• Sonuç bulunamadı

Uydu, uzaktan algılama, uydu görüntülerinin yüksek performansta i¸slenmesi ve farklı uydu sensörlerinden elde edilen uydu görüntülerinden nesne çıkarım çalı¸smaları son yıllarda popüler bir konu olmu¸stur. Ülkemizde de ilk yerli alçak yörünge (700 kilometre civarında) uyduları Göktürk2 ve RASAT’ın kurulmasının ardından Ay’a derin gözlem uydusu göndermek de 2023 hedefleri arasında yer almaktadır. ˙Ilgili geli¸smelerle beraber uydu görüntülerinin çe¸sitli amaçlar do˘grultusunda daha etkin bir biçimde kullanılması da kaçınılmazdır. Bu tez kapsamında, uyduların çekmi¸s oldu˘gu parça (mozaik) görüntülerin vektörel forma dönü¸stürülerek E¸sle/˙Indirge paradigmasına dayanan bir mimari ile ölçeklenebilir bir ¸sekilde örülmesi ve ilgili nesnenin çıkarılması sa˘glandı.

Uydu mozaik görüntülerinin zaman-mekânsal veriler olmasından dolayı bilinen piksel tabanlı özellik çıkarımı ve anahtar noktalar (key points) tespitine dayalı metotlarla görüntülerin birle¸stirilmesi çok zor olmakta ve ba¸sarı oranı ise çok dü¸smektedir. Yaptı˘gımız testlerde SIFT, SURF gibi yakla¸sımlarla dü¸sük boyutlu az sayıda görüntü ba¸sarılı bir ¸sekilde birle¸stirilebilmekte uydu görüntülerinde ise tamamen çalı¸smamaktadırlar. Mozaik birle¸stirme i¸slemi hesap yo˘gun bir i¸s olmasının yanında veri yo˘gun da bir i¸stir. Bu problemle ba¸s edebilmek için raster görüntüler E¸sle/˙Indirge ile vektörel forma dönü¸stürülüp vektör görüntülerin birle¸stirilmesi için nokta seti ¸sablonu e¸sle¸stirmesi tabanlı bir yakla¸sım geli¸stirilmi¸stir. Bu yöntem hem E¸sle/˙Indirge mantı˘gına hem de da˘gıtık hesaplama mantı˘gına yatkındır. Bu yakla¸sımda birle¸sime katılacak tüm girdi görüntülerin iki¸serli olarak çakı¸sma olasılıkları belirli bir çakı¸sma oranına göre olu¸sturulmakta ve bir çakı¸sma matrisi elde edilmektedir. Çakı¸sma matrisinden yaralanarak çakı¸san iki görüntüden biri sabit di˘geri dinamik olmak ¸sartıyla dinamik görüntünün sabit olan görüntü üzerine yerle¸stirilmesi için gerekli öteleme miktarları bir öteleme matrisinde tutulmu¸stur. Bu iki matristen (çakı¸sma ve öteleme) yararlanarak bir çakı¸sma çizgesi olu¸sturulmu¸stur. Bu çizgenin dü˘gümleri birle¸smeye girecek görüntüleri temsil edip dü˘güm de˘gerleri ise nihai görüntüde her bir resmin nereye konumlandırılaca˘gını göstermektedir. Önerilen yakla¸sımın de˘gi¸sken sayıdaki farklı girdi boyutlarında görüntüler üzerinde tek bir bilgisayar ve üç bilgisayardan olu¸san bir küme üzerinde testleri yapılmı¸stır. Görüntü boyut ve sayılarının artması ile birle¸stirme süreleri artmı¸s olup özellikle 2000x2000 ve üzeri boyutlu görütülerin küme

üzerinde birle¸stirilmesi daha kısa zaman almı¸stır. Büyük boyutlu çok daha fazla görüntünün daha çok bilgisayar üzerinde birle¸stirilebilece˘gi a¸sikardır.

