• Sonuç bulunamadı

SONUÇLAR:

 Bu çalıĢmada literatürlerdekinden farklı olarak ilk defa farklı yapılarda (anyonik, katyonik, zwitter ve nötral) yüzey aktif maddeler hazırlandı.

 Bu yüzey aktif maddeler farklı yöntemlerle lipaz aktivitesinde kullanıldı ve karĢılaĢtırıldı.

 Farklı konsantrasyon, karıĢtırma süresi, pH ve tampon etkisi gibi parametreler incelendi.

 Yüzey aktif maddelerin etkisinin daha derinden anlaĢılması için, CRL'nin kinetik parametreleri (Vmak ve Km değerleri) bulundu.

 Yüzey aktif maddeleri kıyasladığımızda en yüksek enzim aktivitesi kaliks[4]-L prolin türevinin ilavesinde elde ettik. Hem anyonik hem katyonik yüzey aktif maddelerden oldukça yüksek görülmesi bu bileĢiğinin zwitter iyonik olmasından açıklanabilir. Literatürde (Becker ve ark., 2008) bu bileĢiğin zwitter olduğu bilinmektedir. Zwitter iyonik yapıda bir bileĢik enzimin yapısında hem asidik hem bazik aminoasit grupları ile kolaylıkla elektrostatik etkileĢim ve hidrojen bağı yaparak enzimin aktif merkezi ve konformasyonunu korur.

ÖNERĠLER:

 Literatüre bakıldığı zaman sulu çözeltilerde lipaz enziminin aktivitesinin artırılmasına yönelik yüzey aktif maddelerin etkisiyle ilgili çok az çalıĢma bulunmaktadır.

 Kaliksaren bazlı anyonik ve zwitter iyonik yüzey aktif maddelerin kullanılmasından dolayı bu çalıĢmamız önem kazanmaktadır. Bu noktadan hareketle ileride farklı türevli kalikseren bazlı yüzey aktif maddelerin kullanılması için çalıĢmamızın bir temel oluĢturabileceğini de söyleyebiliriz.

 Yüksek aktivite gösteren lipaz enzimlerinin (yüzey aktif madde ilave edilmiĢ) farklı kullanım alanlarında (deterjan, kozmetik, biyosensör, ilaç vb.) etkileri araĢtırılabilir.

KAYNAKLAR

AkkuĢ, P., 2006, Lipaz kullanılarak Ģeker esteri sentezi, Yüksek Lisans Tezi, Gebze Yüksek Teknoloji Enstitüsü Mühendislik ve Fen Bilimleri Enstitüsü, Gebze.

Akoh, C.C., Min, D.B., 1998, Microbial lipases and enzymatic ınteresterification, Food Lipids-Chemistry, Nutrition and Biotechnology, Marcel Deccer, Inc, New York, 641-698.

Aksoy, C., 2003, Lipaz ve üreaz enzimlerinin çeĢitli taĢıyıcılar immobilizasyonu, Yüksek Lisans Tezi, Ġ.Ü. Fen Bilimleri Enstitüsü, Ġstanbul.

Alloue, M., Destain, J., Amighi, K., Thonart P., 2007, Storage of Yarrowia lipolyica lipase after spray-drying in the presence of additives, Elsevıer, 1357-1361. Almi, M., Arduini, A., Casnati, A., Pochini A., Ungaro, R., 1989, Chloromethylation of

caixarenes and synthesis of new water soluble macrocyclic hosts, Elsevıer, 2177-2182.

Antonian, E., 1988, Recent advances in the purification, characterization and structure determination of lipases. Lipids, 23, 1101-1106.

Arpigny, J.P., Jaeger, K.E., 1999, Bacterial lipolytic enzymes: classification and properties, Biochem. J., 343, 177–183.

Aykut U., ve Temiz, H., 2006, Biyosensörler ve Gıdalarda Kullanımı, Gıda Teknolojileri Elektronik Dergisi, 51-59.

Bakkal, M., 2006, TutuklanmıĢ candida rugosa lipazı ile rasemik naproksen metil esterden (s)-naproksen üretiminde proses parametrelerinin incelenmesi, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü. Ankara.

