagodic, V. and Grdenic, D. 1964. Aminophosphonic acid monoesters as reagents for solvent extraction of metals. Journal of Inorganic and Nuclear Chemistry, 26(6); 1103-1109.

Jagodic, V. 1960. Preparation of monoesters of N-substituted amino-methylphosphonic acids by partial saponification of the corresponding diesters. Chemische Berichte, 93; 2308-2313.

Jeanmaire, T., Brondino, C., Hervaud, Y. et Boutevin, B. 2002. Synthese de nouveaux derives phosphones a chaine perfluoree et leurs proprietes adhesives sur acier. Phosphorus, Sulfur and Silicon, 177; 2331–2343.

Jiao, C. J., Shen, Z. X., Kong, L. C. and Zhang, Y. W. 2007. One-pot three-component synthesis of alpha-amino phosphonates catalyzed by heteropolyacids in H2O/THF and in ether. Huaxue Yanjiu, 18(4); 27-32.

Jin, L., Song, B., Zhang, G., Xu, R., Zhang, S., Gao, X., Hu, D. and Yang, S. 2006.

Synthesis, X-ray crystallographic analysis, and antitumor activity of N-

(benzothiazole-2-yl)-1-(fluorophenyl)-O,O-dialkyl-alpha-aminophosphonates. Bioorganic & Medicinal Chemistry Letters, 16(6);

1537-1543.

Jommi, G., Miglierini, G., Pagliarin, R., Sello, G. and Sisti, M. 1992. Asymmetric synthesis of diethyl α-amino-α-alkylphosphonates by alkylation of chiral

phosphonoglycine equivalents: Role of chelating effects. Tetrahedron:

Asymmetry, 3(9); 1131-1134.

Kabachnik, M. I. and Medved, T. Y. 1953. New method of synthesis of α-aminoalkylphosphonic acids. I. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, 868-878.

Kabachnik, M. I. and Medved, T. Y.. 1952. New synthesis of aminophosphonic acids.

Doklady Akademii Nauk SSSR, 83; 689-692.

Kaboudin, B. and Jafari, E. 2008. Hydrophosphorylation of imines catalyzed by tosyl chloride for the synthesis of α-aminophosphonates. Synlett, (12), 1837-1839.

Kaboudin, B. and Zahedi, H. 2008. Calcium chloride as an efficient Lewis base catalyst for the one-pot synthesis of alpha-aminophosphonic esters. Chemistry Letters, 37(5); 540-541.

Kaboudin, B. and Sorbiun, M. 2007. β.-Cyclodextrin as an efficient catalyst for the one-pot synthesis of 1-aminophosphonic esters in water. Tetrahedron Letters, 48(51); 9015-9017.

Kaboudin, B. and Rahmani, A. 2004. Convenint synthesis of 1-aminoalkylphosphonates under solvent-free conditions. Organic Preparations and Procedures International, 36( 1); 82-86.

Kaboudin, B. and Nazari, R. 2001. Microwave-assisted synthesis of 1-aminoalkyl phosphonates under solvent-free conditions. Tetrahedron Letters, 42(46), 8211-8213.

Kafarski, P. and Lejczak, B. 1991. Biological activity of aminophosphonic acids.

Phosphorus Sulfur Silicon, 63; 193-215.

Kafarski, P. and Lejczak, B. 2000. In aminophosphonic and aminophosphinic acids chemistry and biological activity, Kukhar, V. P. and Hudson H. R. Eds.

Synthesis of Phosphono- and Phosphinopeptides. John Wiley: Chichester, 173-203.

Kafarski, P. and Lejczak, B. 2000. In aminophosphonic and aminophosphinic acids chemistry and biological activity, Kukhar, V. P. and Hudson H. R. Eds. The biological activity of phosphono- and phosphinopeptides. John Wiley:

Chichester, 407-443.

Kafarski, P. and Zoń, J. 2000. In Aminophosphonic and Aminophosphinic Acids

Karimi-Jaberi, Z., Zare, H., Amiri, M. and Sadeghi, N. 2011. Cobalt(II) chloride accelerated one-pot three-component synthesis of α-aminophosphonates at room temperature. Chinese Chemical Letters, 22(5); 559-562.