Özetle geli¸stirilen sistem a¸sa˘gıdaki hedefleri yerine getirmektedir:

• Büyük boyutta ve çok sayıdaki mozaik parça uydu görüntülerin büyük veri mimari çatısı ile ölçeklenebilir ¸sekilde örülebilmesi (Bölüm 5.2’ye bakınız),

• Büyük boyutta ve çok sayıdaki uydu görüntülerinin doküman tabanlı NoSQL veri tabanlarında Hbase’de depolanması (Bölüm 4.1.2’ye bakınız),

• Referans haritalar üzerinden interaktif olarak kullanıcı destekli, yarı otomatik sezgisel nesne tanımlaması (Bölüm 4.1.3’e bakınız),

• Alan sorgularında (range-queries) kapsama problemi çözüm algoritmalarının, nesnenin bütün görüntüsünün elde edilmesi için gereken mozaiklerin tespitine uygulanması (Bölüm 4.1.4’e bakınız),

• Tespit edilen parça görüntülerin E¸sle/˙Indirge büyük veri i¸sleme çatısı ile vektör tabanlı olarak örülmesi (Bölüm 5.2’ye bakınız),

• Uydu görüntülerinden çıkarılıp vektörel modellenen nesnelerin mekânsal veritabanlarında üçüncü ¸sahıslar (di˘ger ara¸stırmacılar) tarafından mekânsal ve topolojik analizlerinde kolaylıkla kullanabilecekleri yapıya getirilmesi (Bölüm 5.2’ye bakınız), • Yapılabilirlik ve ölçeklenebilirlik testlerinin gerçek uydu görüntüleri (LandSat-8) ve farklı görüntüler ile gerçeklenmesi (Bölüm 5.3’e bakınız).

Elde edilen kazanımlar neticesinde tez kapsamında yapılan çalı¸smaların devamı niteli˘ginde a¸sa˘gıdaki çalı¸smalar yapılabilir:

• Kullanıcı tanımlı bir vektör nesnesini birçok uydu görüntüsünde varlı˘gı ara¸stırılarak sorgulama yapılması (image retrivial),

• Açık kaynak Hadoop GIS (SpatialHadoop, Hadoop-GIS gibi) araçları ile entegrasyonu sa˘glanarak mekansal veriler üzerinde çe¸sitli sorguların yapılması, • Önerilen E¸sle/˙Indirge tabanlı yakla¸sımın farklı domainlerde (tıbbi görüntüler vs) farklı problemler için yapılabilirli˘ginin incelenmesi,

KAYNAKLAR

[1] Bay H., Ess A., Tuytelaars T., Van G. L., Speeded-up robust features (SURF), Computer vision and image understanding, 2008, 110(3), 346–359.

[2] Zheng Y., Cao Z., Xiao Y., Multi-spectral remote image registration based on SIFT, Electronics Letters, 2008, 44(2), 107–108.

[3] Song Z. L., Zhang J., Remote sensing image registration based on retrofitted SURF algorithm and trajectories generated from Lissajous figures, IEEE Geoscience and Remote Sensing Letters, 2010, 7(3), 491–495.

[4] Bow S. T., Pattern recognition and image preprocessing, ˙Ikinci baskı, Marcel Dekker New York, 2002.

[5] Thomas L., Ralph W. K., Jonathan C., Remote sensing and image interpretation, Yedinci baskı, John Wiley & Sons, 2014.

[6] Costa H., Foody G. M., Boyd D. S., Supervised methods of image segmentation accuracy assessment in land cover mapping, 2018.

[7] Nouman A., Bushra Z., Faisal R., Dar S. H., Ratyal N. I., Bajwa K. B., Iqbal M. K., Sajid M., A Hybrid Geometric Spatial Image Representation for scene classification, PloS one, 2018, 13(9), 1–27.

