• Sonuç bulunamadı

120

121

• HDS kullanılmadan elde edilen maksimum denge oyulması derinliğinin yaklaşık olarak %20 si kadar seçilen HDS derinliklerinin en iyi performans gösterdiği belirlenmiştir.

• Oyulma topoğrafyasının şekline ve maksimum oyulma derinliğine HDS yüzey genişliği ile HDS derinliği etkileşimli olarak tesir etmiştir.

• HDS yüzey genişliği büyüdükçe HDS derinliği etkisini yitirmiştir.

HDS yüzey genişliği en küçük değer olan εxy=100 mm için en uygun HDS derinliğinin, en küçük derinlik olan εz=25 mm olduğu belirlenmiştir.

• HDS derinliği arttıkça hacimsel taşınım azalmıştır.

HDS’lerin, denge oyulma derinliğini (Zmax,e) ve denge oyulma hacmini (ϕ) büyük oranda azaltabileceği belirlenmiştir.

• Doğrusal olmayan regresyon modeli sonuçlarına göre HDS kullanılmayan durum için meydana gelen maksimum denge oyulması derinliğinin tahmini belirginlik katsayısı R2=0.98’dir.

• Doğrusal olmayan regresyon modeli sonuçlarına göre HDS kullanılan durum için meydana gelen maksimum denge oyulması derinliğinin tahmini belirginlik katsayısı R2=0.90’dır.

• Doğrusal olmayan regresyon modeli sonuçlarına göre HDS kullanılmayan durum için meydana gelen maksimum denge oyulması hacmi tahmini belirginlik katsayısı R2=0.99’tir.

• Doğrusal olmayan regresyon modeli sonuçlarına göre HDS kullanılan durum için meydana gelen maksimum denge oyulması hacminin tahmini belirginlik katsayısı R2=0.97’dir.

• HDS kullanılan ve kullanılmayan her iki durum için de denge oyulmasını tahmin için kurulan doğrusal olmayan regresyon modeline ait belirginlik katsayıları en büyük çıkmıştır.

122 KAYNAKLAR

Adduce, C., & La Rocca, M. (2006). Local scouring due to turbulent water jets downstream of a trapezoidal drop: Laboratory experiments and stability analysis. Water Resources Research, 42(2).

Adduce, C., & Sciortino, G. (2006). Scour due to a horizontal turbulent jet: Numerical and experimental investigation. Journal of Hydraulic Research, 44, 663-673.

doi:10.1080/00221686.2006.9521715

Altinbilek, D. (2002). The Role of Dams in Development. International Journal of Water Resources Development, 18, 9-24. doi:10.1080/07900620220121620

Amaral, S., Caldeira, L., Viseu, T., & Ferreira, R. M. (2020). Designing experiments to study dam breach hydraulic phenomena. Journal of Hydraulic Engineering, 146(4), 04020014.

Amini, N., Balouchi, B., & Bejestan, M. S. (2017). Reduction of local scour at river confluences using a collar. International Journal of Sediment Research, 32(3), 364-372.

Armitage, N. P. (2002). A unit stream power model for the prediction of local scour.

Stellenbosch: Stellenbosch University,

Bakhmeteff, B. M., AE. (1936). The Hydraulic Jump in Terms of Dynamic Similarity, Trans. ASCE, 101, 630-680.

Barlock, R. R., Barkdoll, B. D., & González-Castro, J. A. (2016). Experimental demonstration of a new extension plate scour countermeasure downstream of stilling basins. Journal of Hydraulic Engineering, 142(10), 06016013.

Ben Meftah, M., & Mossa, M. (2006). Scour holes downstream of bed sills in low-gradient channels. Journal of Hydraulic Research, 44(4), 497-509.

Bradley, J., & Peterka, A. (1957). The hydraulic design of stilling basins: hydraulic jumps on a horizontal apron (basin i). Journal of the Hydraulics Division, 83(5), 1-24.

Bremen, R. (1990). Expanding stilling basin. Retrieved from

Bremen, R., & Hager, W. H. (1993). T-jump in abruptly expanding channel. Journal of Hydraulic Research, 31(1), 61-78.

Bremen, R., & Hager, W. H. (1994a). Expanding Stilling Basin. Proceedings of the Institution of Civil Engineers-Water Maritime and Energy, 106(3), 215-228.

Bremen, R., & Hager, W. H. (1994b). Expanding Stilling Basin (INCLUDES APPENDICES). Proceedings of the Institution of Civil Engineers-Water Maritime and Energy, 106(3), 215-228.

Catakli, O. (1973). A study of scour at the end of stilling basin and use of horizontal beams as energy dissipatersǤ 11th Congress of large dams. In: Madrid.

Champagne, T. M., Barkdoll, B. D., & González-Castro, J. A. (2017). Experimental Study of Scour Induced by Temporally Oscillating Hydraulic Jump in a Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(12), 04017051.

Champagne, T. M., Barlock, R. R., Ghimire, S. R., Barkdoll, B. D., Gonzalez-Castro, J. A., & Deaton, L. (2016). Scour Reduction by Air Injection Downstream of Stilling

123

Basins: Optimal Configuration Determination by Experimentation. Journal of Irrigation and Drainage Engineering, 142(12), 04016067.