Baysal, Z., 2005, Kavun kabuğu kullanarak katı-faz fermantasyon tekniği ile termotoleran Bacillus coagulans’dan lipaz enzimi üretimi, XIX. Kimya Kongresi, KuĢadası, Aydın, 501.

Becker, T., Goh, C. Y., Jones, F., McIldowie, M. J., Mocerino, M. ve Ogden, M. I., 2008, Proline-functionalised calix[4]arene: an anion-triggered hydrogelator, Chemical Communications, 33, 3900-3902.

Becker, T., Pfannschmidt, S., Guiard, B., Stojanovski, D., Milenkovic, D., Kutik, S., Pfanner, N., Meisinger, C., Wiedemann, N., 2008, Biogenesis of the mitochondrial TOM complex: Mim1 promotes insertion and assembly of signal- anchored receptors, J. Biol. Chem., 283, 120-7.

Beisson, F., Tiss, A., Riviere, C., Verger, R., 2000, Methods for lipases etection and assay: a critical review. Eur. J. Lipid Sci. Technol., 102, 133-153.

Benjamin, S., Pandey, A., 1998, Candida rugosa and its lipases-a retrospect. J. Sci. Ind. Res, 57, 1-9.

Bezbradica, D., Mijin, D., Siler-Marinkovic, S., Knezevic, Z., 2006, The candida rugosa lipase catalyzed synthesis of amyl isobutyrate in organic solvent and solvent-free system: a kinetic study, Journal of Molecular Catalysis B: Enzymatic, 38, 11–16. Biasutti, M.A., 2008, Kinetics of reactions catalyzed by enzymes in solutions of

surfactants. Advances in Colloid and Interface Science, 136, 1–24.

Bjokling, F., Godtfredsen, S.E., and Kirk, O., 1991, The future ımpact of ındustrial lipases. Trends in Biotechnology, 9, 360-363.

Brady, L., Brzozowski, A.M., Derewenda, Z.S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J.P., Christiansen, L., Jensen, B.H., Norskov, L., Thim, L., Merge, U. 1990, A serine protease triad forms the catalytic center of a triacylglcerol lipase, Letter to Nature, 343, 767-770.

Brinchi, L., 1999, Effects of amine oxide surfactants on reactions of bromide and hydroxide ıons with methylnaphthalene-2-sulfonate, Journal of Colloid and Interface Science, 211, 179–184.

Calvo, M.V., 1996, Effect of Surfactants on Activity and Stability of Native and Chemically Modified Lipases A and B from Candida Rugosa. Biocatalysis and Biotransformation, 13, 271–285.

Cardenas, J., Alvarez, E., de Castro-Alvarez, M.S., Sanchez-Montero, J.M., Valmaseda M., Elson, S.W., Sinisterra, J.V., 2001, Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases, J. Mol. Catal. B: Enzym, 14, 111–23. Chiou, S.H., Wu, W.T., 2004, Immobilization of candida rugosa lipase on chitosan with

activation of the hydroxyl groups, Biomaterials, 25, 197-204.

Colman, M.H., Macrae, A.R., 1980, Fat process and composition, UK Patent No, 1577933.

Dutta, S., Ray, L., 2009, Production and characterization of an alkaline thermostable crude lipase from an ısolated strain of bacillus cereus c7, Appl. Biochem. Biotechnol., 159, 142–154.

Elizabeth, M., 1991, Chemically modified calix[4]arenes, regioselective synthesis of 1,3-(distal) derivatives and related compounds. x-ray crystal structure of a diphenol-dinitrile C. J. Chem. Soc. Perkın Trans., 12, 3137- 3142.

Faber, K., 2000, Biotransformations in organic chemistry, 4th Edition, Springer-Verlag, Berlin.

Fadıloğlu, S., 1996, Kinetics of olive oil hydrolysis by free and immobilised candida rugosa lipase, Ph.D. Thesis, University of Gaziantep.