[8] Zhao J., Han J., Feng C., Yao J., A Systematic Scheme for Automatic Airplane Detection from High-Resolution Remote Sensing Images, Pacific-Rim Symposium on Image and Video Technology, Springer, Wuhan, China, Kasım 2017, 465–478.

[9] Zhang X., Cui J., Wang W., Lin C., A study for texture feature extraction of high-resolution satellite images based on a direction measure and gray level co-occurrence matrix fusion algorithm, Sensors, 2017, 17(7), 1–15.

[10] Karczmarek P., Kiersztyn A., Pedrycz W., Dolecki M., An application of chain code-based local descriptor and its extension to face recognition, Pattern Recognition, 2017, 65(1), 26–34.

[11] Liaghati A. L., Pan W. D., Jiang Z., Biased Run-Length Coding of Bilevel Classification Label Maps of Hyperspectral Images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(10), 4580–4588.

[12] Xu B., Chen J., Yu P., Vectorization of classified remote sensing raster data to establish topological relations among polygons, Earth Science Informatics, 2017, 10(1), 99–113.

[13] Chaudhuri B., Demir B., Chaudhuri S., Bruzzone L., Multilabel Remote Sensing Image Retrieval Using a Semisupervised Graph-Theoretic Method,

IEEE Transactions on Geoscience and Remote Sensing, 2018,

56(2), 1144–1158.

[14] Ifimov G., Pigeau G., Arroyo-Mora J. P., Soffer R., Leblanc G., A geospatial database model for the management of remote sensing datasets at multiple spectral, spatial, and temporal scales, Earth Resources and Environmental Remote Sensing/GIS Applications VIII, vol. 10428, International Society for Optics and Photonics, Warsaw, Poland, Eylül 2017, 1–11.

[15] Rosenfeld A., Multiresolution image processing and analysis, Springer Science & Business Media, Berlin Heidelberg, 2013.

[16] Sayar A., Eken S., Öztürk O., Kd-tree and quad-tree decompositions for declustering of 2D range queries over uncertain space, Frontiers of Information Technology & Electronic Engineering, 2015, 16(2), 98–108.

[17] Schowengerdt R. A., Techniques for image processing and classifications in remote sensing, Academic Press, New York, U.S.A., 2012.

[18] Padró J. C., Pons X., Aragonés D., Dıaz-Delgado R., Garcıa D., Bustamante J., Pesquer L., Domingo-Marimon C., González-Guerrero Ò., Cristóbal J., Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy, Remote Sensing, 2017, 9(12), 1–26.

[19] Fu X., Wang J., Zeng D., Huang Y., Ding X., Remote sensing image enhancement using regularized-histogram equalization and DCT, IEEE Geoscience and Remote Sensing Letters, 2015, 12(11), 2301–2305.

[20] Mosleh M., Hassan Q., Chowdhury E., Application of remote sensors in mapping rice area and forecasting its production: A review, Sensors, 2015, 15(1), 769–791.

[21] Ghassemian H., A review of remote sensing image fusion methods, Information Fusion, 2016, 32(Part A), 75–89.

[22] Niazmardi S., Demir B., Bruzzone L., Safari A., Homayouni S., Multiple kernel learning for remote sensing image classification, IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3), 1425–1443.

[23] Nasir A., Fakhri A., Rahman M., Nordin A., Mamat A. R., A study of image processing in agriculture application under high performance computing

environment, International Journal of Computer Science and

Telecommunications, 2012, 3(8), 16–24.

[24] Hwang K., Advanced Computer Architecture: Parallelism, Scalability, Programmability, 1. Baskı, Tata McGraw-Hill Edition, New York, U.S.A., 2007.

[25] Chen D. K., Su H. M., Yew P. C., The impact of synchronization and granularity on parallel systems, 17th Annual International Symposium on Computer Architecture Proceedings, IEEE, Seattle, Washington, USA, Mayıs 1990, 239–248.

