• Sonuç bulunamadı

B. Sistemik Faktörler

5. SONUÇ VE ÖNERİLER

DEL‟ in DO tekniğinin iyileĢme periodunun kısaltılmasında etkisinin deneysel olarak değerlendirilmesi amacıyla yapılan çalıĢmamızın sonucunda lazerin kemik iyileĢmesindeki olumlu etkisi olduğu gösterilmiĢtir. Tüm zaman ölçümlerinde lazer grubundaki KMD değerleri kontrol grubundaki değerlerden anlamlı olarak daha yüksek oldukları görülmüĢtür (p<0.001). Bu değerler konsolidasyon periodunun sonunda operasyondan önceki değerlerle karĢılaĢtırılınca lazer grubundakiler daha yüksek oldukları, kontrol grubundakiler ise daha yüksek olmadıkları ve hatta orijinal değerlere ulaĢamadıkları görülmüĢtür (p>0.05). Lazer grubundaki orijinal kemiğin oluĢumu konsolidasyon periodunun yaklaĢık 4. haftasında izlenirken kontrol grubundaki kemiğin oluĢumu konsolidasyon periodunun sonunda bile tamamlanmadığı izlenmiĢtir.

Dolaysıyla DELT ile distraksiyon aygıtının daha erken çıkarılması mümkün olup uzun iyileĢme perioduna bağlı enfeksiyon riski ve hastanın rahatsızlığı önlenebilir. Elde ettiğimiz sonuçlar DELT ile ilgili yapılan araĢtırmalara uygulanan parametreler açısından önemli bir katkısı olduğu düĢünmekteyiz. Ancak bu konu ile ilgili özellikle lazerin dozu, uygulama zamanı ve süresi ile ilgili daha fazla çalıĢmaların yapılmasıyla daha kesin sonuçlar elde edilip bilime daha büyük katkısı olabileceğinin düĢüncesindeyiz.

Kemik dansitesi ile ilgili ölçüm metodlarından biri histolojik değerlendirmenin kemik dokusunun kalitesi hakkında bilgi verebiliyorsa da, bu yüntem kemik dansitesi hakkında kantitatif veriler ve baĢka biyomekanik parametreler sağlamakta yetersiz kaldığından araĢtırmamızda kullanılmamıĢtır.

ÇalıĢmamızdan kemik dansitesinin ölçülmesinde kullanılan DEXA yönteminin kesin kantitatif sonuçları ve kabuledilebilir fiyatı ile kullanılıĢlı bir metod olduğu anlaĢılmıĢtır. Fakat bu yöntemin volümetrik bir ölçüm yapmadığı ve kortikal kemiği trabeküler kemikten ayıramadığı gibi dezavantajlarından dolayı BT yönteminin de denenmesi ve bu iki yönteminin kıyaslanmasının bilimsel bir katkısı olacağının düĢüncesindeyiz.

ÖZET

Distraksiyon Osteogenezisinde Kemik Doku İyileşmesi Üzerine Düşük Enerjili Lazer Uygulanmasının Etkinliğinin Deneysel Olarak İncelenmesi

DO aĢamalı traksiyon tekniği ile birbirinden dereceli olarak ayrılan kemik segmentleri arasında meydana gelen yeni kemik oluĢumudur. DO ile elde edilen yeni kemiğin oluĢumu ve olgunlaĢması genellikle uzun bir konsolidasyon periodu gerektirir. Bu iyileĢme periodu boyunca hasta distraksiyon aygıtını taĢımak zorundadır. Bu da hasta rahatsızlığı ve doku enfeksiyonuna bağlı klinik problemleriyle sonuçlanabilir. Kraniyofasiyal DO‟ sinde konsolidasyon periodunu kısaltmak amacıyla kullanılan DELT distraksiyon ve lazer uygulama parametrelerine bağlı, yeni ve tam olarak açık olmayan bir tedavi metodudur. Bu çalıĢmanın amacı tavĢan mandibulasında yapılan DO‟ sinde oluĢan yeni kemiğin üzerine uygulanan DELT‟ sinin konsolidasyon periodunu kısaltıp kısaltamayacağını deneysel olarak araĢtırıp bu tedavinin hastanın olası morbiditesi üzerindeki azaltıcı etkisini de göstermekti.

