• Sonuç bulunamadı

5. TARTIŞMA VE SONUÇ

5.7 Sonuç

Nişastalar canlılar için önemli enerji kaynaklarındandır. Doğal nişasta olarak kullanımı dışında farklı endüstriyel alanlar için de vazgeçilmez bir hammaddedir. Nişasta içeriği zengin olan başlıca; mısır, patates, buğday, pirinç ve tapyoka bitkilerinden elde edilmektedir. Bitkilerin ekim ve üretimi coğrafi olarak yetişme koşullarına bağlıdır. Günümüzde kadınların iş hayatına aktif katılımı ve teknolojik gelişmelerin etkisi ile

49

hazır gıda tüketimi artış göstermiştir. Hazır gıda ve atıştırmalık sektöründe ise ürün kalitesinin arttırılması, rekabet, ürün çeşitliliği, maliyet, raf ömrü gibi kritik noktalar dikkate alınarak sağlıklı ve lezzetli ürünler üretmeye yönlendirmiştir. Üretici firmaların bu sektörde yer edinmek için farklı, ucuz ve halkın taleplerine cevap verebilecek ürünler piyasaya sunmalıdırlar. Bu sektör için en vazgeçilmez hammadde ise şeker, glikoz ve fruktoz şuruplarıdır. Glikoz şurubu en yaygın olarak nişastadan elde edilen bir NBŞ’dir.

Bu çalışmada buğday, mısır ve patates nişastasından enzimatik olarak glikoz şurubu elde edilmesi ve bu glikozun % DE değerlerini hesaplanıp karşılaştırması yapılmıştır. Dolayısıyla çalışma kapsamında öncelikle üç farklı nişastanın fiziksel ve kimyasal olarak analizleri yapılıp mikroskop ile bakılarak yapısal farkları incelenmiştir. Üç nişastada da belirgin farklar olduğu görülmüştür. Çalışmanın devamında ise nişastalar enzim ile hidroliz edilerek laboratuvar ortamında glikoz şurupları elde edilmiştir. Farklı nişastalar içinde üretim ve hidroliz parametrelerinin değişip değişmediği aynı yöntemle elde edilebilirliği de araştırılmıştır. Basamak basamak analizler yapılarak incelenmiş ve en yüksek % DE mısır nişastasından elde edilmiştir. Aynı şekilde patates ve buğday içinde yüksek DE sahip glikoz şurupları elde edilmiştir. Sonuç olarak, bu çalışma patates, buğday ve mısır nişastalarının sıralı birçok işlemden geçirildikten sonra yüksek DE’ye sahip glikoz şurupları üretilebildiğini göstermektedir. Bu çalışma gelecek yıllarda kullanılacak ürüne göre istenilen nişastadan glikoz şurubu üretilmesi ve endüstriye uyarlanması açısından ışık tutacaktır.

50

KAYNAKLAR

Abo, B. O., Gao, M., Wang, Y., Wu, C., Ma, H., & Wang, Q. (2019). Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes. Reviews on environmental health, 34(1), 57-68.

Ali, A., Wani, T. A., Wani, I. A., and Masoodi, F. A. (2016). Comparative study of the physico-chemical properties of rice and corn starches grown in Indian temperate climate. Journal of the Saudi Society of Agricultural Sciences, 15(1), 75-82. Amir, R. M., Anjum, F. M., Khan, M. I., Khan, M. R., Pasha, I., and Nadeem, M.

(2013). Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties. Journal of food science and technology, 50(5), 1018-1023.

Anonim, 2007, Glikoz, Fruktoz, Glikoşurup, Fruktoşurup Nedir?

http://www.gidaraporu.com/glikozfruktoz-glikosurup_g.htm (Erişim

Tarihi:15.06.2018)

Anonim, 2017, http://www.food-info.net/uk/carbs/starch.htm (Erişim

Tarihi:15.06.2018)

Audilakshmi, S., and Swarnalatha, M. (2019). Sorghum for Starch and Grain Ethanol. In Breeding Sorghum for Diverse End Uses(pp. 239-254). Woodhead Publishing.

Badenhuizen, N. P. (1969). The] biogenesis of starch granules in higher plants (No. QK887 B3).

