• Sonuç bulunamadı

Bu çalışmada elde edilen sonuçlar açlığın kognitif fonksiyonlar üzerine olan geliştirici etkisinin AgRP nöronları üzerinden gerçekleştiğini göstermiştir. Bununla birlikte, daha önce yapılan çalışmalarda AgRP hücrelerinin hipokampüse bilinen doğrudan bir projeksiyonu bilinmemektedir. Böyle bir anatomik bağlantı olup olmadığı konusunda ileri çalışmalar yapılabilir. Anatomik bir bağlantı bulunmadığının teyidi durumunda AgRP hücreleri ile hipokampüs arasında fonksiyonel bir bağlantının olabilir mi. Bu muhtemel fizyolojik bağlantı hangi merkezi projeksiyon nöronları üzerinden ilerlemektedir. Son bulgular, dikkatlerin MCH ve oreksinerjik sistem üzerine yoğunlaşmasını sağlamıştır. Ancak AgRP nin uyarılması sonucu ortaya çıkan öğrenme bellek fonksiyonlarındaki iyileşmenin tam olarak hangi mekanizmalar üzerinden olduğu araştırmaya muhtaçtır.

Önceki çalışmalarda açlığa bağlı olarak miktarının arttığı gösterilen BDNF ya da NPY gibi nöroprotektif proteinlerin AgRP nöronlarının uyarısına bağlı değişip değişmediği ikinci bir araştırma konusudur.

AgRP hücrelerinin mekansal öğrenmeye etkileri dışında obje tanıma, zamansal öğrenme, kısa ve uzun süreli bellek ve çalışan hafıza diğer kognitif fonksiyonlarla olan ilişkisi de ortaya konulmalıdır. Kognitif fonksiyonlar dışında açlık uygulamalarında elede edilen metabolik ve periferik etkilerinde düzenlenmesinden sorumlu sinir döngüleri araştırılmaya muhtaçtır.

Besin alımı davranışı insanlarda sadece bir metabolik ihtiyaçla değil sosyal bir besin alımı etkisi de bilinmektedir. Sosyal davranışların hipotalamik bağlantıları üzerine araştırmalar yoğunlaştırılabilir. Yine kronobiyolojinin besin alımın regülasyonundaki etkileri ile AgRP hücrelerinin ilişkisi ortaya konulmaya muhtaçtır.

AgRP hücreleri bu çalışmanın da aralarında bulunduğu bir grup çalışma tarafından besin alımın dışında bir çok kognitif ve metabolik faaliyetlerin kavşak noktasında bulunmaktadır.

6. KAYNAKLAR

Adan, R. A. and W. H. Gispen (1997). Brain melanocortin receptors: from cloning to function. Peptides 18(8): 1279-1287.

Ahima, R. S., C. B. Saper, J. S. Flier and J. K. Elmquist (2000). Leptin regulation of neuroendocrine systems. Front Neuroendocrinol 21(3): 263-307.

Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K. Temporally precise in vivo control of intracellular sig- nalling. Nature 2009;458(7241):1025–9.

Alirezaei, M., C. C. Kemball, C. T. Flynn, M. R. Wood, J. L. Whitton and W. B. Kiosses (2010). Short-term fasting induces profound neuronal autophagy. Autophagy 6(6): 702-710.

Alp, M. İ., Demir. E.A, and Gergerlioğlu H.S (2014). Optogenetiğin Temelleri. Eur J Basic Med Sci 4(2): 37-43.

Aly, K. B., J. L. Pipkin, W. G. Hinson, R. J. Feuers, P. H. Duffy and R. W. Hart (1994). Temporal and substrate-dependent patterns of stress protein expression in the hypothalamus of caloric restricted rats. Mech Ageing Dev 76(1): 1-10.

Anand, B. K. and J. R. Brobeck (1951). Localization of a feeding center in the hypothalamus of the rat. Proc Soc Exp Biol Med 77(2): 323-324

Andralojc, K. M., A. Mercalli, K. W. Nowak, L. Albarello, R. Calcagno, L. Luzi, E. Bonifacio, C. Doglioni and L. Piemonti (2009). Ghrelin-producing epsilon cells in the developing and adult human pancreas. Diabetologia 52(3): 486-493.