On dört tane Yeni Zelanda beyaz tavĢanı her ikisi de 7‟ Ģer tane olacak Ģekilde iki gruba ayrılmıĢtır. Her iki grubun unilateral mandibular kortikotomisi yapıldıktan sonra sol mandibulalara özel tasarlanmıĢ tek yönlü distraksiyon aygıtı yerleĢtirilmiĢtir. 7 gün latent periodundan sonra her tavĢanın mandibulasına 10 gün boyunca 12 saatte 0.5 mm bir hızla distraksiyon uygulanmıĢtır. Lazer grubundaki her distraksiyon aralığına distraksiyondan hemen sonra transkütanöz olarak 12 saatte 7.5 J/cm² dozu veya günde 15 J/cm² doz ile DEL (Dental GaAlAs, klas III B, 650 nm dalgaboyu ve 25 mW/cm² çıkıĢ gücüne sahip) ıĢınlaması uygulanmıĢtır. Kontrol grubuna DELT uygulanmamıĢtır. Her iki grubun operasyon sahasında kemik yoğunluğun ölçülmesi preoperatif olarak, operasyondan sonra 30. ve 60.

günlerde DEXA ile yapılmıĢtır.

Tüm zaman ölçümlerinde lazer grubunun ortalama kemik dansitesi ile ilgili parametreler kontrol grubundakilerden anlamlı olarak daha yüksek bulunmuĢtur (p<0.001).

Bu parametreler lazer grubunda konsolidasyon periodunun sonunda operasyondan öncekilerle kıyaslanınca anlamlı olarak daha yüksek bulunmuĢken (p<0.001), kontrol grubundakiler orijinal kemiğin parametrelerine ulaĢamadıkları, hatta daha düĢük bulunmuĢtur (p>0.05). Lazer grubundaki orijinal kemiğin tam oluĢumu yaklaĢık konsolidasyon periodun dördüncü haftasında izlenirken kontrol grubunda bu oluĢum konsolidasyonun sonunda bile tamamlanmadığı izlenmiĢtir.

Bu araĢtırmadan mandibular DO‟ sinde distraksiyon aygıtının aktivasyonundan hemen sonra uygulanan DELT‟ nin yeni oluĢan kemiğin kalitesi üzerine arttırıcı bir etkisi olduğunun ve bu tedavi ile konsolidasyon periodunun kısaltılabileceğinin sonucuna varılmıĢtır. Dolaysıyla aygıtın erken çıkartılması ile uzun tedavi perioduna bağlı hasta rahatsızlığı ve morbiditesi azaltılabilir.

Anahtar Sözcükler: Distraksiyon osteogenezisi, düĢük enerjili lazer, düĢük enerjili lazer tedavisi, iyileĢme, kemik.

SUMMARY

An Experimental Evaluation of the Effect of Low Level Laser Therapy on Bone Healing During Distraction Osteogenesis

The ability to induce a new bone by the gradual separation of two bony segments is known as distraction osteogenesis. Formation and maturity of the new bone in distraction osteogenesis usually requires a long consolidation period. Patient is supposed to wear the device during this phase of the distraction prosedure, which can lead to clinical problems associated with patient discomfort and tissue infection. Use of low - level laser therapy (LLLT) in craniofacial distraction osteogenesis to shorten the consolidation period is a new, unclear method related to both distraction and laser irradiation parameters. In this study we purposed to experiment whether the LLLT on new bone formation during mandibular distraction osteogenesis could accelerate the consolidation phase in rabbits and reduce the potential morbidity in humans.

Fourteen male New Zealand white rabbits were divided into two groups consisting of seven rabbits each. A customised rabbit unidirectional distraction devices were placed on the left mandibles after unilateral mandibular corticotomies of both laser and control groups.

After a latency of 7 days the mandible of each rabbit was distracted at a rate of 0.5 mm/12 hours for 10 days. Immediately after each device activation, the each distraction gap of experimental group was treated transcutaneously with low level laser, (Dental GaAlAs, class III B, 650 nm wavelength and power output of 25 mW/cm²) irradiation dose of 7.5 J/cm² per 12 hours or 15 J/cm² per day. The control group did not undergo LLLT. Bone densitometry assessment of the experiment sides was performed in all groups presurgically and at the 30.

and 60. days postsurgically by Dual Energy X - Ray Absoptiometry.