Baks, T., Kappen, F. H., Janssen, A. E., and Boom, R. M. (2008). Towards an optimal process for gelatinisation and hydrolysis of highly concentrated starch–water mixtures with alpha-amylase from B. licheniformis. Journal of Cereal Science,

47(2), 214-225.

Baum, B. R., and Bailey, L. G. (1987). A survey of endosperm starch granules in the genus Hordeum: a study using image analytic and numerical taxonomic techniques. Canadian journal of Botany, 65(8), 1563-1569.

Bashir, K., and Aggarwal, M. (2019). Physicochemical, structural and functional properties of native and irradiated starch: a review. Journal of food science and

technology, 56(2), 513-523.

BeMiller, J. N., & Whistler, R. L. (Eds.). (2009). Starch: chemistry and technology. Academic Press.

Bertoft, E., Manelius, R., Myll rinen, P. I., and Schulman, A. H. (2000). Characterisation of Dextrins Solubilised by α‐Amylase from Barley Starch Granules. Starch‐Stärke, 52(5), 160-163.

51

Betancur, A. D., and Chel, G. L. (1997). Acid hydrolysis and characterization of Canavalia ensiformis starch. Journal of Agricultural and Food Chemistry,

45(11), 4237-4241.

Bhosale, S. H., Rao, M. B., & Deshpande, V. V. (1996). Molecular and industrial aspects of glucose isomerase. Microbiol. Mol. Biol. Rev., 60(2), 280-300.

Bradshaw, J. E., and Ramsay, G. (2009). Potato origin and production. In Advances in

potato chemistry and technology (pp. 1-26). Academic Press.

Cheng, M. H., Huang, H., Dien, B. S., and Singh, V. (2019). The costs of sugar production from different feedstocks and processing technologies. Biofuels,

Bioproducts and Biorefining, 13(3), 723-739.

Civan, M., 2014. Mısır Şurupları, Uludağ Üniversitesi Gıda Mühendisliği Lisans Bitirme Çalışması. Bursa

Cornell, H 2004, 'The functionality of wheat starch' in A. Eliasson (ed.) Starch in Food:

Structure, Function and Applications, Woodhead Publishing, Cambridge, UK,

pp. 211-240.

Da Rosa Zavareze, E., Pinto, V. Z., Klein, B., El Halal, S. L. M., Elias, M. C., Prentice- Hernández, C., & Dias, A. R. G. (2012). Development of oxidised and heat– moisture treated potato starch film. Food chemistry, 132(1), 344-350.

Das, D., & Pal, S. (2015). Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Advances, 5(32), 25014-25050. Dávila, J. A., Hernández, V., Castro, E., & Cardona, C. A. (2014). Economic and

environmental assessment of syrup production. Colombian case. Bioresource

technology, 161, 84-90.

De Cordt, S., Hendrickx, M., Maesmans, G., and Tobback, P. (1994). The influence of polyalcohols and carbohydrates on the thermostability of α‐amylase.

Biotechnology and bioengineering, 43(2), 107-114.

Dharmaraj, U., Parameswara, P., Somashekar, R., and Malleshi, N. G. (2014). Effect of processing on the microstructure of finger millet by X-ray diffraction and scanning electron microscopy. Journal of food science and technology, 51(3), 494-502.

Dutta, T. K., Jana, M., PAHARI, P. R., & Bhattacharya, T. (2006). The effect of temperature, pH, and salt on amylase in Heliodiaptomus viduus (Gurney)(Crustacea: Copepoda: Calanoida). Turkish journal of Zoology, 30(2), 187-195.

Eckhoff, S. R., and Watson, S. A. (2009). Corn and sorghum starches: production. In

52

Fitter, J., Herrmann, R., Dencher, N. A., Blume, A., and Hauss, T. (2001). Activity and stability of a thermostable α-amylase compared to its mesophilic homologue: mechanisms of thermal adaptation. Biochemistry, 40(35), 10723-10731.

Fonseca, L. M., Gonçalves, J. R., El Halal, S. L. M., Pinto, V. Z., Dias, A. R. G., Jacques, A. C., and da Rosa Zavareze, E. (2015). Oxidation of potato starch with different sodium hypochlorite concentrations and its effect on biodegradable films. LWT-Food Science and Technology, 60(2), 714-720.