Anson, R. M., Z. Guo, R. de Cabo, T. Iyun, M. Rios, A. Hagepanos, D. K. Ingram, M. A. Lane and M. P. Mattson (2003). Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci U S A 100(10): 6216-6220.

Aponte, Y., D. Atasoy and S. M. Sternson (2011). AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 14(3): 351-355

Arumugam, T. V., T. M. Phillips, A. Cheng, C. H. Morrell, M. P. Mattson and R. Wan (2010). Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol 67(1): 41-52.

Atasoy, D., J. N. Betley, H. H. Su and S. M. Sternson (2012). Deconstruction of a neural circuit for hunger. Nature 488(7410): 172-177.

Barker, A. T., C. W. Garnham and I. L. Freeston (1991). Magnetic nerve stimulation: the effect of waveform on efficiency, determination of neural membrane time constants and the measurement of stimulator output. Electroencephalogr Clin Neurophysiol Suppl 43: 227-237.

Beninger, R. J., K. Jhamandas, R. J. Boegman and S. R. el-Defrawy (1986). Effects of scopolamine and unilateral lesions of the basal forebrain on T-maze spatial discrimination and alternation in rats. Pharmacol Biochem Behav 24(5): 1353-1360.

Betley, J. N., S. Xu, Z. F. Cao, R. Gong, C. J. Magnus, Y. Yu and S. M. Sternson (2015). Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521(7551): 180-185.

Boyden ES. A history of optogenetics: the development of tools for controlling brain circuits with light. F1000 Biol Rep 2011;3:11.

Breasted JH. The Edwin Smith surgical papyrus. Chicago: Univ. of Chicago Press, 1930.

Broberger, C., J. Johansen, C. Johansson, M. Schalling and T. Hokfelt (1998). The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci U S A 95(25): 15043-15048.

Brodmann K, Gary LJ. Brodmann’s localization in the cere- bral cortex, The principles of comparative localisation in the cerebral cortex based on cytoarchitectonics. New York: Springer, 2006.

Burnett, C. J., C. Li, E. Webber, E. Tsaousidou, S. Y. Xue, J. C. Bruning and M. J. Krashes (2016). Hunger-Driven Motivational State Competition. Neuron 92(1): 187-201.

Cannon, W. B. and A. L. Washburn (1993). An explanation of hunger. 1911. Obes Res 1(6): 494-500. Carlson, A. J. (1916). The control of hunger in health and disease. Chicago, Ill.,, The University of

Chicago press.

Chen, H. Y., M. E. Trumbauer, A. S. Chen, D. T. Weingarth, J. R. Adams, E. G. Frazier, Z. Shen, D. J. Marsh, S. D. Feighner, X. M. Guan, Z. Ye, R. P. Nargund, R. G. Smith, L. H. Van der Ploeg, A. D. Howard, D. J. MacNeil and S. Qian (2004). Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology 145(6): 2607-2612.

Chen, Y. and Z. A. Knight (2016). Making sense of the sensory regulation of hunger neurons. Bioessays 38(4): 316-324.

Chen, Y., Y. C. Lin, T. W. Kuo and Z. A. Knight (2015). Sensory detection of food rapidly modulates arcuate feeding circuits. Cell 160(5): 829-841.

Clark, J. T., P. S. Kalra, W. R. Crowley and S. P. Kalra (1984). Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 115(1): 427-429

Claridge-Chang A, Roorda RD, Vrontou E, Sjulson L, Li H, Hirsh J et al. Writing memories with light-addressable re- inforcement circuitry. Cell 2009;139(2):405–15.

Cone, R. D. (1999). The Central Melanocortin System and Energy Homeostasis. Trends Endocrinol Metab 10(6): 211-216.

Cone, R. D. (2005). Anatomy and regulation of the central melanocortin system. Nat Neurosci 8(5): 571-578.

Cone, R. D., D. Lu, S. Koppula, D. I. Vage, H. Klungland, B. Boston, W. Chen, D. N. Orth, C. Pouton and R. A. Kesterson (1996). The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res 51: 287-317; discussion 318.