Karimi-Jaberi, Z. and Amiri, M. 2010. One-pot synthesis of α-aminophosphonates catalyzed by boric acid at room temperature. Heteroatom Chemistry, 21(2);

96-98.

Karimi-Jaberi, Z., Amiri, M. and Sadeghi, N. 2010. Sodium dihydrogen phosphate as an efficient catalyst for one-pot, three-component synthesis of α-aminophosphonates under solvent-free conditions at room temperature.

Synthetic Communications, 40(19), 2948-2953.

Karmakar, B., Paul, S. and Banerji, J. 2011. A highly efficient, one-pot synthesis of α-aminophosphonates over CuO nanopowder. ARKIVOC (Gainesville, FL, United States), (2); 161-171.

Kassaee, M. Z., Movahedi, F. and Masrouri, H. 2009. ZnO nanoparticles as an efficient catalyst for the one-pot synthesis of alpha-amino phosphonates. Synlett, (8);

1326-1330.

Kasthuraiah, M., Kumar, K. A., Reddy, C. S. and Reddy, C. D. 2007. Syntheses, spectral property, and antimicrobial activities of 6-α-amino dibenzo [d,f][1,3,2]dioxaphosphepin 6-oxides. Heteroatom Chemistry, 18(1), 2-8.

Keglevich, G. and Szekrenyi, A. 2008. Eco-friendly accomplishment of the extended Kabachnik-Fields reaction; A solvent- and catalyst-free microwave-assisted synthesis of α-aminophosphonates and α-aminophosphine oxides. Letters in Organic Chemistry, 5(8), 616-622

Kellner, K. und Rodewald, L. 1991. Synthese von 1 –alkylaminoalkylphosphonsaure monoestern uber diorganosilyl-bis(0-alkylphosphonate). Zeitschrift Für Anorganische Und Allgemeine Chemie, 600 (1) 189-194.

Kim, D. Y. and Rhie, D. Y. 1997. Synthesis of α-aminoalkylphosphonates from vinylphosphonates via aziridinylphosphonates. Tetrahedron, 53(40); 13603-13608.

Kober, R. and Steglich, W. 1983. Reaction of acylaminobromomalonates and acylaminobromoacetates with trialkyl phosphites - a simple synthesis of ethyl 2-amino-2-(diethoxyphosphoryl)acetate. Liebigs Annalen der Chemie, (4); 599-609.

Koeckritz, A. and Schnell, M. 1993. Substituted phosphonates. 68. α-Aminophosphonates and phosphono-substituted heterocycles from diethyl (2,2,2-trichloro-1-isocyanatoethyl)phosphonate. Phosphorus, Sulfur and Silicon and the Related Elements, 83(1-4); 125-133.

Kosolapoff, G. M. 1948. Synthesis of amino-substituted phosphonic acids. II. α-Aminobenzylphosphonic acid. Journal of the American Chemical Society 70; 1283.

Kosolapoff, G. M. 1947. Synthesis of amino-substituted phosphonic acids. I. Journal of the American Chemical Society, 69; 2112-2113.

Kotynski, A. and Stec, W. J. 1978. Synthesis of 1-aminoethylphosphonic acid. Polish Journal of Chemistry, 52(3); 659-662.

Kowalik, J., Kupczyk-Subotkowska, L. and Mastalerz, P. 1981. Preparation of dialkyl 1-aminoalkane phosphonates by reduction of dialkyl 1-hydroxy imino alkane phosphonates with zinc in formic acid. Synthesis, (1); 57-58.

Kowalik, J., Zygmunt, J. and Mastalerz, P. 1981. 1-Amino-2-mercaptoethylphosphonic acid, the phosphonic analog of cysteine. Polish Journal of Chemistry, 55(3);

713-715.

Kraicheva, I., Bogomilova, A., Tsacheva, I., Momekov, G. and Troev, K. 2009.

Synthesis, NMR characterization and in vitro antitumor evaluation of new aminophosphonic acid diesters. European Journal of Medicinal Chemistry, 44; 3363–3367.

Krzyzanowska, B. and Pilichowska, S. 1988. Synthesis of O,O-dialkyl 1-aminoalkanephosphonate via N-phosphinylated imines and enamines.