Fennema, O., 1985, Chemical Changes in Food during Processing-An Overview, Springer, 1-16.

Fischer, M., Pleiss, J., 2003, The Lipase Engineering Database: a navigation and analysis

tool for protein families, Nucleic Acids Research, 31, 319–321.

Gabriele, F., Spreti, N., Del Giacco T., Germani, R., Tiecco, M., 2018, Effect of surfactant structure on the superactivity of Candida rugosa lipase, Langmuir, 34, 11510-11517.

Garcia-Galan, C., Santos J.C.S., Barbosa, O., Torres, R., Pereira, E.B., Gonçalves, L.R.B., Fernandez-Lafuente, R., Tuning of Lecitase features via solid-phase chemical modification: Effect of the immobilization protocol, Elsevıer, 49, 604- 616.

Gerritse, G., Hommes, R. W., Quax, W. J., 1998, Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain, J. Appl. Environ. Microbiol., 64, 2644–51.

Ghosh, P.K., Saxena, R.K., Gupta, R., Yadav, R.P., Davidson, S. 1996, Microbial Lipases: Production and applications. Science Progress, 79, 119-157.

Gonzalez-Navarro, H., Bano, M.C., Abad, C., 2001, The closed/open model for lipase activation, Addressing ıntermediate active forms of fungal enzymes by trapping of conformers in water-restricted environments, Biochemistry, 40, 3174–3183. Gupta, R., Gupta, N., Rathi, P., 2004, Bacterial lipases: an overview of production

purification and biochemical properties. Appl. Microbiol. Biotechnol, 64, 763- 781.

Goracci, L., 2007, Anomalous behavior of amine oxide surfactants at the air/water interface, Langmuir 23, 10525–10532.

Gutsche, C.D., Nam, K.C., 1988, Calixarenes, 22, synthesis, properties, and metal complexation of aminocalixarenes, Journal of the American Chemical Society, 110, 6153-6162.

Gutsche, C.D., Iqbal, M., 1990, p-ter-Butylcalix[4]arene, Org. Syn., 68, 234-237.

Huang, X.R., Li, Y.Z., Yang, G.L., Liu, L.L., Qu, Y.B., Zhang, W.J., 2001, A Novel method for fabrication of a glass-electrode-based lipase sensor, Chinese Chemical Letters, 12, 453-456.

Hoh, G.L.K., 1963, Hydrogen peroxide oxidation of tertiary amines. Journal of the American Oil Chemists Society, 40, 268–271.

Holmberg, K., 2018, Interactions between surfactants and hydrolytic enzymes, Colloids and Surfaces, B: Biointerfaces, 168, 169–177.

Hung, T.C., Giridhar, R., Chiou, S.H., and Wu, W.T., 2003, Binary ımmobilization of candida rugosa lipase on chitosan, Journal of Molecular Catalysis B: Enzymatic, 26, 69-78.

Jaeger, K.E., Ransac, S., Dijkstra, B. W., Colson, C., Van Heuvel, M., and Misset, O., 1994, Bacterial lipases, FEMS Microbiol. Rev., 5, 29–63.

Jaeger, K.E., Reetz, M.T., 1998, Microbial lipases form versatile tools for biotechnology, TIBTECH, 16, 396-403.

Jaeger, K.E., Dijkstra, B.W., Reetz, M.T., 1999, Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases, Annu. Rev. Microbiol. 53, 315- 351.

James, J., Lakshmit, B.S and Raviprasad, V., 2003, Insights from molecular dynamics into ph-dependent enantioselective hydrolysis of ibu profen esters by Candida rugosa lipase, Protein Enginering, 16, 1017-1024.

Joseph, B., Ramteke, P. W., Thomas, G., 2008, Cold active microbial lipases: Some hot is sues and recent development, Biotechnology Advances, 26: 457–470.

Kanjanavas, P., 2010, Purification and characterization of organic solvent and detergent tolerant lipase from thermotolerant bacillus sp. rn2, Int. J. Mol. Sci., 11, 3783- 3792.