The mean bone density value of rabbits in laser group was significantly higher than those of control group (p<0.001) at all time periods. The bone density values in laser group at the end of consolidation period were significantly higher than the bone density values at the time before surgery (p<0.001) whereas in control group those values were even lower than the original ones (p>0.05). The formation of a complete original bone in laser group occured aproximately at the 4th week of consolidation period whereas in control group it wasn‟t completely formed at the end of the consolidation phase.

We concluded that use of low - level laser irradiation in mandibular distraction osteogenesis immediately after device activation has accelerative effect on the quality of new bone which may allow a shortened consolidation period. Therefore earlier removal of the device could avoid the patient discomfort and the morbidity associated with the long treatment period.

Key Words: Bone, distration ostheogenesis, healing, low level laser, low level laser therapy.

KAYNAKLAR

ADA, S., ALPARSLAN, B., AYDIN, A.T., BALCI, C., CEYLAN, T., DORAL, M.N., ESENKAYA, Ġ., GÜLEÇ, A., KAYA, A., TÜMER, Y. (2010). A‟dan Z‟ye Ortopedi terimleri dizini. www: 1-33

AIDA, T., YOSHIOKA, I., TOMINAGA, K., FUKUDA, J. (2003). Effects of latency period in a rabbit mandibular distraction osteogenesis. Int. J. Oral Maxillofac. Surg. 32: 54-62

ALI, M.N., EJIRI, S., KOBAYASHI, T., ANWAR, R.B., ODA, K., OHSHIMA, H., SAITO, CH. (2009). Histologic study of the cellular events during rat mandibular distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 107:325-335

AL-SEBAEI, M.O., GAGARI, E., PAPAGEORGE, M. (2005). Mandibular Distraction Osteogenesis: A rabbit model using a novel experimental design. J Oral Maxillofac Surg, 63: 664-672

ANNIO, D., GOGUEN, L.A. (1994). Distraction osteogenesis for reconstruction of mandibular symphyseal defects. Arch Otolaryngol Head Neck Surg, 120: 911-16

ARONSON, J. (1997). Current concepts review-limb lengthening, sceletal reconstruction, and bone transport with the Ilizarov method. J Bone Joint Surg (Br), 79-A: 1243-58

AVLONITOU, E., GEORGIOU, E., DOUSKAS, G., LOUIZI, A. (1987). Estimation of body composition in competitive swimmers by means of three different techniques. Int J Sport Med, 18: 363-368

AYOUB, A.F., RICHARDSON, W., BARBENEL, J.C. (2005). Mandibular elongation by automatic distraction osteogenezis: the first application in humans. British J of Oral and Maxillofac Surg, 43: 324-328

BARKETE, H.E., FERRARI, C.S., PLIES, S.M. (1997). Orthognatic surgery by distraction osteogenesis: a literature review. Dentistry 17(3): 14, 16-18

BARON, R., CHAKRABORTY, M., CHATTERJEE, D., HORNE, W., LOMRI, A., REVESLOOT, J.H. (1993). Biology of the osteoclast. In: Mundy, G.R., Martin, T.J. (Eds.). Physiology and pharmacology of bone, New York,Springer-Verlag, pp: 111-147

BARUSHKA , O., YAAKOBI, T., ORON, U. (1995). Effects of low-energy laser (He-Ne) irradiation on the process of bone repair in the rat tibia. Bone 16: 47-55

BELL, W.H., GONZALEZ, M., SAMCHUKOV, M.L., GUERRERO, C.A. (1999). Intraoral Widening and lengthening of the mandible in baboons by distraction osteogenesis. J Oral Maxillofac Surg, 57: 548-562

BELL, W.H., HARPER, R.P., GONZALEZ, M., CHERKASHIN, A.M., SAMCHUKOV, M.L. (1997). Distraction osteogenesis to widen the mandible. British J of Oral and Maxillofac Surg, 35: 11-19

BESSANT, R., KEAT, A. (2002). How should clinicians manage osteoporosis in ankylosing spondylitis? J Rheumatol.