Franco, C. M., Ciacco, C. F., and Tavares, D. Q. (1988). Studies on the susceptibility of granular cassava and corn starches to enzymatic attack. Part 2: Study of the granular structure of starch. Starch‐Stärke, 40(1), 29-32.

González-Bermúdez, C. A., Frontela-Saseta, C., López-Nicolás, R., Ros-Berruezo, G., and Martínez-Graciá, C. (2014). Effect of adding different thickening agents on the viscosity properties and in vitro mineral availability of infant formula. Food

chemistry, 159, 5-11.

Grommers, H. E., van der Krogt, D. A., in: BeMiller, J. N., and Whistler, R. L. (Eds.). (2009). Starch: chemistry and technology. Academic Presss, New York , pp. 511–539

Grommers, H. E., & van der Krogt, D. A. (2009). Potato starch: production, modifications and uses. In Starch (pp. 511-539). Academic Press.

Guadarrama-Lezama, A. Y., Carrillo-Navas, H., Pérez-Alonso, C., Vernon-Carter, E. J., and Alvarez-Ramirez, J. (2016). Thermal and rheological properties of sponge cake batters and texture and microstructural characteristics of sponge cake made with native corn starch in partial or total replacement of wheat flour. LWT-Food

Science and Technology, 70, 46-54.

Heo, H., Lee, Y. K., and Chang, Y. H. (2017). Effect of cross-linking on physicochemical and in vitro digestibility properties of potato starch. Emirates

Journal of Food and Agriculture, 463-469.

Hofvendahl, K., and Hahn–Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources1. Enzyme and microbial

technology, 26(2-4), 87-107.

Hoover, R., and Sosulski, F. (1985). Studies on the functional characteristics and digestibility of starches from Phaseolus vulgaris biotypes. Starch‐Stärke, 37(6), 181-191.

Jacobs, H., and Delcour, J. A. (1998). Hydrothermal modifications of granular starch, with retention of the granular structure: A review. Journal of agricultural and

53

John, R. P., Anisha, G. S., Nampoothiri, K. M., and Pandey, A. (2009). Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnology advances, 27(2), 145-152.

Jiang, S., Liu, C., Wang, X., Xiong, L., and Sun, Q. (2016). Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles. LWT-Food Science and Technology, 69, 251-257.

John, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2009). Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production.

Biotechnology advances, 27(2), 145-152.

Klaochanpong, N., Puttanlek, C., Rungsardthong, V., Puncha-arnon, S., & Uttapap, D. (2015). Physicochemical and structural properties of debranched waxy rice, waxy corn and waxy potato starches. Food hydrocolloids, 45, 218-226.

Karaoğlu, M., 2014. Yüksek Fruktozlu Mısır Şurubu, Gıda Mühendisliği dergisi,33. Sayı.

http://www.gidamo.org.tr/resimler/ekler/938b20f9f210570_ek.pdf?dergi=45 (Erişim Tarihi:15.06.2018).

Khlestkin, V. K., Peltek, S. E., and Kolchanov, N. A. (2018). Review of direct chemical and biochemical transformations of starch. Carbohydrate polymers, 181, 460- 476.

Kızıl, R., Irudayaraj, J., and Seetharaman, K. (2002). Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of agricultural

and food chemistry, 50(14), 3912-3918.

Klaochanpong, N., Puttanlek, C., Rungsardthong, V., Puncha-arnon, S., and Uttapap, D. (2015). Physicochemical and structural properties of debranched waxy rice, waxy corn and waxy potato starches. Food hydrocolloids, 45, 218-226.

Klibanov, A. M. (1983). Stabilization of enzymes against thermal inactivation. In

Advances in applied microbiology (Vol. 29, pp. 1-28). Academic Press.

Lauro, M., Suortti, T., Autio, K., Linko, P., and Poutanen, K. (1993). Accessibility of barley starch granules to α-amylase during different phases of gelatinization.

Journal of cereal science, 17(2), 125-136.

Lawal, M. V. (2019). Modified Starches as Direct Compression Excipients–Effect of Physical and Chemical Modifications on Tablet Properties: A Review.

Starch‐Stärke, 71(1-2), 1800040.

Lee, H. (2007). The isolation and characterisation of starches from legume grains and their application in food formulations,Thesis, School of Applied Sciences

54

Li, M., Li, J., and Zhu, C. (2018). Effect of ultrasound pretreatment on enzymolysis and physicochemical properties of corn starch. International journal of biological

macromolecules, 111, 848-856.