Karaca, N., 2006, Poli (n,n-dimetilakrilamit-ko-akrilamit) ve poli(n- izopropilakrilam_t- ko-akrilamit)/karragenan polimerler kullanılarak lipaz enziminin immobilizasyonu, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.

Kazlauskas, R. J., Bornscheuer, U. T., Rehm, H.J., Pihler, G., Stadler, A., Kelly, P.J.W., 1998, Biotransformations with lipases, In: Biotechnology, New York: VCH, 8,37– 192.

Kennedy, J.F., 1995, Handbook of Enzyme Biotechnology, Third Edition, Editör Allen Wisemann, EllisHorwood, 235-310.

Kumar, S., Kikon, K., Upadhyay, A., Kanwar, S. S., Gupta, R., 2005, Production, purification and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS, Protein Expression and Purification, 41, 38-44.

Kıran, Ö.E., Çömelekçioğlu, U., ve Dostbil, N., 2006, Bazı mikrobiyal enzimler ve endüstrideki kullanım alanları, KSÜ, Fen ve Mühendislik Dergisi, 9, 12-19.

Kim, H. R., Song, W. S., 2006, Lipase treatment of polyester fabrics, Fibers Polym., 7, 339-343.

Mingarro, I., Abad, G., Braco, L., 1995, Interfacial activation-based molecular bioimprinting of lipolytic enzymes, Proc. Natl. Acad. Sci. U.S.A., 92, 3308–3312. Misset, O., Gerritse, G., Jaeger, K.E. et al. 1994, The structure–function relationship of

the lipases from pseudomonas aeruginosa and bacillus subtilis. Protein Eng., 7, 523–529.

Mosmuller, E.W.J., Franssen, M.C.R., 1993, Lipase activity in vesicular systems: characterization of candida cylindracea lipase and ıts activity in polymerizable dialkylammonium surfactant vesicles. Biotechnology and Bioengineering, 42,

196-204.

Nie, K., Xie, F., Wang, F., Tan, T., 2006, Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 43, 142-147.

Nelson, D.L., Cox, M.M., Freeman W. H., 2004, Lehninger Principles of Biochemistry, New York, Fourth Edition.

Otero, C., 2005, Activation in the family of candida rugosa ısolipases by polyethylene glycol., Journal of Molecular Catalysis B: Enzymatic, 32, 225–229.

Otzen, D., 2011, Protein-Surfactant interactions: a tale of many states, Biochimic et Biophysica Acta- Proteins and Proteomics, 1814, 562–591.

Ozturk, B., 2001, Immobilization of lipase from candida rugosa on hydrophobic and hydrophilic supports, Yüksek Lisans Tezi, Ġzmir Institute of Technology, Ġzmir, Turkey.

Pabai, F., Kermasha, S., Morin, A., 1995a, Interesterification of butter fat by partiallypurified extracellular lipases from Pseudomonas putida, Aspergillus niger and Rhizopus oryzae, World J. Microbiol. Biotechnol., 11, 669–77.

Pabai, F., Kermasha, S., Morin, A., 1995b, Lipase from Pseudomonas fragi CRDA 323: partial purification, characterization and interesterification of butter fat, Appl. Microbiol. Biotechnol., 43, 42–51.

Paiva, A.L., Balcao, V.M., Malcata, F.X. 2000, Kinetics and mechanisms of reactions catalyzed by ımmobilized lipases, Enzyme and Microbial Technology, 27,187- 204.

Palomo, J.M., Fernandez-Lorente, G., Ortiz, C., Segura, R.L., Mateo, C., Fuentes, M., Hermoso, J., Fernandez-Lafuente, R., Guisan, J.M., 2005, Conformational

engineering of lipases via directed immobilisation: improving the resolution of chiral drugs, Med. Chem. Rev., 2, 369–378.

Pandey, A., Benjamin, S., Soccol C. R., Nigam, P., Krieger, N., and Soccol, U. T., 1999, The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem., 29, 119-131.

Rubingh, D.N., 1996, The influence of surfactants on enzyme activity, Current Opinion in Colloid -Interface Science, 1, 598-603.