Polish Journal of Chemistry, 62(1-3); 165-177.

Kudrimoti, S. and Bommena, V. R. 2005. (Bromodimethyl)sulfonium bromide: An inexpensive reagent for the solvent-free, one-pot synthesis of alpha-aminophosphonates. Tetrahedron Letters, 46(7); 1209-1210.

Kudzin, Z. H. and Majchrzak, M. W. 1989. 1-Aminoalkanephosphonic acids. Addition of diethyl phosphite to N-diisobutylaluminioaldimines. Journal of Organometallic Chemistry, 376(2-3); 245-248.

Kukhar, V. P. 2000. In aminophosphonic and aminophosphinic acids chemistry and biological activity, Kukhar, V. P. and Hudson H. R. Eds. Asymmetric synthesis of aminophosphonic acid aminophosphinic acids. John Wiley:

Chichester, 127-172.

Lavielle, G., Hautefaye, P., Schaeffer, C., Boutin, J. A., Cudennec, C. A. and Pierre, A.

1991. New alpha-amino phosphonic acid derivatives of vinblastine:

chemistry and antitumor activity. Journal of Medicinal Chemistry, 34 (7), 1998–2003.

Lee, S. G., Park, J. H., Lee, J. K. and Kang, J. 2001. Lanthanide triflate-catalyzed three component synthesis of α-amino phosphonates in ionic liquids. A catalyst reactivity and reusability study. Chemical Communications (Cambridge, United Kingdom), (17), 1698-1699.

Lejczak, B., Kafarski, P., Sztajer, H. and Mastalerz, P. 1986. Antibacterial activity of phosphono dipeptides related to alafosfalin. Journal of Medicinal Chemistry, 29(11); 2212–2217.

Li, S., Song, C., Nianjin, L., Jingjing, W., Longjie, Z. and Xuhong, Q. 2008.

Ytterbium(III) perfluorooctanoate catalyzed one-pot, three-component synthesis of fully substituted pyrazoles under solvent-free conditions.

Synlett, (9), 1341-1344.

Long, N., Cai, X. J., Song, B. A., Yang, S., Chen, Z., Bhadury, P. S., Hu, D. Y., Jin, L.

H. and Xue, W. 2008. Synthesis and antiviral activities of cyanoacrylate derivatives containing an α-aminophosphonate moiety. Journal of Agricultural and Food Chemistry, 56; 5242–5246.

Lukszo, J., KowalikJ. and Mastalerz, P. 1978. Advantages of using di(p-methylbenzyl) hydrogen phosphite in synthesis of aminophosphonates from aldimines.

Chemistry Letters, 7(10); 1103-1106.

Lv, X. Y., Zhang, J. M., Xing, C. H., Du, W. G. and Zhu, S. Z. 2007. One-pot preparation of fluorinated α-aminoalkyl phosphonates under microwave irradiation and solvent-free conditions. Synthetic Communications, 37(5);

743-757.

Maffre, D., Dumy, P., Vidal, J. P., Escale, R. and Girard, J. P. 1994. Synthesis of tert-butoxycarbonyl-protected α-hydrazino phosphonic diesters by electrophilic amination with di-tert-butyl azodicarboxylate. Journal of Chemical Research, Synopses, (1); 30-31.

Maghsoodlou, M. T., Habibi-Khorassani, S. M., Heydari R., Hazeri, N., Sajadikhah, S.

S. and Rostamizadeh, M. 2010. Al(H2PO4)3 as an efficient and reusable catalyst for one-pot three-component synthesis of α-amino phosphonates under solvent-free conditions. Chinese Journal of Chemistry, 28(2); 285-288.

Maghsoodlou, M. T., Khorassani, S. M. H., Hazeri, N., Rostamizadeh, M., Sajadikhah, S. S., Shahkarami, Z. and Maleki, N. 2009. An efficient synthesis of α-Amino phosphonates using silica sulfuric acid as a heterogeneous catalyst.

Heteroatom Chemistry, 20(5); 316-318.

Maier, L. and Diel, P. J. 1994. Synthesis, physical and biological properties of the phosphorus analogues of phenylalanine and related compounds. Phosphorus Sulfur Silicon, 90; 259-279.

Benzer Belgeler