Li, H., Qi, Y., Zhao, Y., Chi, J., and Cheng, S. (2019). Starch and its derivatives for paper coatings: A review. Progress in Organic Coatings, 135, 213-227.

Lim, Y. M., Hoobin, P., Ying, D., Burgar, I., Gooley, P. R., & Augustin, M. A. (2015). Physical characterisation of high amylose maize starch and acylated high amylose maize starches. Carbohydrate polymers, 117, 279-285.

Liu, D., Cheng, K., Liu, H., Lin, R., and Hao, J. (2011). U.S. Patent No. 7,968,319. Washington, DC: U.S. Patent and Trademark Office

Liu, J., Wang, B., Lin, L., Zhang, J., Liu, W., Xie, J., and Ding, Y. (2014). Functional, physicochemical properties and structure of cross-linked oxidized maize starch.

Food Hydrocolloids, 36, 45-52.

Loureiro, G., and Martel, F. (2019). The effect of dietary polyphenols on intestinal absorption of glucose and fructose: Relation with obesity and type 2 diabetes.

Food reviews international, 35(4), 390-406.

Maningat, C. C., Seib, P. A., Bassi, S. D., Woo, K. S., Lasater, G. D.,in: BeMiller, J. N., and Whistler, R. L. (Eds.). (2009). Starch: chemistry and technology. Academic Press,New York, pp.441–510.

Mina, J., Valadez-Gonzalez, A., Herrera-Franco, P., Zuluaga, F., and Delvasto, S. (2011). Physicochemical characterization of natural and acetylated thermoplastic cassava starch. Dyna, 78(166), 174-182.

Mitsuiki, S., Mukae, K., Sakai, M., Goto, M., Hayashida, S., and Furukawa, K. (2005). Comparative characterization of raw starch hydrolyzing α-amylases from various Bacillus strains. Enzyme and microbial technology, 37(4), 410-416. Moharram, Y. G., Abou-Samaha, O. R., and Bekheet, M. H. (1998). Destructive and

non-destructive analytical methods in starch analysis. In Developments in Food

Science (Vol. 39, pp. 49-97).

Nagamori, M., & Funazukuri, T. (2004). Glucose production by hydrolysis of starch under hydrothermal conditions. Journal of Chemical Technology &

Biotechnology: International Research in Process, Environmental & Clean Technology, 79(3), 229-233.

Nigam, P. and Singh, D. (1995). Enzyme and microbial systems involved in starch processing. Enzyme and Microbial Technology, 17(9), 770-778.

Norman, B. E. (1982). A novel debranching enzyme for application in the glucose syrup industry. Starch‐Stärke, 34(10), 340-346.

55

Ogunsona, E., Ojogbo, E., Mekonnen, T. (2018). Advanced material applications of

starch and its derivatives. European Polymer Journal, V108, November 2018,

Pages 570-581

Paolucci‐Jeanjean, D., Belleville, M. P., Rios, G. M., and Zakhia, N. (1999). Why on earth can people need continuous recycle membrane reactors for starch hydrolysis?. Starch‐Stärke, 51(1), 25-32.

Parshikov, I. A., & Sutherland, J. B. (2015). Biotransformation of steroids and flavonoids by cultures of Aspergillus niger. Applied biochemistry and

biotechnology, 176(3), 903-923.

Pfister, B., and Zeeman, S. C. (2016). Formation of starch in plant cells. Cellular and

Molecular Life Sciences, 73(14), 2781-2807.

Pietrzyk, S., Fortuna, T., Juszczak, L., Gałkowska, D., Bączkowicz, M., Łabanowska, M., and Kurdziel, M. (2018). Influence of amylose content and oxidation level of potato starch on acetylation, granule structure and radicals’ formation.

International journal of biological macromolecules, 106, 57-67.

Pongjaruvat, W., Methacanon, P., Seetapan, N., Fuongfuchat, A., and Gamonpilas, C. (2014). Influence of pregelatinised tapioca starch and transglutaminase on dough rheology and quality of gluten-free jasmine rice breads. Food Hydrocolloids, 36, 143-150.