Chanson, H. (2015). Energy dissipation in hydraulic structures: CRC Press.

Chiew, Y., & Lim, S. (2003). Protection of bridge piers using a sacrificial sill.

Dargahi, B. (2003). Scour development downstream of a spillway. Journal of Hydraulic Research, 41, 417-426. doi:10.1080/00221680309499986

Dash, S. K., Krishnaswamy, N. R., & Rajagopal, K. (2001). Bearing capacity of strip footings supported on geocell-reinforced sand. Geotextiles and Geomembranes, 19(4), 235-256.

Dey, S., & Sarkar, A. (2006). Scour downstream of an apron due to submerged horizontal jets. Journal of Hydraulic Engineering, 132(3), 246-257.

Ditzler, C., Scheffe, K., & Monger, H. C. (2017). Soil survey manual. USDA Handbook, 18.

Durrant, R. H. (2018). Anti-scour system. In: Google Patents.

Eggenberger, W. (1944). Die Kolkbildung beim reinen Uberströmen und bei der Kombination Uberströmen-Unterströmen [The scour development for pure overflow and the combination of over-and under-flow.] Mitteilung, Vol. 5. Edited by.

Farhoudi, J., & Smith, K. V. (1985). Local scour profiles downstream of hydraulic jump.

Journal of Hydraulic Research, 23(4), 343-358.

Firoozi Yeganeh, S., Golroo, A., & Jahanshahi, M. R. (2019). Automated rutting measurement using an inexpensive RGB-D sensor fusion approach. Journal of Transportation Engineering, Part B: Pavements, 145(1), 04018061.

Foundation, T. J. D. (2020). Dams in Japan. Retrieved from http://damnet.or.jp/Dambinran/binran/TopIndex_en.html

GEO-Technologies, P. (2020). Bridge Foundation Erosion Control For Historic Foundation. Retrieved from https://www.prs-med.com/casestudies/historical-bridge-embankment-protection-israel-bridge-erosion-control/

Georunner. (2020). ScourProtection. Retrieved from

https://www.prestogeo.com/products/soil-stabilization/georunner-scour-protection/

Gharangik, A. M., & Chaudhry, M. H. (1991). Numerical simulation of hydraulic jump.

Journal of Hydraulic Engineering, 117(9), 1195-1211.

Grimaldi, C., Gaudio, R., Calomino, F., & Cardoso, A. H. (2009). Control of scour at bridge piers by a downstream bed sill. Journal of Hydraulic Engineering, 135(1), 13-21.

Grimaldi, C., Gaudio, R., Calomino, F., & Cardoso, A. H. (2009). Countermeasures against local scouring at bridge piers: slot and combined system of slot and bed sill.

Journal of Hydraulic Engineering, 135(5), 425-431.

Gul, E., Sarıcı, T., & Dursun, O. F. (2017). Experimental Investigation of the Scouring Behavior at Downstream of Dams with and without Geocell. Paper presented at the 8th International Advanced Technologies Symposium (IATS’17), Elazığ.

Güven, A., Günal, M., & Cevik, A. (2006). Prediction of pressure fluctuations on sloping stilling basins. Canadian Journal of Civil Engineering, 33(11), 1379-1388.

124

Hager, W. H. (1985). Hydraulic jump in non-prismatic rectangular channels. Journal of Hydraulic Research, 23(1), 21-35.

Hager, W. H. (1989). Hydraulic jump in U-shaped channel. Journal of Hydraulic Engineering, 115(5), 667-675.

Hager, W. H., & Li, D. (1992). Sill-controlled energy dissipator. Journal of Hydraulic Research, 30(2), 165-181.

Hanesgeo. (2020). ScourStop. Retrieved from

https://hanesgeo.com/Catalog/Product?id=2879

He, C., & Marsalek, J. (2013). Enhancing sedimentation and trapping sediment with a bottom grid structure. Journal of Environmental Engineering, 140(1), 21-29.

He, C., Post, Y., Rochfort, Q., & Marsalek, J. (2014). Field study of an innovative sediment capture device: bottom grid structure. Water, Air, & Soil Pollution, 225(6), 1976.

Herbrand, K. (1973). The spatial hydraulic jump. Journal of Hydraulic Research, 11(3), 205-218.

Hoffmans, G. J. C. M., & Pilarczyk, K. W. (1995). Local scour downstream of hydraulic structures. Journal of Hydraulic Engineering, 121(4), 326-340.

Hong, S., Biering, C., Sturm, T. W., Yoon, K. S., & Gonzalez-Castro, J. A. (2015). Effect of submergence and apron length on spillway scour: Case study. Water, 7(10), 5378-5395.

ICOLD. (1999). Benefits and Concerns about Dams: Case Studies. Retrieved from

Karbasi, M., & Azamathulla, H. M. (2016). GEP to predict characteristics of a hydraulic jump over a rough bed. KSCE Journal of Civil Engineering, 20(7), 3006-3011.