29 (7): 1511 – 9

BASSETT, C.A. (1982). Pulsing electromagnetic fields: a new method to modify cell behavior in valcified and noncalcified tissues. Calcif Tissue Int, 34: 1-8

BJORDAL, J.M., LOPES-MARTINS, R.A., IVERSEN, V.V. (2006b). A randomized, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostoglandin E2 consentrations. Br J Sports Med, 40: 76-80

BJORDAL, J.M., JOHNSON, M.I., IVERSEN, V., AIMBIRE, F., LOPES-MARTINS, R.A. (2006a). Photoradiation in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg, 24: 158-68

BLAYA, D.S., GULIMARAES, M.B., POZZA, D.H., WEBER, J.B.B., DE OLIVIERA, M.G. (2008). Histologic study of the effect of laser therapy on bone repair. The J of Contemporary Dental Practice, 9(6): 1-8

BLOCK, M.S., BLISTER, G.D. (1994). Use of distraction osteogenesis for maxillary advancement: preliminary results. J Oral Maxillofac Surg, 52: 282-286

BOLOTIN, H.H. (2007). DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodeling. Bone 41: 138-154

BOSSINI P.S., FANGEL, R., HABENSCHUS, R.M., RENNO, A.C., BENZE, B., ZUANON, J.A., NETO, C.B., PARIZOTTO, N.A. (2008). Low-level laser therapy (670 nm) on viability of random skin flap in rats. Laser Med Sci, 24(2): 209-13

BRUTSCHER, R., RAHN, B.H., RUTER, A., PERREN, S.M. (1993). The role of corticotomy and osteotomy in the treatment of bone defects using the Ilizarov technique. J Orthop Trauma, 7(3): 261-9

CAKARER, S, OLGAC, V., AKSAKALLI, N., TANG, A., KESKIN, C. (2009). Acceleration of consolidation period by thrombin peptide 508 in tibial distraction osteogenesis in rats. British J of Oral and Maxillofac Surg, 48(8): 633-6 CAMERON, J.R., SORENSON, J. (1963). Measurement of bone mineral in vivo: an improved method. Science. 142:

230-232

CALANDRIELLO, B. (1975). The behavior of muscle fibers during surgical lengthening of a limb. Ital J Orthop Traumatol, 1:231

CARATI, C.J., ANDERSON, S.N., GANNON, B.J., PILLER, N.B. (2003). Treatment of postmastectomy lymphedema with low level laser therapy: a double blind, placebo-controlled trial. Cancer, 98: 1114-22

CLARIZIO, L.F. (2002). Vertical Alveolar Distraction Versus Bone Grafting for Implant Cases:The Clinical Issues. In:

Jensen, O.T. (Ed.). Alveolar Distraction Osteogenesis. Chapter 5 pp:59-67

CERQUEIRA, A., SILVEIRA, R.L., DE OLIVIERA, M.G., SANT‟ANA FILHO, M., HEITZ, C. (2007). Bone tissue microscopic findings related to the use of diode laser (830 nm) in ovine mandible submited to distraction osteogenesis. Acta Cirurgica Brasileira, 22 (2): 92

CHENG, J.Y., MAFFULLI, N., SHER, A., BOBBY, K.W. (2007). Bone Mineralization Gradient at the Callotasis Site. J Orthopaedic Science, 7: 331-340

CHEUNG, L.K., ZHENG, L.W. (2006). Effect of recombinant human tissue inhibitor of matrix metalloproteinase-1 in mandibular distraction osteogenesis in rabbits: a computed tomographic study. British J Oral and Maxillofac Surg, 44: 5-11

CHEUNG, L.K., ZHENG, L.W., MA, L. (2006). Effect of distraction rates on expression of bone morphogenetic proteins in rabbit mandibular distraction osteogenesis. J Craniomaxillofac Surg, 34: 263-269

CHIN, M., TOTH, B.A. (1996). Distraction osteogenesis in maxillofacial surgery using internal devices: review of five cases. J Oral Maxillofac Surg, 54(1):45-53