Pozo, C., Rodríguez-Llamazares, S., Bouza, R., Barral, L., Castaño, J., Müller, N., and Restrepo, I. (2018). Study of the structural order of native starch granules using combined FTIR and XRD analysis. Journal of Polymer Research, 25(12), 266. Prakash, O., & Jaiswal, N. (2010). α-Amylase: an ideal representative of thermostable

enzymes. Applied biochemistry and biotechnology, 160(8), 2401-2414.

Pratiwi, M., Faridah, D. N., and Lioe, H. N. (2018). Structural changes to starch after acid hydrolysis, debranching, autoclaving‐cooling cycles, and heat moisture treatment (HMT): A review. Starch‐Stärke, 70(1-2), 1700028.

Qin, X. S., Sun, Q. Q., Zhao, Y. Y., Zhong, X. Y., Mu, D. D., Jiang, S. T.,Luo S. Z., Zheng, Z. (2017). Transglutaminase-set colloidal properties of wheat gluten with ultrasound pretreatments. Ultrasonics sonochemistry, 39, 137-143.

Schirmer, M., Höchstötter, A., Jekle, M., Arendt, E., and Becker, T. (2013). Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio. Food Hydrocolloids, 32(1), 52-63.

Shewry, P. R. (2009). Wheat. Journal of experimental botany, 60(6), 1537-1553.

Singh, N., Singh, J., Kaur, L., Sodhi, N. S. and Gill, B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources.

56

Singh, R. S., & Larroche, C. (2018). Biotechnological applications of inulin-rich feedstocks. Bioresource technology.

Sitohang, K. A., Lubis, Z., and Lubis, L. M. (2015). The Effect of Ratio o Wheat Starch and Breadfruit Flours with Kinds of Stabilizer on The Quality of Breadfruit Cookies. Jurnal Rekayasa Pangan dan Pertanian, 3(3), 308-315.

Sujka, M. (2017). Ultrasonic modification of starch–Impact on granules porosity.

Ultrasonics sonochemistry, 37, 424-429.

Suma P, F. and Urooj, A. (2015). Isolation and characterization of starch from pearl millet (Pennisetum typhoidium) flours. International journal of food properties,

18(12), 2675-2687.

Svegmark, K., and Hermansson, A. M. (1993). Microstructure and rheological properties of composites of potato starch granules and amylose: a comparison of observed and predicted structures. Food Structure, 12(2), 6.

Şeker Kanunu 4634 (2001,19 Nisan), T. C. Resmi Gazete, Sayı:24378 (Erişim Tarihi:

15.06.2018)http://www.resmigazete.gov.tr/eskiler/2001/04/20010419.htm

Teong, S. P., Yi, G., & Zhang, Y. (2014). Hydroxymethylfurfural production from bioresources: past, present and future. Green Chemistry, 16(4), 2015-2026. Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—composition, fine structure and

architecture. Journal of cereal science, 39(2), 151-165.

Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties.

International journal of biological macromolecules, V 132, 1 July 2019, Pages

1079-1089

Tharanathan, R. N., & Mahadevamma, S. (2003). Grain legumes—a boon to human nutrition. Trends in Food Science & Technology, 14(12), 507-518.

Thomas, C. Y. (1985). Sugar: threat or challenge? An assessment of the impact of

technological developments in the high-fructose corn syrup and sucrochemicals industries.

Toprak, A., 2007. Türk Şeker Sanayiinde Maliyet ve Verimlilik, Kamu ve Özel Sektöre Ait İşletmeler Arası Bir Karşılaştırma.. Yüksek Lisans Tezi, Selçuk Üniversitesi Sosyal Bilimler Enstitüsü s.14, Konya

Türk Gıda Kodeksi Yönetmeliği, Tebliğ No 2002-26, 2002, İnsan Tüketimine Sunulan Şekerlerin Analiz Yöntemleri Tebliği

Vamadevan, V., & Bertoft, E. (2015). Structure‐function relationships of starch components. Starch‐Stärke, 67(1-2), 55-68.

57

Van Der Borght, A., Goesaert, H., Veraverbeke, W. S., & Delcour, J. A. (2005). Fractionation of wheat and wheat flour into starch and gluten: overview of the main processes and the factors involved. Journal of cereal science, 41(3), 221- 237.

Van Der Maarel, M. J., Van der Veen, B., Uitdehaag, J. C., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of biotechnology, 94(2), 137-155.