[26] Agarwal A., How to choose the grain size of a parallel computer, DIMACS Workshop on Models, Architectures, and Technologies for Parallel Computation, USA, Eylül 1993, 20–22.

[27] Flynn M. J., Very high-speed computing systems, Proceedings of the IEEE, 1966, 54(12), 1901–1909.

[28] Sima D., Kacsuk P., Advanced computer architectures, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[29] Hord R. M., Parallel Supercomputing in MIMD Architectures, CRC press, Sound Parkway NW, USA, 2018.

[30] Mahani A. S., Sharabiani M. T. A., SIMD parallel MCMC sampling with applications for big-data Bayesian analytics, Computational Statistics & Data Analysis, 2015, 88(1), 75–99.

[31] Czaja L., Introduction to Distributed Computer Systems, Springer, Berlin, Heidelberg, 2018.

[32] Vckovaki A., Interoperable and distributed processing in GIS, CRC Press, Sound Parkway NW, USA, 2014.

[33] Nowicki M., Górski Ł., Bała P., Performance evaluation of parallel computing and Big Data processing with Java and PCJ library, Cray Users Group 2018, Stockholm, Sweden, Mayıs 2018.

[34] J. F. Dooley, Parallel Design Patterns: With Patterns, Debugging, Unit Testing, and Refactoring, Apress Publishing, Berlin, Heidelberg, 2017.

[35] Lam C., Hadoop in Action, 1. Basım, Manning Publications Co., Greenwich, CT, USA, 2010.

[36] Fox G., Components and Rationale of a Big Data Toolkit Spanning HPC, Grid, Edge and Cloud Computing, Proceedings of the10th International Conference on Utility and Cloud Computing, UCC ’17, Austin, Texas, USA: ACM, 2017, 1–1.

[37] Stephens Z. D., Lee S. Y., Faghri F., Campbell R. H., Zhai C., Efron M. J., Iyer R., Schatz M. C., Sinha S., Robinson G. E., Big Data: Astronomical or Genomical?, PLOS Biology, Temmuz 2015, 13(7), 1–11.

[38] Bhat W. A., Is a Data-Capacity Gap Inevitable in Big Data Storage?, Computer, Eylül 2018, 51(9), 54–62.

[39] Zhu H., Big Data and Collaboration Research: Creating Real Big Data, IEEE Systems, Man, and Cybernetics Magazine, Ocak 2018, 4(1), 16–19.

[40] Sint R., Stroka S., Schaffert S., Ferstl R., Combining Unstructured, Fully Structured and Semi-Structured Information in Semantic Wikis, SemWiki, Editors: Christoph Lange, Sebastian Schaffert, Hala Skaf-Molli, Max Völkel, CEUR Workshop Proceedings, Hersonissos, Greece, Ocak 2009.

[41] Songnian L., Suzana D., Castro F. A., Monika S., Stephan W., Arzu C., Christopher P.and Bin J., James H., Stein A., Tao C., Geospatial big data handling theory and methods: A review and research challenges, ISPRS journal of photogrammetry and remote sensing, 2016, 115(1), 119–133. [42] Liu P., A survey of remote-sensing big data, Frontiers in Environmental Science,

2015, 3(1), 45–45.

[43] Liu P., Di L., Du Q., Wang L., Remote Sensing Big Data: Theory, Methods and Applications, Remote Sensing, 2018, 10(5), 1–4.

[44] Philip C.C.L., Chun Y. Z., Data-intensive applications, challenges, techniques and technologies: A survey on Big Data, Information Sciences, 2014, 275(1), 314–347.

[45] Miftachul H., Andino M., Pardimin A., Maragustam S., Roslee A., Kamarul J., Nasrul H. N. M., Big Data Emerging Technology: Insights into Innovative Environment for Online Learning Resources, International Journal of Emerging Technologies in Learning (iJET), 2018, 13(1), 23–36.