Cowley, M. A., J. L. Smart, M. Rubinstein, M. G. Cerdan, S. Diano, T. L. Horvath, R. D. Cone and M. J. Low (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411(6836): 480-484.

Cowley, M. A., R. G. Smith, S. Diano, M. Tschop, N. Pronchuk, K. L. Grove, C. J. Strasburger, M. Bidlingmaier, M. Esterman, M. L. Heiman, L. M. Garcia-Segura, E. A. Nillni, P. Mendez, M. J. Low, P. Sotonyi, J. M. Friedman, H. Liu, S. Pinto, W. F. Colmers, R. D. Cone and T. L. Horvath (2003). The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37(4): 649-661.

Crick FH. Thinking about the brain. Sci Am 1979;241(3):219– 32.

Davis, L. M., J. R. Pauly, R. D. Readnower, J. M. Rho and P. G. Sullivan (2008). Fasting is neuroprotective following traumatic brain injury. J Neurosci Res 86(8): 1812-1822.

Deisseroth, K., G. Feng, A. K. Majewska, G. Miesenbock, A. Ting and M. J. Schnitzer (2006). Next- generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26(41): 10380-10386.

Della-Zuana, O., F. Presse, C. Ortola, J. Duhault, J. L. Nahon and N. Levens (2002). "Acute and chronic administration of melanin-concentrating hormone enhances food intake and body weight in Wistar and Sprague-Dawley rats." Int J Obes Relat Metab Disord 26(10): 1289-1295.

Dietrich, M. O., M. R. Zimmer, J. Bober and T. L. Horvath (2015). Hypothalamic Agrp neurons drive stereotypic behaviors beyond feeding. Cell 160(6): 1222-1232.

Djuric, Z., M. H. Lu, S. M. Lewis, D. A. Luongo, X. W. Chen, L. K. Heilbrun, B. A. Reading, P. H. Duffy and R. W. Hart (1992). Oxidative DNA damage levels in rats fed low-fat, high-fat, or calorie-restricted diets. Toxicol Appl Pharmacol 115(2): 156-160.

Elmquist, J. K., C. F. Elias and C. B. Saper (1999). From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22(2): 221-232.

Erickson, J. C., K. E. Clegg and R. D. Palmiter (1996). Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381(6581): 415-421.

Fernandes, G., E. J. Yunis and R. A. Good (1976). Influence of diet on survival of mice. Proc Natl Acad Sci U S A 73(4): 1279-1283.

Friedman, J. M. and J. L. Halaas (1998). Leptin and the regulation of body weight in mammals. Nature 395(6704): 763-770.

Gao, Q. and T. L. Horvath (2007). Neurobiology of feeding and energy expenditure. Annu Rev Neurosci 30: 367-398.

Goodrick, C. L., D. K. Ingram, M. A. Reynolds, J. R. Freeman and N. L. Cider (1983). Effects of intermittent feeding upon growth, activity, and lifespan in rats allowed voluntary exercise. Exp Aging Res 9(3): 203-209.

Gradinaru V, Thompson KR, Deisseroth K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 2008;36(1-4):129–39.

Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB et al. Targeting and Readout Strategies for Fast Optical Neural Control In Vitro and In Vivo. Journal of Neuroscience 2007;27(52):14231–8.

Gray, S. J., V. W. Choi, A. Asokan, R. A. Haberman, T. J. McCown and R. J. Samulski (2011). Production of recombinant adeno-associated viral vectors and use in in vitro and in vivo administration. Curr Protoc Neurosci Chapter 4: Unit 4 17.

Gropp, E., M. Shanabrough, E. Borok, A. W. Xu, R. Janoschek, T. Buch, L. Plum, N. Balthasar, B. Hampel, A. Waisman, G. S. Barsh, T. L. Horvath and J. C. Bruning (2005). Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci 8(10): 1289-1291.

Gunion, M. W., G. L. Kauffman, Jr. and Y. Tache (1990). Intrahypothalamic corticotropin-releasing factor elevates gastric bicarbonate and inhibits stress ulcers in rats. Am J Physiol 258(1 Pt 1): G152-157.

Hahn, T. M., J. F. Breininger, D. G. Baskin and M. W. Schwartz (1998). Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1(4): 271-272.