Wang, K., Henry, R. J., and Gilbert, R. G. (2014). Causal relations among starch biosynthesis, structure, and properties. Springer Science Reviews, 2(1-2), 15-33. Wang, D., Ma, X., Yan, L., Chantapakul, T., Wang, W., Ding, T., ... & Liu, D. (2017).

Ultrasound assisted enzymatic hydrolysis of starch catalyzed by glucoamylase: Investigation on starch properties and degradation kinetics. Carbohydrate

polymers, 175, 47-54.

Wang, S., Copeland, L. (2015). Effect of acid hydrolysis on starch structure and functionality: A review. Critical reviews in food science and nutrition, 55(8), 1081-1097.

Warren, F. J., Gidley, M. J., & Flanagan, B. M. (2016). Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study. Carbohydrate polymers, 139, 35-42.

Waterschoot, J., Gomand, S. V., Fierens, E., & Delcour, J. A. (2015). Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch‐Stärke, 67(1-2), 14-29.

Watson, S. A. (1984). Corn and sorghum starches: Production. In Starch: chemistry

and technology (pp. 417-468). Academic Press.

Whistler, R. L., BeMiller, J. N., Paschall, E. F. (Eds.). (2012). Starch: chemistry and

technology. Academic Press,87-153.

Witczak, T., Witczak, M., & Ziobro, R. (2014). Effect of inulin and pectin on rheological and thermal properties of potato starch paste and gel. Journal of food

engineering, 124, 72-79.

Xiao, Z., Wu, M., Beauchemin, M., Groleau, D., & Lau, P. C. (2011). Direct fermentation oftriticale starch to lactic acid by Rhizopus oryzae. Industrial

Biotechnology, 7(2), 129-134.

Yook, C., & Robyt, J. F. (2002). Reactions of alpha amylases with starch granules in aqueous suspension giving products in solution and in a minimum amount of water giving products inside the granule. Carbohydrate research, 337(12), 1113- 1117.

58

Zainab, A., Modu, S., Falmata, A. S., & Maisaratu, A. (2011). Laboratory scale production of glucose syrup by the enzymatic hydrolysis of starch made from maize, millet and sorghum. Biokemistri, 23(1),1-8.

Zhang, Y. H. P., Evans, B. R., Mielenz, J. R., Hopkins, R. C., & Adams, M. W. (2007a). High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PloS one, 2(5), e456.

Zhang, Z. Y., Jin, B., & Kelly, J. M. (2007b). Production of lactic acid from renewable materials by Rhizopus fungi. Biochemical engineering journal, 35(3), 251-263. Zheng, Y., Zhang, H., Zhao, L., Wei, L., Ma, X., & Wei, D. (2008). One‐step

production of 2, 3‐butanediol from starch by secretory over‐expression of amylase in Klebsiella pneumoniae. Journal of Chemical Technology &

Biotechnology: International Research in Process, Environmental & Clean Technology, 83(10), 1409-1412.

Zhou, Q., Li, X., Yang, J., Zhou, L., Cai, J., Wang, X.,Dai T., Cao W., Jiang, D. (2018). Spatial distribution patterns of protein and starch in wheat grain affect baking quality of bread and biscuit. Journal of cereal science, 79, 362-369.

Zobel, H. F. (1988). Molecules to granules: a comprehensive starch review.

59 ÖZGEÇMİŞ

Kimlik Bilgileri:

Adı Soyadı: Emine KAPAR YILMAZ E-posta:eminekaparyilmaz@gmail.com Adresi: Konya / Türkiye

Eğitim:

Lise: Karaman İmam-Hatip Lisesi

Lisans: Selçuk Ünivesitesi / Fen – Edebiyat Fakültesi/Kimya Bölümü Yüksek Lisans: Karamanoğlu Mehmetbey Üniversitesi/Mühendislik Fakültesi/Biyomühendislik

Yabancı Dil ve Düzeyi:

İş Deneyimi: Karaman Anı Bisküvi Gıda San ve Tic. A.Ş./ Kalite Kontrol Müdürü Milli Eğitim Müdürlüğü / Ücretli Öğretmenlik

Konya Şeker San. ve Tic A.Ş: Kimyager Deneyim Alanları: Gıdalarda fiziksel, kimyasal ve enstrümantal analizler.

Benzer Belgeler