Sangeetha, R., Arulpandi, I., Geetha, A., 2011, Bacterial Lipases as Potential Industrial Biocatalysts: An Overview‖, Research Journal of Microbiology, 6, 1-24.

Santos, J.C., Castro, H.F., 2006, Optimization of lipase-catalysed synthesis of butyl butyrate using a factorial design, World Journal of Microbiology and Biotechnology, 22, 1007–1011.

Santos, J.C., Mijone, P.D., Nunes G.F.M., Perez V.H., Castro H.F., 2008, Candida rugosa lipase on chemically modified hybrid matrix of polysiloxane–polyvinyl alcohol with different activating compounds, 2008, Colloids and Surfaces B: Biointerfaces, 61, 229–236.

Savelli, G., 2000, Enzyme activity and stability control by amphiphilic self-organizing systems in aqueous solutions. Current Opinion in Colloid and Interface Science, 5, 111–117.

Sayın, S., 2013, Brönsted asid katalizörü olabilecek kaliks[n]aren-bazlı süperparamanyetik nanopartiküllerin sentezi, karekterizasyonu ve bazı reaksiyonlarda katalizör olarak kullanılması, Doktora Tezi, Selçuk Üniversitesi Fen Fakültesi, Konya.

Secundo, F., Carrea, G., Tarabiono, C., Brocca, S., 2003, Activity and enantioselectivity of wildtype and lid mutated Candida rugosa lipase ısoform 1 in organic solvents, Biotechnology and Bioengineering, 86, 237- 240.

Secundo, F., Carrea, G., Tarabiono, C., Gatti-Lafranconi, P., Brocca, S., Lotti, M., Jaeger, M. Puls, K.-E., Eggert, T., 2006, The lid is a structural and functional determinant of lipase activity and selectivity, J. Mol. Catal. B: Enzym, 39, 166– 170.

Setzu, S., Salis, S., Demontis, V., Salis, A., Monduzzi, M., Mula, G., 2007, Porous silicon-based potentiometric biosensor for triglycerides, Phys. Status solidi, 204, 1434-1438.

Sharma, R., Chisti, Y., Banerjee, U.C., 2001, Production, Purification, Characterization, and Applications of Lipases, Biotechnology Advances, 19, 627-662.

Shinkai, S., Mori, S., Tsubaki T., Sone, T., Manabe O., 1984, New water-soluble host molecules derived from calix[6]arene, Tetrahedron Letters, 5315-5318.

Shinkai, S., Araki, K., Tsubaki, T., Arimura, T., Manabe, O., 1987, New syntheses of calixarene-p-sulphonates and p-nitrocalixarenes. J. Chem. Soc. Perkin Trans., 1, 2297-2299.

Sintra, T. E., 2014, Superactivity ınduced by micellar systems as the key for boosting the yield of enzymatic reactions, Journal of Molecular Catalysis B: Enzymatic, 107, 140–151.

Stead, D., 1986, Microbial lipases: their characteristics, role in food spoilage and industrial uses, 53, 481-505.

Svendsen, A., 1994, Sequence comparison with the lipase family, in: woolley P., Petersen SB, editör, Lipases, Their Structure Biochemistry and Application, Cambridge: Cambridge University Press, pp., 1–21.

Tekiner, R., 2011, Basillus megaterium M22’den lipaz enziminin saflaĢtırılması ve karakterizasyonu, Yüksek lisans tezi, Gazi Üniversitesi, Fen bilimleri enstitüsü, Ankara.

Telefoncu, A., 1986., Temel ve uygulamalı enzimoloji, biyokimya lisansüstü yaz okulu, 22 Eylül-3 Ekim, Çesme, Ġzmir-Türkiye, 326p.

Tejo, B.A., Salleh, A.B., Pleiss, J., 2004, Structure and dynamics of Candida rugosa lipase: The role of organic solvent, Journal Molecular Model, 10, 358-366. Tiryaki, Ö. Ġ., 1993, Endüstriyel proseslerde biyokatalizör pelletlerin kullanımı, Yüksek

Lisans Semineri, Ankara Üniversitesi, Fen filimleri enstitüsü, Ankara.