Khalifeh, V., Golroo, A., & Ovaici, K. (2018). Application of an Inexpensive Sensor in Calculating the International Roughness Index. Journal of Computing in Civil Engineering, 32(4), 04018022.

Khatsuria, R. M. (2004). Hydraulics of spillways and energy dissipators: CRC Press.

Khosravinia, P., Malekpour, A., Hosseinzadehdalir, A., & Farsadizadeh, D. (2018).

Effect of trapezoidal collars as a scour countermeasure around wing-wall abutments.

Water Science and Engineering, 11(1), 53-60.

Korkut, R., Martinez, E. J., Morales, R., Ettema, R., & Barkdoll, B. (2007). Geobag performance as scour countermeasure for bridge abutments. Journal of Hydraulic Engineering, 133(4), 431-439.

Li, H., Barkdoll, B., & Kuhnle, R. (2005). Bridge abutment collar as a scour countermeasure. In Impacts of Global Climate Change (pp. 1-12).

Mengelt, M. J., Edil, T. B., & Benson, C. H. (2000). Reinforcement of Flexible Pavements using Geocells, USA.

Milovanović, I., Bareš, V., Hedström, A., Herrmann, I., Picek, T., Marsalek, J., &

Viklander, M. (2020). Enhancing stormwater sediment settling at detention pond inlets by a bottom grid structure (BGS). Water Science and Technology, 81(2), 274-282.

125

Novak, P. (1961). Influence of bed load passage on scour and turbulence Downstream of stilling basin. Paper presented at the 9th Congress, IAHR, Dubrovnik, Croatia.

Oliveto, G. (2013). Local scouring downstream of a spillway with an apron. Paper presented at the Proceedings of the Institution of Civil Engineers-Water Management.

Oliveto, G., & Comuniello, V. (2009). Local scour downstream of positive-step stilling basins. Journal of Hydraulic Engineering, 135(10), 846-851.

Oliveto, G., Comuniello, V., & Bulbule, T. (2011). Time-dependent local scour downstream of positive-step stilling basins. Journal of Hydraulic Research, 49, 105-112. doi:10.1080/00221686.2010.538593

Pagliara, S., Amidei, M., & Hager, W. H. (2008). Hydraulics of 3D plunge pool scour.

Journal of Hydraulic Engineering, 134(9), 1275-1284.

Pagliara, S., Hager, W. H., & Minor, H.-E. (2006). Hydraulics of plane plunge pool scour.

Journal of Hydraulic Engineering, 132(5), 450-461.

Pagliara, S., & Palermo, M. (2008). Plane plunge pool scour with protection structures.

Journal of Hydro-environment Research, 2(3), 182-191.

Pagliara, S., Palermo, M., & Carnacina, I. (2009). Scour and hydraulic jump downstream of block ramps in expanding stilling basins. Journal of Hydraulic Research, 47(4), 503-511.

Pagliara, S., Roy, D., & Palermo, M. (2010). 3D plunge pool scour with protection measures. Journal of Hydro-environment Research, 4(3), 225-233.

Rajaratnam, N., & Murahari, V. (1971). A contribution to forced hydraulic jumps.

Journal of Hydraulic Research, 9(2), 217-240.

Roushangar, K., Valizadeh, R., & Ghasempour, R. (2017). Estimation of hydraulic jump characteristics of channels with sudden diverging side walls via SVM. Water Science and Technology, 76(7), 1614-1628.

Shalash, M. S. E. (1959). Die kolkbildung beim ausfluss unter schützen. Technische Hochschule München,

Simpson, T. (2017). Cellular Confinement as a Means to Limit Sediment Resuspension.

Simpson, T., Wang, J., & Vasconcelos, J. G. (2018). Cellular Confinement Systems to Prevent Resuspension in Sediment Basins. Journal of Environmental Engineering, 144(5).

Veronese, A. (1937). Scour downstream of a waterfall. Ann. Public Works, 75(9), 717-726.

Wang, G.-y., Liu, Y.-h., & Wang, X.-h. (2012). Experimental investigation of hydrodynamic characteristics of overland flow with geocell. Journal of Hydrodynamics, Ser. B, 24(5), 737-743.

Wang, G.-y., Sun, G.-r., Li, J.-k., & Li, J. (2018). The experimental study of hydrodynamic characteristics of the overland flow on a slope with three-dimensional Geomat.

Journal of Hydrodynamics, 30(1), 153-159.

Wasenmüller, O., & Stricker, D. (2016). Comparison of kinect v1 and v2 depth images in terms of accuracy and precision. Paper presented at the Asian Conference on Computer Vision.

126

WCD. (2000). Dams and development: A new framework for decision-making: The report of the world commission on dams: Earthscan.

Zare, H., & Doering, J. (2011). Forced hydraulic jumps below abrupt expansions. Journal of Hydraulic Engineering, 137(8), 825-835.

Zhou, K. (2019). Application of Sediment Transport Theory in Environmental Science and Engineering.

Zhou, K., Duan, J. G., & Bombardelli, F. A. (2020). Experimental and Theoretical Study of Local Scour around Three-Pier Group. Journal of Hydraulic Engineering, 146(10), 04020069.