CHOW, R.T., HELLER, G.Z., BARNSLEY, L. (2006). The effect of 300 mW, 830 nm laser on chronic neck pain: a double blind, randomized, placebo-controlled study. Pain, 124: 201-10

CODIVILLA, A. (1905). On the means of lengthening in the lower limbs, the muscles and tissues which are shortened through deformity. Am J OrthopSurg, 2: 353-69

COHEN, S.R., RUTRICK, R.E., BURSTEIN, F.D. (1995). Distraction osteogenesis of the human craniofacial skeleton:

initial experience with new distraction system. J Craniofac Surg, 6(5): 368-374

COLUZZI, D. (2000). An overiew of laser wavelengths used in dentistry. J Dent Clin N Am 44 (4): 753-766 COLUZZI, D. (2004). Fundamentals of dental lasers: science and instruments. J Dent Clin N Am 48(4): 751-770 CONVISSAR, R. (2004). The biologic rationale fort he use of lasers in dentistry. J Dent Clin N Am, 48(4): 771-794

COPE, J.B., SAMCHUKOV, M.L., CHERKASHIN, A.M. (1999). Mandibular distraction osteogenesis: a historical perspective and future directions. Am J Orthod Dentofac Orthop, 115: 448-60

COPE, J.B., SAMCHUKOV, M.L., CHERKASHIN, A.M. (2001). Historical development and evolution of craniofacial distraction osteogenesis. In: Rudolph, P., Pendill, J., Stein, D.(Eds.). 1st Ed. Craniofacial Distraction Osteogenesis. 1: 3-17

COPE, J.B., SAMCHUKOV, M.L., MUIRHEAD, D.E. (2001). The Effect of Gradual Traction on Gingival Tissue. In:

Rudolph, P., Pendill, J., Stein, D. (Eds). 1st Ed. Craniofacial Distraction Osteogenesis. 10: 102-109

CORCORAN, J., HUBLI, E.H., SALYER, K.E. (1997). Distraction osteogenesis of costochondral neomandibles: a clinical experience. Plast Reconstr Surg, 100:311

CORRAZA, A.V., JORGE, J., KURACHI, C., BAGNATO, V.S. (2007). Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg, 25:102-6

COSAIN, A.K., SANTORO, T.D., HAVLIK, R.J., COHEN, S.R., HOLMES, R.E. (2002). Midface distraction following Le Fort III and monobloc osteotomies: problems and solutions. Plast Reconstr Surg, 109: 1797-1808

CRUESS RL. (1984) Healing of bone, tendon and ligament In: Fractures. Philadelphia, Lippincott Company, 1:147-167 DEVIES, J., TURNER, S., SANDY, D. (1998). Distraction osteogenesis: a review. Br Dent J, 185: 462-7

DJASIM, U.M., HEKKING-WEIJMA, J.M.,WOLVIUS, E.B., VAN NECK, J.W., VAN DER WAL, K.G.H. (2008).

Rabbits as a model for research into craniofacial distraction osteogenesis. British J of Oral and Maxillofac Surg, 46: 620-624

DJASIM, U.M.,WOLVIUS, E.B., VAN Neck, J.W., WEINANS, H., VAN DER Wal, K.G. (2007). Recommendations for optimal distraction protocols for various animal models on the basis of a systematic review of the literature.

Int J Oral Maxillofac Surg, 36: 877-83

DOBLARE, M., GARCIA, J.M., GOMEZ, M.J. (2004). Modelling bone tissue fracture and healing: a review.

Engineering Fracture Mechanics, 71: 1809-1840

ECKERT, P., CASEZ, J.P., THIEBAUD, D., SCHNYDER, P., BURCKHARD, P. (1996). Bone Dansitometry of the forearm: comparison of single-photon and dual-energy x-ray absorbsiometry. Bone, 18: 575-579

ELLIS, E.III., CARLSON, D.S. (1983). Stability two years after mandibular advancement with and without suprahyoid myotomy: an experimental study. J Oral Maxillofac Surg 41: 426 – 37