Ting, W.J., Tung, K.Y., Giridhar, R., Wu, W.T., 2006, Application of binary immobilized Candida rugosa lipase for hydrolysis of soybean oil, Journal of Molecular Catalysis B: Enzymatic, 42, 32–38.

Undurraga, D., Markovits, A., Erazo, S., 2001, Cocoa butter equivalent through enzymic

interesterification of palm oil midfraction, Process Biochem., 36, 933–9.

Uyanik, A., Sen, N., Yilmaz, M., 2011, Improvement of catalytic activity of lipase from Candida rugosa via sol–gel encapsulation in the presence of calix(aza)crown, Bioresour. Technol., 102, 4313–4318.

Vakhlu, J., Kour, A., 2006, Yeast lipases: Enzyme purification, biochemical properties and gene cloning, Electronic Journal of Biotechnology, 9, 69–85.

Villeneuve, P., Muderhwa, J.M., Graille, J., Haas, M.J., 2000, Customizing Lipases for Biocatalysis: a Survey of Chemical, Physical and Molecular Biological Approaches, Journal of Molecular Catalysis B: Enzym., 9, 113-148.

Wang, Y., Srivastava, K.C., Shen, G.J., Wang, H.Y., 1995, Thermostable alkaline lipase from a newly isolated thermophilic Bacillus strain, A30-1 (ATCC 53841), J. Ferment. Bioeng., 79, 433–8.

Whellcuright, S.M., 1991, Protein Characteristic In Protein Purification: Design and Scale up of Downstream Processing, Oxford University Press, New York.

Wu, H.S., 2004, Kinetics of tributyrin hydrolysis by lipase, Enzyme Microb. Technol., 35, 488-493.

Yeoh, H.H., Wong, F.M., Lin, G., 1986, Screening for fungal lipases using chromogenic lipid substrates, Mycologia, 78, 298–300.

Yilmaz, M., Erdemir, S., 2010, Preparation of a new 1,3-alternate calix[4]arene-bonded HPLC stationary phase for the separation of phenols, aromatic amines and drugs, Talanta, 82, 1240-1246.

Zaitsev, S.Y., Gorokhova, I.V., Kashtigo, T.V., Zintchenko, A., Dautzenberg, H., 2003, General approach for lipases immobilization in polyelectrolyte complexes, Colloids and Surfaces, A: Physicochemmistry Engineering Aspects, 221, 209- 220.

ÖZGEÇMĠġ

KĠġĠSEL BĠLGĠLER

Adı Soyadı : Filiz ESKĠ

Uyruğu : T.C.

Doğum Yeri ve Tarihi : Erzurum 19/04/1989

Telefon : 0545 203 67 04

Faks :

e-mail : filiz.agdas.1989@hotmail.com

EĞĠTĠM

Derece Adı, Ġlçe, Ġl Bitirme Yılı

Lise : Bahçelievler Lisesi 2007

Üniversite : Selçuk Üniversitesi / Kimya Bölümü 2012 Yüksek Lisans : Selçuk Üniversitesi, Fen Bilimleri Enstitüsü

Doktora :

UZMANLIK ALANI

Kimya (Biyokimya)

YABANCI DĠLLER

Ġngilizce

KATILDIĞI SEMĠNER VE KONGRELER:

1. 4. International Turk Pak Conference On Chemical Sciences (Executive) 2017. 2. 7th International Congress on Molecular Biology and Biotechnology,

Konya/TURKEY, 2018.

3. Filiz Eski, Elif Ozyilmaz, “The effect of various anionic surfactants on activity

of lipase"” 2nd International Eurasian Conference on Biological and Chemical Sciences (EurasianBioChem 2019), Ankara, 2019.

4. Elif Özyılmaz, Filiz Eski, Özge ÇAGLAR, "The effect of some supramolecules

on activity of Candida rugosa lipase "2nd International Eurasian Conference on Biological and Chemical Sciences (EurasianBioChem 2019), Ankara, 2019.

Benzer Belgeler