Halagappa, V. K., Z. Guo, M. Pearson, Y. Matsuoka, R. G. Cutler, F. M. Laferla and M. P. Mattson (2007). Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease. Neurobiol Dis 26(1): 212-220.

Hall, J. E. and A. C. Guyton (2011). Guyton and Hall textbook of medical physiology. Philadelphia, Pa., Saunders/Elsevier.

Haynes, A. C., B. Jackson, P. Overend, R. E. Buckingham, S. Wilson, M. Tadayyon and J. R. Arch (1999). Effects of single and chronic intracerebroventricular administration of the orexins on feeding in the rat. Peptides 20(9): 1099-1105.

Hervey, G. R. (1959). The effects of lesions in the hypothalamus in parabiotic rats. J Physiol 145(2): 336-352.

Hinney, A., A. Schmidt, K. Nottebom, O. Heibult, I. Becker, A. Ziegler, G. Gerber, M. Sina, T. Gorg, H. Mayer, W. Siegfried, M. Fichter, H. Remschmidt and J. Hebebrand (1999). Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocrinol Metab 84(4): 1483-1486.

Huszar, D., C. A. Lynch, V. Fairchild-Huntress, J. H. Dunmore, Q. Fang, L. R. Berkemeier, W. Gu, R. A. Kesterson, B. A. Boston, R. D. Cone, F. J. Smith, L. A. Campfield, P. Burn and F. Lee (1997). Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88(1): 131-141. Ingram, D. K., R. Weindruch, E. L. Spangler, J. R. Freeman and R. L. Walford (1987). Dietary

restriction benefits learning and motor performance of aged mice. J Gerontol 42(1): 78-8

Iwai Y, Honda S, Ozeki H, Hashimoto M, Hirase H. A simple head-mountable LED device for chronic stimulation of op- togenetic molecules in freely moving mice. Neurosci Res 2011;70(1):124–7.

Kennedy, G. C. (1953). The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci 140(901): 578-596.

Kipnis N. S. Luigi Galvani and the debate on animal electricity, 1791-1800. London, 1987.

Kipnis, J., S. Gadani and N. C. Derecki (2012). Pro-cognitive properties of T cells. Nat Rev Immunol 12(9): 663-669.

Kojima, M., H. Hosoda, Y. Date, M. Nakazato, H. Matsuo and K. Kangawa (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762): 656-660.

Kojima, M., H. Hosoda, H. Matsuo and K. Kangawa (2001). Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor. Trends Endocrinol Metab 12(3): 118-122.

Krashes, M. J., S. Koda, C. Ye, S. C. Rogan, A. C. Adams, D. S. Cusher, E. Maratos-Flier, B. L. Roth and B. B. Lowell (2011). Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121(4): 1424-1428.

Lambert, P. D., P. R. Couceyro, K. M. McGirr, S. E. Dall Vechia, Y. Smith and M. J. Kuhar (1998). CART peptides in the central control of feeding and interactions with neuropeptide Y. Synapse 29(4): 293-298.

Lee, J., W. Duan and M. P. Mattson (2002). Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82(6): 1367-1375.

Li, E., H. Chung, Y. Kim, D. H. Kim, J. H. Ryu, T. Sato, M. Kojima and S. Park (2013). "Ghrelin directly stimulates adult hippocampal neurogenesis: implications for learning and memory." Endocr J 60(6): 781-789.

Li, L., Z. Wang and Z. Zuo (2013). Chronic intermittent fasting improves cognitive functions and brain structures in mice. PLoS One 8(6): e66069.

Lima, S. Q. and G. Miesenbock (2005). Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121(1): 141-152.

Lenard, N. R. and H. R. Berthoud (2008). Central and peripheral regulation of food intake and physical activity: pathways and genes. Obesity (Silver Spring) 16 Suppl 3: S11-22.

Luquet, S., F. A. Perez, T. S. Hnasko and R. D. Palmiter (2005). NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310(5748): 683-685.

Lytle, L. D. and B. A. Campbell (1975). Effects of lateral hypothalamic lesions on consummatory behavior in developing rats. Physiol Behav 15(3): 323-331.