EL-HAKIM, I.E., AZIM, M.A., EL-HASSAN, F.A., MAREE, S.M. (2004). Preliminary investigation into the effects of electrical stimulation on mandibular distraction osteogenesis in goats. Int J Oral Maxillofac Surg, 33(1): 42-7 ENISLIDIS, G., FOCK, N., EWERS, R. (2005). Distraction osteogenesis with subperiosteal devices in edentulous

mandibles. British J of Oral and Maxillofac Surg, 43: 399-403

FANG, T.D., NACAMULI, R.P., SONG, H.J.M., FONG, K.D., WARREN, S.M., SALIM, A., CARANO, A.D., FILVAROFF, E.H., LONGAKER, M.T. (2004). Creation and characterization of a mouse model of mandibular distraction osteogenesis. Bone 34: 1004-1012

FAULKNER, K.G. (2001). Update on bone density measurement. Rheum Dis Clin N Am, 27 (1): 81-9

FERNANDO, S., HILL, C.M, WALKER, R. (1993). A randomized double blind comparative study of low level laser therapy following surgical extraction of lower third molar teeth. Br J Oral Maxillofac Surg, 31: 170

FILLIPIN, L.I., MAURIZ, J.L., VEDOVELLI, K., MOREIRA, A.J., ZETTLER, C.G., LECH, O., MARRONI, N.P., GONZALEZ-GALLEGO J. (2005). Low-level laser therapy (LLLT) prevents oxidative stres and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg Med, 37: 293-300

FISHER, E. (1997). Histopathologic and biochemical changes in the muscles affected by distraction osteogenesis of the mandible. Plast Reconstr Surg, 99: 366

FRIDEZ, P. (1996). Modelisation de l‟adaptation osseuse externe. PhD thesis, In Physics Department, EPFL, Lausanne GAFNI, R.I., BARON, J. (2004). Overdiagnosis of osteoporosis in children due to misinterpretation of dual-energy x-ray

absorbtiometry (DEXA). J Pediatr, 144:253-7

GARAVELLO-FREITAS, I., BARANUSKAS, V., JOAZEIRO, P.P., PADOVANI, C.R., PAI-SILVA, M.D., DA CRUZ-HÖFLING, M.A. (2003). Low power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia wound healing in rats. J of Photochemistry and Photobiology B: Biology, 70: 81-89

GARTNER LESLIE, P, HIATT JAMES, L. (1997). Cartilage and bone. Color Textbook of Histology. Saunders, Saint Louis, 114-130

GERIS, L., GERISCH, A., SLOTEN, J.V., WEINER, R., OOSTERWYCK, H.V. (2008). Angiogenesis in bone fracture healing: A bioregulatory model. Journal of Theoretical Biology 251: 137-158

GIGO BENATO, D., GEUNA, S., DE CASTRO RODRIGUES, A., TOS, P., FORNARO, M., BOUX, E., BATTISTON, B., GIACOBINI-ROBECCHI, M.G. (2004). Low-power laser biostimulation enhances nevre repair after end-to-side neurorrhaphy: a double-blind randomizaed study in the rat median nevre model. Lasers Med Sci, 19: 57-65 HABOUSH, E.J., FINKELSTEIN, H. (1932). Leg lengthening with new stabilizing apparatus. J Bone Joint Surg, 14 (A),

807

HAGI, D., DEPORTER, D.A., PILLIAR, R.M., ARENOVĠCH, T. (2004). A target review of study outcomes with short (<or=7 mm) endosseous dental implants placed in partially edentulous patients. J Periodontol, 75: 798-804 HANSON, P.R . (2001). Threatment planning and orthodontic management of patients undergoing mandibular

distraction osteogenesis. In: Rudolph, P., Pendill, J., Stein, D. (Eds.).1st Ed. Craniofacial Distraction Osteogenesis. 15: 156 – 167

HARWOOD, P.J., NEWUMAN, J.B., MICHAEL, A.L.R. (2010). An update on fracture healing and non-union. Mini - Symposium: Basic Science of Trauma.Orthopaedics and Trauma, 24:1

HAWKINS, D., HOURELD, N., ABRAHAMSE, H. (2005). Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing. Ann. NY Acad. Sci., 1056: 486-493

HEHNE, H.J. (1990). Biomechanics of the patellofemoral joint and its clinical relevance. Clin Orthop, 258: 73