[46] Andino M., Noraisikin S., Miftachul H., Roslee A., Kamarul A. J., Bushrah B., Demystifying Learning Analytics in Personalised Learning, International Journal of Engineering Technology, 2018, 7(3), 1124–1129.

[47] Yichuan W., LeeAnn K., Terry A. B., Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations, Technological Forecasting and Social Change, 2018, 126(1), 3–13.

[48] Ines M., Yiwei G., John B., Agile government: Systematic literature review and future research, Government Information Quarterly, 2018, 35(2), 291–298.

[49] Millecamp M., Htun N., Jin Y., Verbert K., Controlling Spotify

Recommendations: Effects of Personal Characteristics on Music

Recommender User Interfaces, Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, UMAP ’18, Singapore, Singapore: ACM, A˘gustos 2018, 101–109.

[50] Agarwal A., Das S., Das J., Majumder S., A Framework for Linear TV Recommendation by Leveraging Implicit Feedback, Computational Science and Technology, Editors: Alfred R., Y. Lim, A. A. A. Ibrahim, P. Anthony, Singapore: Springer, 2019, 155–164.

[51] Zhu L., Yu F. R., Wang Y., Ning B., Tang T., Big Data Analytics in Intelligent Transportation Systems: A Survey, IEEE Transactions on Intelligent Transportation Systems, Ocak 2019, 20(1), 383–398.

[52] Mamta B., Anshu P., A. K. C., High Performance Computing for Satellite Image Processing and Analyzing – A Review, Asian Journal Of Science And Technologies, 2013, 2(4), 424–430.

[53] J. Dean, S. Ghemawat, MapReduce: A Flexible Data Processing Tool, Commun. ACM, Ocak 2010, 53(1), 72–77.

[54] A. Eldawy, M. F. Mokbel, The Era of Big Spatial Data: A Survey, Found. Trends databases, Aralik 2016, 6(3-4), 163–273.

[55] Ahmed E., Mohamed F. M., SpatialHadoop: A MapReduce Framework for Spatial Data, 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, 2015, 1352–1363.

[56] Eldawy A., Mokbel M. F., Pigeon: A spatial MapReduce language, 2014 IEEE 30th International Conference on Data Engineering, Chicago, USA, Mart 2014, 1242–1245.

[57] A. Eldawy, M. F. Mokbel, A Demonstration of SpatialHadoop: An Efficient Mapreduce Framework for Spatial Data, Proc. VLDB Endow. A˘gustos 2013, 6(12), 1230–1233.

[58] Eldawy A., Li Y., Mokbel M. F.and Janardan R., CG_Hadoop: computational geometry in MapReduce, In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Orlando, FL, USA, Mayıs 2013, 284–293.

[59] Eldawy A., Mokbel M. F., Alharthi S., Alzaidy A., Tarek K., Ghani S., SHAHED: A MapReduce-based system for querying and visualizing spatio-temporal satellite data, 2015 IEEE 31st International Conference on Data Engineering, Seoul, South Korea, Nisan 2015, 1585–1596.

[60] Eldawy A., Alharthi S., Alzaidy A., Daghistani A., Ghani S., Basalamah S., Mokbel M. F., A demonstration of Shahed: A MapReduce-based system for querying and visualizing satellite data, 2015 IEEE 31st International

Conference on Data Engineering, Seoul, South Korea, Nisan

2015, 1444–1447.

[61] Alarabi L., Eldawy A., Alghamdi R., Mokbel M. F., TAREEG: A

MapReduce-based Web Service for Extracting Spatial Data from

OpenStreetMap, Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, Snowbird, Utah, USA, Nisan 2014, 1585–1596.

[62] Aji A., Wang F., Vo H., Lee R., Liu Q., Zhang X., Saltz J., Hadoop GIS: A High Performance Spatial Data Warehousing System over Mapreduce, Proc. VLDB Endow.2013, 6(11), 1009–1020.