Mandelblat-Cerf, Y., R. N. Ramesh, C. R. Burgess, P. Patella, Z. Yang, B. B. Lowell and M. L. Andermann (2015). Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales. Elife 4.

Marsh, D. J., G. Hollopeter, K. E. Kafer and R. D. Palmiter (1998). Role of the Y5 neuropeptide Y receptor in feeding and obesity. Nat Med 4(6): 718-721.

Maswood, N., J. Young, E. Tilmont, Z. Zhang, D. M. Gash, G. A. Gerhardt, R. Grondin, G. S. Roth, J. Mattison, M. A. Lane, R. E. Carson, R. M. Cohen, P. R. Mouton, C. Quigley, M. P. Mattson and D. K. Ingram (2004). Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proc Natl Acad Sci U S A 101(52): 18171-18176.

Mattson, M. P. (2000). Neuroprotective signaling and the aging brain: take away my food and let me run. Brain Res 886(1-2): 47-53.

Matsuno-Yagi A, Mukohata Y. Two possible roles of bacteri- orhodopsin; a comparative study of strains of Halobacterium halobium di ering in pigmentation. Biochem Biophys Res Commun 1977;78(1):237–43.

Mayer, J. (1952). The glucostatic theory of regulation of food intake and the problem of obesity. Bull New Engl Med Cent 14(2): 43-49.

Mayer, J. (1953). Glucostatic mechanism of regulation of food intake. N Engl J Med 249(1): 13-16. Mayer, J. and M. W. Bates (1952). Blood glucose and food intake in normal and hypophysectomized,

alloxan-treated rats. Am J Physiol 168(3): 812-819.

Mayer, J., J. J. Vitale and M. W. Bates (1951). Mechanism of the regulation of food intake. Nature 167(4249): 562-563.

McCay, C. M., M. F. Crowell and L. A. Maynard (1989). The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5(3): 155-171; discussion 172. Mieda, M., S. C. Williams, J. A. Richardson, K. Tanaka and M. Yanagisawa (2006). The dorsomedial

hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci U S A 103(32): 12150-12155.

Mladenovic Djordjevic, A., M. Perovic, V. Tesic, N. Tanic, L. Rakic, S. Ruzdijic and S. Kanazir (2010). Long-term dietary restriction modulates the level of presynaptic proteins in the cortex and hippocampus of the aging rat. Neurochem Int 56(2): 250-255.

Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 2003;100(24):13940–5.

Neher E, Sakmann B, Steinbach JH. The extracellular patch clamp: a method for resolving currents through individu- al open channels in biological membranes. P ugers Arch 1978;375(2):219–28. Oesterhelt D, Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium

halobium. Nature New Biol 1971;233(39):149–52.

Ollmann, M. M., B. D. Wilson, Y. K. Yang, J. A. Kerns, Y. Chen, I. Gantz and G. S. Barsh (1997). Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278(5335): 135-138.

Padilla, S. L., J. Qiu, M. E. Soden, E. Sanz, C. C. Nestor, F. D. Barker, A. Quintana, L. S. Zweifel, O. K. Ronnekleiv, M. J. Kelly and R. D. Palmiter (2016). Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nat Neurosci 19(5): 734-741.

Piccolino, M. (1998). Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani. Brain Res Bull 46(5): 381-407.

Pierroz, D. D., C. Catzeflis, A. C. Aebi, J. E. Rivier and M. L. Aubert (1996). Chronic administration of neuropeptide Y into the lateral ventricle inhibits both the pituitary-testicular axis and growth hormone and insulin-like growth factor I secretion in intact adult male rats. Endocrinology 137(1): 3-12.

Potter H. Transfection by electroporation. Curr Protoc Neurosci 2001;Appendix 1:Appendix 1E. Pupe, S. and A. Wallen-Mackenzie (2015). Cre-driven optogenetics in the heterogeneous genetic

panorama of the VTA. Trends Neurosci 38(6): 375-386.