HIGUERA, S., COLE, P., STEPHENSON, J.B., HOLLIER, L. (2009). Distraction rate and latency: factors in the outcome of paediatric maxillary distraction. J of Plastic, Reconstructive and Aesthetic Surg. 62: 1564-1567 HOPKINS, J.T., MC LODA, T.A., SEEGMILLER, J.G., DAVID BAXTER, G. (2004). Low level laser therapy

facilitates superficial wound healing in humans: a triple- blind, sham-controlled study. J Athl Train, 39:223-229 HUANG, Y.Y., CHEN, A.C.H., CARROLL, J.D., HAMBLIN, M.R. (2009). Biphasic dose response in low level laser

therapy. International Dose-Response Society, ISSN: 1559-3258

ILIZAROV, G.A. (1988). The principles of the Ilizarov method. Bull Hosp Joint Dis Orthop Inst., 48(1):1-11

ILIZAROV, G.A. (1992). Transosseous osteosynthesis: theoretical and clinical aspects of the regeneration and growth of tissues. New York. Springer - Verlag. pp: 137-256

ILIZAROV, G.A. (1989). The tension-stress effect on the genesis and growth of tissues. Part 1.The influence of stability of fixation and soft-tissue preservation. Clin Orthop, 238: 249-81

ILIZAROV, G.A. (1989). The tension-stress effect on the genesis and growth of tissues. Part 2. The influence of the rate and frequency of distraction. Clin Orthop, 239: 263-85

ISEFUKU, S., JOYNER, C.J., SIMPSON, AHRW, A. (2000). Murine Model of Distraction Osteogenezis. Bone. 27(5):

661-665

JENSEN, O.T., COCKRELL, R., KUHLKE, L., REED, C. (2002). Anterior maxillary alveolar distraction osteogensis.

Int J Oral Maxillofac Implants. 17: 52-68

JIANG, X., SHUJUAN, Z., YE, B., ZHU, S., LIU, Y., HU, J. (2010). bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 46: 1156-1161

JUNGUERIA, C.L., CARNERIO, J., KELLEY, O. (1995). Bone. In: Jose, M.d., Kelley, Robert, O. (Eds.). 1st Ed. Basic Histology. Published by Appleton and Lange, New Jersey, 132-151

KALK, W.W., RAGHOEBAR, G.M., JANSMA, J., BOERING, G. (1996). Morbidity from iliac crest bone harvesting. J Oral Maxillofac Surg., 54: 1424-30

KARU, T.I., PYATIBRAT, L.V., KALENDO, G.S. (2004). Photobiological modulation of cell attachment via cytochrome oxidase. Photochem. Photobiol Sci., 3: 211-216

KIM, K.H., HONG, C., FUTRELL, J. (1993). Histomorphologic changes in expanded skeletal muscle in rats. Plast Reconstr Surg., 92: 710

KIM, Y. D., KIM. S.S., HWANG, D.S., KIM, S.G., KWON, Y.H., SHIN, S.H., KIM, U.K., KIM, J.R., CHUNG, I.K.

(2007). Effect of low - level laser treatment after installation of dental titanium implant - immunohistochemical study of RANKL, RANK, OPG: an experimental study in rats. Lasers in Surgery and Medicine. 39: 441-450 KIM, Y.D., KIM, S.S., KIM, S.Y., KWON, D.W., JEON, E.S., SON, W.S. (2008). Low - level laser irradiation facilitates

fibronectin and collagen type I turnover during tooth movement in rats. Laser Med Sci., 25(1): 25 – 31

KING, G.J., LIU, Z.J.,WANG, L.L.,CHIU, I.Y.,WHELAN, M.F., HUANG, G.J. (2003). Effect of distraction rate and consolidation period on bone density following mandibular osteodistraction in rats. Archives of Oral Biology, 48:

299-308

KIġNIġCI, R.S., IġERI, H., TÜZ, H.H., ALTUG, A.T. (2002). Dentoalveolar distraction osteogenesis for rapid orthodontic canine retraction. J Oral Maxillofac Surg. 60(4): 389-394

KIġNIġCI, R.S., IġERI, H. (2011). Dentoalveoler transport distraction and canine distalization. J Oral Maxillofac Surg;

69: 763-770

KITOH, H., KITAKOJI, T., TSUCHIYA, H., MITSUYAMA, H., KATOH, M., ISHIGURO, N. (2004). Transplantation of marrow-derived mesenchymal stem cells and platelet rich- plasma during distraction osteogenesis – a preliminary result of three cases. Bone. 35: 892-8

KLAMMERT, U., BÖHM, H., SCHWEITZER, T., WÜRZLER, K., GBURECK, U., REUTHER, J., KÜBLER, A.

