• Sonuç bulunamadı

Bu çalışmada lineer kesir mertebeli difüzyon dalga denkleminin farklı yöntemlerle elde edilmiş nümerik çözümleri incelenmiştir. Çözümlerde temel olarak sonlu elemanlar yöntemi kullanılmıştır. Elde edilen çözümler incelendiğinde Petrov-Galerkin ve Kollokasyon yöntemlerinin diğer benzer yöntemlere göre daha iyi sonuçlar verdiği gözlemlenmiştir.

Yaygın bir kullanım alanına sahip olan bu denklemlerin çözümleri farklı sonlu elemanlar yöntemleri uygulanarak da elde edilebileceği düşünülmektedir. Yapılan çalışmalara bakıldığında uygulanan yöntemler diğer denklem çözümleri için de iyi sonuçlar verecek etkinliktedir.

KAYNAKLAR DİZİNİ

Agrawal, O.P. (2002), Solutıon for a fractional diffusion-wave equatıon defined in a bounded domain, Nonlin. Dynam., 145-155.

Avcı, D. (2013), Uzay-Zaman Kesirli Difüzyon Sistemlerinin Optimal Kontrolü, Doktora Tezi, Balıkesir Üniversitesi Fen bilimleri Enstitüsü, Balıkesir, 2-5.

Balakrishman, V. (1985), "Anomalous diffusion in one dimension," Phsica A, cilt 132, s. 569- 580.

Barkai, E, Metzler, R., Klafter, J. (2000), From continuous time random walks to the fractional Fokker-Planck equation, Physical Rewiev E, cilt 61, no. 1, s.132-138.

Bayraktar, M. (2016), Burgers Denkleminin Petrov-Galerkin Sonlu Eleman Metodu Çözümü, Yüksek Lisans Tezi, Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Denizli, 80s.

Celik, C., Duman, M. (2012), Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, Journal of Computational Physics, 231 (2012) 1743-1750. Daftardar-Gejji, V., Bhalekar, S. (2008), Solving Fractional Diffusion-Wave Equations Using a New Iterative Method, Fractional Calculus and Applied Analysis, 2, 193-202.

Diethelm, K., Freed, A.D. (1999), "On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity," in Scientific Computing in Chemical Engineering 2:, Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer, Heidelberg, Germany, s. 217-224.

Esen, A., Tasbozan, O., Ucar, Y., Yağmurlu, N. M. (2015), A B-Spline Collocation Method for Solving Fractional Diffusion and Fractional Diffusion-Wave Equations, Tbilisi Mathematical Journal 8(2), 181-193.

Esen, A., Ucar, Y., Yağmurlu, M., Taşbozan, O. (2014), Solving Fractional Diffusion and Fractional Diffusion-Wave Equations by Petrov-Galerkin Finite Element Method, Application Engineering Mathematic, 2, s 155-168.

Esen, A., Ucar, Y., Yağmurlu, M., Taşbozan, O. (2013), A Galerkin Finite Element Method to Solve Fractional Diffusion and Fractional Diffusion-Wave Equations, Mathematical Modelling and Analysis, 18(2), 260-273.

Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P. (2002), Discrete random walk models for space-time fractional diffusion, Chem. Phys., 521-541.

Hanert, E. (2011), On the numerical solution of space-time fractional diffusion models, Computers and Fluids, 46, 33-39.

Heydari, M.H., Hoosmandasi, Maalek Ghaini, F.M., Cattani, C. (2015), Wavelets method for the time fractional diffusion-wave equation, Physics Letters A 379, 71-76.

Hilfer, R. (2000), Aplications of Fractional Calculus in Physics, World Scientific Publishing, River Edge, NJ, USA.

Iomin, A. Dorfman, S., Dorfman L. (2004), On tumor development: fractional transport approach, http://arxiv.org/abs/q-bio/0406001.

KAYNAKLAR DİZİNİ (devam)

Karatay, I., Bayramoğlu, S.R., Şahin, A. (2011), Implicit difference approximation for the time fractional heat equation with the nonlocal condition, Appl. Numer. Math., 61, 1281-1288 Khader, M.M. (2010), On the numerical solutions for the fractional diffusion equation, Communications in Nonlinear Science and Numerical Simulation, doi:10.1016/j.cnsns.