[63] Eken S., Da˘gıtık Sistemler ˙Için Ada Uydu Görüntülerinin Vektörel Modellenmesi Ve Zaman-Mekânsal Analizi, Yüksek Lisans Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisli˘gi Anabilim Dalı, 2012, Tez No: 315734.

[64] Cary A., Sun Z., Hristidis V., Rishe N., Experiences on Processing Spatial Data with MapReduce, Editors: M. Winslett, Berlin, Heidelberg, 2009. [65] Golpayegani N., Halem M., Cloud Computing for Satellite Data Processing on

High End Compute Clusters, Bangalore, India, Eylül 2009.

[66] Lv Z., Hu Y., Zhong H., Wu J., Li B., Zhao H., Parallel K-Means Clustering of Remote Sensing Images Based on MapReduce, Editors: Wang F. L., Z. Gong, X. Luo, J. Lei, Sanya, China, Ekim 2010.

[67] Tesfamariam E. B., Distributed processing of large remote sensing images using mapreduce: A case of edge detection methods, LAP Lambert Academic Publishing, Saarbrücken, Germany, 2011.

[68] Kang J., Du Z., Liu X., The Framework of Remote Sensing Image Map Service on Hadoop, 2012 National Conference on Information Technology and Computer Science, Lanzhou, China, Kasım 2012.

[69] Liu X., Han J., Zhong Y., Han C., He X., Implementing WebGIS on Hadoop: A case study of improving small file I/O performance on HDFS, 2009 IEEE International Conference on Cluster Computing and Workshops, New Orleans, Louisiana, USA, A˘gustos 2009, 1–8.

[70] Dawn S., V. Saxena, B. Sharma, Remote Sensing Image Registration Techniques: A Survey, Image and Signal Processing, Editors: A. Elmoataz, O. Lezoray, F. Nouboud, D. Mammass, J. Meunier, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, 103–112.

[71] Brown L. G., A Survey of Image Registration Techniques, ACM Comput. Surv. Aralik 1992, 24(4), 325–376.

[72] Barbara Z.and Jan F., Image registration methods: a survey, Image and Vision Computing, 2003, 21(11), 977–1000.

[73] Sayar A., Eken S., Mert U., Registering landsat-8 mosaic images: A case study on the Marmara sea, 2013 International Conference on Electronics, Computer and Computation (ICECCO), Ankara, Türkiye, Kasım 2013, 375–377. [74] Changjie W., Hua N., Algorithm of remote sensing image matching based on

corner-point, 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China, Mayıs 2017, 1–4.

[75] Sarı H., Büyük dikgen görüntülerin örülmesi i¸sleminin e¸sle/indirge tabanlı büyük veri mimarilerine uyarlanması, Yüksek Lisans Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisli˘gi Anabilim Dalı, 2017, Tez No: 494775.

[76] Mert Ü., Uydu mozaik görüntülerin örülmesi ve nesne çıkarımı için donanıma ba˘glı adaptif yakla¸sım, Yüksek Lisans Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisli˘gi Anabilim Dalı, 2016, Tez No: 423765. [77] Yi Z., Zhiguo C., Yang X., Multi-spectral remote image registration based on

[78] Song Z. L., Zhang J., Remote Sensing Image Registration Based on Retrofitted SURF Algorithm and Trajectories Generated From Lissajous Figures, IEEE Geoscience and Remote Sensing Letters, Temmuz 2010, 7(3), 491–495. [79] Lee S. R., A Coarse-to-Fine Approach for Remote-Sensing Image Registration

Based on a Local Method, International Journal on Smart Sensing and Intelligent Systems, 2010, 3(4), 690–702.

[80] El Rube I., Sharkas M., Salman A., Salem A., Automatic Selection of Control Points for Remote Sensing Image Registration Based on Multi-Scale SIFT, 2011 International Conference on Signal, Image Processing and Applications (SIA), vol. 21, Honolulu, Hawaii, USA, Mayıs 2011, 46–50.