(2009). Multidirectional Le Fort III midfacial distraction using an individual prefabricated device. J of Cranio - Maxillofac Surg, 37: 210-215

KLEIN, C., HOWALDT, H.P. (1995). Lengthening of the hypoplastic mandible by gradual distraction in childhood: a preliminary report. J Craniomaxillofac Surg, 23: 68

KOÇYĠĞĠT, Ġ.D. (2008). Distraksiyon osteogenezis tekniği ile kazanılmıĢ yeni kemik dokunun mineral yoğunluğunun dual enerji x - ray absorpsiyometri ile değerlendirilmesi. Ankara Üniversitesi Sağlık Bilimleri Enstitüsü Doktora Tezi, s.26-28

KOLK, C.A.V. (2001). Cranial distraction osteogenesis: case reports. In: Rudolph, P., Pendill, J., Stein, D. (Eds.). 1st Ed.

Craniofacial Distraction Osteogenesis. 67: 575-580

KRAWZCZYK, A., KUROPKA, P., KURYSZKO, J., WALL, A., DRAGAN, S., KULEJ, M. (2007). Experimental studies on the effect of osteothomy technique on the bone regeneration in distraction osteogenesis. Bone 40: 781-791

LEE, D.Y., CHO, T.J., KIM, J.A., LEE, H.R., YOO, W.J., CHUNG, C.Y., CHOI, I.H. (2008). Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis. Bone 42: 932-941

LIRANI-GALVAO, A.P., JORGETTI, V., DA SILVA, O.L. (2006). Comparative study of how low - level laser therapy and low - intensity pulsed ultrasound affect bone repair in rats. Photomedicine and Laser Surgery, 24(6): 735-740

LONG, J., TANG, W., FAN, Y., TIAN, W., FENG, F., LIU, L., ZHENG, X., JING, W., WU, L. (2009). Effects on rapid distraction rate on new bone formation during mandibular distraction osteogenesis in goats. Injury, Int J, Care Injured. 40: 831-834

LONGAKER, M.T., SIEBERT, J.W. (1996). Microsurgical correction of facial contour in congenital craniofacial malformations: the marriage of hard and soft tissue. Plast Reconstr Surg, 98: 942 – 50

LÖSLER, K.B., JOOS, U., MEYER, T., MEYER, U. (2001). Temporomandibular joint alterations during distraction osteogenesis. In: Rudolph, P., Pendill, J., Stein, D. (Eds.). 1st Ed. Craniofacial Distraction Osteogenesis. 12:118-127

MAINTZ, G. (1950). Animal experiments in the study of the effect of ultrasonic waves on bone regeneration.

Strahlentherapie; 82(4): 631-639

MAKAROV, M.R., HARPER, R.P., COPE, J.B., SAMCHUKOV, M.L. (1998). Evaluation of inferior alveolar nerve function during distraction osteogenesis in the dog. J Oral Maxillofac Surg, 56: 1417-1423

MAKAROV, M.R., SAMCHUKOV, M.L.,COPE, J.B., MUIRHEAD, D.E. (2001). The effect of gradual traction on sceletal muscles. In: Rudolph, P., Pendill, J., Stein, D. (Eds.). 1st Ed. Craniofacial Distraction Osteogenesis. 8:

75-88

MAKAROV, M.R., SAMCHUKOV, M.L., COPE, J.B. (2001). The Effect of Gradual Traction on Peripheral Nerves. In:

MAKAROV, M.R., SAMCHUKOV, M.L., COPE, J.B. (2001). The Effect of Gradual Traction on Peripheral Nerves. In:

Benzer Belgeler