Khader, M.M., Sweliam, N.H., Mahdy, A.M.S. (2011), An Efficient Numerical Method for Solving the Fractional Diffusion Equation, Journal of Applied Mathematics and Bioinformatics, 2, 1-12.

Kilbas, A.A., Srivastana, H.M., Trujillo, J.J. (2006), Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

Langlands, T.A.M., Henry, B.I. (2005), The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys. 205, 719-736.

Li, X. (2012), Numerical solution of fractional differential equations using cubic B-Spline wavelet collocation method, Commun Nonlinear Sci Number Simulat, 17, 3934-3946.s

Lin, Y., Xu, C. (2007), Finite difference/spectral approximations fot the time-fractional diffusion equation, Journal of Computational Physics, 225, 1533-1552.

Logan, D. L. (2007), A First Course in the Finite Element Method (Fourth Edition), Thomson. Lynch, V.E., Carreras, B.A., del-Castillo-Negrete, D., Ferreira-Mejias, K.M., Hicks, H.R. (2003), Numerical methods for the solutions of partial differential equations of fractional order, J. Comput. Phys. 192, 406-421.

Mainardi, F. (1995), Fractional Diffusive Waves in Viscoelastic Solids, Nonlinear Waves in Solids, Fairfield, s. 93-97.

Mainardi, F. (1997), A model of Diffusive Waves in Viscoelasticity Based on Fractional Calculus, 4961-4966.

Meerschaert, M.M., Tadjeran, C. (2004), Finite difference approximations for fractional advection-disperion flow equations, J. Comput. Appl. Math. 65-77.

Metzler, R., Klafter, J. (2000), The random walks guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, cilt 339, no.1, s. 77.

Mitkowski, W. (2011), Approximation of Fractional Diffusion-Wave Equation , Acta Mechanica et Automatica, 5, 65-68.

Monami, S., Odibat, Z. (2006), Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Physics Letters A, 355, 271-279.

Murio, D.A. (2008), "Implicit finite difference approximation for time fractional dıffusion equations," Computers Mathematics with Applications, cilt, 56, 56, no. 4, s. 1138-1145.

Oldham, K.B. Spanier, J. (1974), The Fractional Calculus , Academic, New York. Podlubny I. (1999), Fractional Differential Equations, Academic Press, San Diego.

KAYNAKLAR DİZİNİ (devam)

Prenter, P.M. (1975), Splines and Variational Methods, New York, John Wileyi.

Quintana-Murillo, J., Yuste, S.B. (2011), An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo form, J. Comput. Nonlinear dynam. 6, 021014.

Ray, S.S. (2007), Exact Solutions for Time-Fractional Diffusion-Wave Equations by Decomposition Method, Phys. Scr., 75, 53- 61.

Sokolov, I.M., Klafter, J., Blumen, A. (2002), Fractional kinetics, Physics Today, cilt 55, no. 11, s. 48-54.

Sun, H.G., Chen, W., Sze, K.Y. (2011), A semi-analytical finite element method for a class of time-fractional diffusion equatıons, arXiv: 1109.0641v1, [math-ph].

Sweilam, N.H., Khader, M.M., Mahdy, A.M.S. (2012), Crank-Nicolson Finite Difference Method for Solving Time-Fractional Diffusion Equations, 1-9.

Tadjeran, C., Meerschaert, M.M., Scheffler, H. (2006), A second-order accurate numerical approximation for the fractional diffusion equation, Journal of Computational Physics, 213, 205-213.

Tasbozan, O., Esen, A., Yagmurlu, N. M., Ucar, Y. (2013), A Numerical Solution to Fractional Diffusion Equation for Force-Free Case, Hindawi Publishing Corporation.

Ucar, Y., Yağmurlu, N. M., Tasbozan, O., Esen, A. (2015), Numerical Solutıon of Some Fractıonal Partıal Differential Equations Using Collocation Finite Element Method, Progress in Fractional Differentiation and Applications, 157-164.

Wyss, W. (1986), "The fractional diffusion equation," Journal of Mathematical Physics, cilt 27, no. 11, s. 2782-2785.

Yuste, S.B. (2006), Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys., 216, 264-274.

Yuste, S.B., Acedo, L. (2005), An explicit finite difference method and a new von Neumann- type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal. 42, 1862-1874.

Benzer Belgeler