[81] Sayar A., Eken S., Mert U., Tiling of Satellite Images to Capture an Island Object, Engineering Applications of Neural Networks, Editors: Mladenov V., Jayne C., Iliadis L., Cham: Springer International Publishing, 2014, 195–204. [82] Ghemawat S., Gobioff H., Leung S. T., The Google File System, SIGOPS Oper.

Syst. Rev.Ekim 2003, 37(5), 29–43.

[83] Eken S., Sayar A., Big Data Frameworks for Efficient Range Queries to Extract Interested Rectangular Sub Regions, International Journal of Computer Applications, 2015, 119(22), 36–39.

[84] Eken S., Kizgindere U., Sayar A., MapReduce Based Scalable Range Query Architecture for Big Spatial Data, The Rise of Big Spatial Data, Editors: Ivan I., Singleton A., Horák J., Inspektor T., Cham: Springer International Publishing, 2017, 263–272.

[85] McCandless M., Hatcher E., Gospodnetic O., Lucene in Action, Second Edition: Covers Apache Lucene 3.0, Manning Publications Co., Greenwich, CT, USA, 2010.

[86] Hoffmann M., Covering polygons with few rectangles, Abstracts 17th European Workshop Comput. Geom, Malmö, Sweden, Mayıs 2001, 39–42.

[87] Wang S., Chen C. S., Rinsurongkawong V., Akdag F., Eick C. F., A polygon- based methodology for mining related spatial datasets, Proceedings of the 1st ACM SIGSPATIAL International Workshop on Data Mining for Geoinformatics, ACM, San Jose, CA, USA, Kasım 2010, 1–8.

[88] Zwozniak G., A better approximation algorithm for covering polygons with squares, tech. rep., Technical Report, Institute of Computer Science, University of Wroc law, 1998.

[89] Maza I., Ollero A., Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage algorithms, Distributed Autonomous Robotic Systems 6, Editors: Alami R., Chatila R., Asama H., Tokyo: Springer Japan, 2007, 221–230.

[90] Chaudhuri D., Kushwaha N. K., Samal A., Semi-Automated Road Detection From High Resolution Satellite Images by Directional Morphological

Enhancement and Segmentation Techniques, IEEE Journal of Selected Topics

in Applied Earth Observations and Remote Sensing, Ekim 2012,

5(5), 1538–1544.

[91] Chaudhuri D., Samal A., An Automatic Bridge Detection Technique for Multispectral Images, IEEE Transactions on Geoscience and Remote Sensing, Eylül 2008, 46(9), 2720–2727.

[92] S. Eken, A. Sayar, An Automated Technique to Determine Spatiotemporal Changes in Satellite Island Images with Vectorization and Spatial Queries, Sadhana - Academy Proceedings in Engineering Science, 2015, 40(1), 121–137. [93] Acharya T. D., Lee D. H., Yang I. T., Lee J. K., Identification of Water Bodies

in a Landsat 8 OLI Image Using a J48 Decision Tree, Sensors, 2016, 16(7). [94] Mishra K., Prasad P., Rama C., Automatic Extraction of Water Bodies from

Landsat Imagery Using Perceptron Model, Journal of Computational Environmental Sciences, 2015, 2015(1), 1–9.

[95] Rokni K., Ahmad A., Selamat A., Hazini S., Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery, Remote Sensing, 2014, 6(5), 4173–4189.

[96] Eken S., Sayar A., Performance Evaluations of Vector-Raster Satellite Image Transfers through Web Services, 2012 IEEE 36th Annual Computer Software and Applications Conference, ˙Izmir, Türkiye, Temmuz 2012, 346–347. [97] Zaharia M. ve di˘g., Apache Spark: A Unified Engine for Big Data Processing,

Commun. ACM, 2016, 59(11), 56–65.

[98] Sweeney C., Liu L., Arietta S., Lawrence J., HIPI: A Hadoop image processing interface for image-based mapreduce tasks, Chris. university of Virginia, 2011, 2(1), 1–5.

[99] Wilder N. C., René C. M., Juber S. C., Alvaro H. M., Pablo Y., Yessenia Y., Hipi, as Alternative for Satellite Images Processing, SIMBig, 2015.

[100] B. C. Sunny, R. Ramesh, A. Varghese, V. Vazhayil, Map-Reduce based framework for instrument detection in large-scale surgical videos, 2015 International Conference on Control Communication & Computing India (ICCC), IEEE, Trivandrum, India, Kasım 2015, 606–611.

[101] Akkoyunlu Y. Y., Eken S., Sayar A., HIPI ile Da˘gıtık Görüntü ˙I¸sleme Çatısı: Yüz Bölgelerine Ait Biometrileri Saptama Performansının ˙Incelenmesi, Proceedings of the 10th Turkish National Software Engineering Symposium, UYMS 2016, Çanakkale, Türkiye, Ekim, 2016, 426–431.

[102] Eken S., Aydin E., Sayar A., Vectorization of Large Amounts of Raster Satellite Images in a Distributed Architecture Using HIPI, 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), IEEE, Malatya, Türkiye, Eylül 2017, 1–4.

[103] Meng L., Kerekes J. P., Object Tracking Using High Resolution Satellite Imagery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, ¸Subat 2012, 5(1), 146–152.

[104] Ling X., Zhang Y., Xiong J., Huang X., Chen Z., An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery, Remote Sensing, 2016, 8(8), 1–19.

[105] Wu C., Song C., Chen D., Yu X., A Remote Sensing Image Matching Algorithm Based on the Feature Extraction, Advances in Neural Networks – ISNN 2012, Editors: Wang J., Yen G. G., Polycarpou M. M., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, 282–289.

[106] Lisin D. A., Mattar M. A., Blaschko M. B., Learned-Miller E. G., Benfield M. C., Combining Local and Global Image Features for Object Class Recognition, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) - Workshops, San Diego, CA, USA, USA, Eylül 2005, 47–47.

[107] S. Eken, E. Aydin, A. Sayar, DIFET: Distributed Feature Extraction Tool for High Spatial Resolution Remote Sensing Images, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-4/W4(1), 209–213.

[108] Zhonglianga F., Jianhuaa W., Entity matching in vector spatial data, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 2008, XXXVII(B4), 1467–1472. [109] Jun T., Ling S., Jones S., Point pattern matching based on line graph spectral

context and descriptor embedding, IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs CO, USA, Mart 2014, 17–22.

[110] Shao S., Tong C., A Matching Method for Multi-Characteristic Vector Elements of Complex Polygon, 2010 International Conference on Multimedia Technology, Firenze, Italy, Ekim 2010, 1–4.

[111] Jian B., Vemuri B. C., Robust Point Set Registration Using Gaussian Mixture Models, IEEE Transactions on Pattern Analysis and Machine Intelligence, A˘gustos 2011, 33(8), 1633–1645.

[112] David M. M., Nathan S. N., Jacqueline L. M., Efficient algorithms for robust feature matching, Pattern Recognition, 1999, 32(1), 17–38.

[113] Jiawei H., Xiaonan T., A new approach to point pattern matching, 9th International Conference on Pattern Recognition Proceedings, vol. 1, Roma, Italy, Mayıs 1988, 82–84.

[114] Wu J., Zhou J., Wu B., Method Exploration of Self-adaptive Entity Matching in Map Fusion, Procedia Environmental Sciences, 2011, 10(1), 1939–1945. [115] Antoine J. B., Viergever M. A., A survey of medical image registration, Medical

[116] Norel R., Fischer D., Wolfson H. J., Nussinov R., Molecular surface recognition by a computer vision-based technique, Protein Engineering, Design and Selection, 1994, 7(1), 39–46.

[117] Akutsu T., Protein structure alignment using dynamic programing and iterative