Qian, S., H. Chen, D. Weingarth, M. E. Trumbauer, D. E. Novi, X. Guan, H. Yu, Z. Shen, Y. Feng, E. Frazier, A. Chen, R. E. Camacho, L. P. Shearman, S. Gopal-Truter, D. J. MacNeil, L. H. Van der Ploeg and D. J. Marsh (2002). Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol Cell Biol 22(14): 5027-5035. Saito, M., T. Iwawaki, C. Taya, H. Yonekawa, M. Noda, Y. Inui, E. Mekada, Y. Kimata, A. Tsuru and

K. Kohno (2001). Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 19(8): 746-750.

Sato, M., M. Murakami, K. Node, R. Matsumura and M. Akashi (2014). The role of the endocrine system in feeding-induced tissue-specific circadian entrainment. Cell Rep 8(2): 393-401

Schwartz, M. W. and D. Porte, Jr. (2005). Diabetes, obesity, and the brain. Science 307(5708): 375- 379.

Schwartz, M. W., R. J. Seeley, L. A. Campfield, P. Burn and D. G. Baskin (1996). "Identification of targets of leptin action in rat hypothalamus." J Clin Invest 98(5): 1101-1106

Schwartz, M. W., A. J. Sipols, J. L. Marks, G. Sanacora, J. D. White, A. Scheurink, S. E. Kahn, D. G. Baskin, S. C. Woods, D. P. Figlewicz and ve ark., (1992). Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology 130(6): 3608-3616.

Schwartz, M. W., S. C. Woods, D. Porte, Jr., R. J. Seeley and D. G. Baskin (2000). Central nervous system control of food intake. Nature 404(6778): 661-671.

Sims, J. S. and J. F. Lorden (1986). Effect of paraventricular nucleus lesions on body weight, food intake and insulin levels. Behav Brain Res 22(3): 265-281.

Standford Üniversitesi Web Sitesi, 2017. http://web.stanford.edu/group/dlab/cgi-bin/graph/chart.php Sohal, R. S. and R. Weindruch (1996). Oxidative stress, caloric restriction, and aging. Science

273(5271): 59-63.

Sohn, J. W. (2015). Network of hypothalamic neurons that control appetite. BMB Rep 48(4): 229-233. Sporns O, Tononi G, Kötter R. The Human Connectome: A Structural Description of the Human

Brain. PLoS Comp Biol 2005;1(4):e42.

Stewart, J., J. Mitchell and N. Kalant (1989). "The effects of life-long food restriction on spatial memory in young and aged Fischer 344 rats measured in the eight-arm radial and the Morris water mazes." Neurobiol Aging 10(6): 669-675.

Thaler, S., T. J. Choragiewicz, R. Rejdak, M. Fiedorowicz, W. A. Turski, M. Tulidowicz-Bielak, E. Zrenner, F. Schuettauf and T. Zarnowski (2010). Neuroprotection by acetoacetate and beta- hydroxybutyrate against NMDA-induced RGC damage in rat--possible involvement of kynurenic acid. Graefes Arch Clin Exp Ophthalmol 248(12): 1729-1735.

Vorhees, C. V. and M. T. Williams (2006). Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2): 848-858.

Hetherington A. W. and Ranson S. W. (1983). Nutrition Classics. The Anatomical Record, Volume 78, 1940: Hypothalamic lesions and adiposity in the rat. Nutr Rev 41(4): 124-127.

Howarth JL, Lee YB, Uney JB. Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells). Cell Biol Toxicol 2010;26(1):1–20.

Wangensteen O. H. ve Carlson H. A. (1931). Hunger Sensations in a Patient After Total Gastrectomy. Experimental Biology and Medicine Vol 28, Issue 5.

Weindruch, R., R. L. Walford, S. Fligiel and D. Guthrie (1986). The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 116(4): 641-654. Williams SC, Deisseroth K. Optogenetics. Proc. Natl. Acad. Sci. U.S.A. 2013;110(41):16287.

Witte, A. V., M. Fobker, R. Gellner, S. Knecht and A. Floel (2009). Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A 106(4): 1255-1260.

Woods, S. C., R. J. Seeley, D. Porte, Jr. and M. W. Schwartz (1998). Signals that regulate food intake and energy homeostasis. Science 280(5368): 1378-1383.

Wu, A., F. Wan, X. Sun and Y. Liu (2002). Effects of dietary restriction on growth, neurobehavior, and reproduction in developing Kunmin mice. Toxicol Sci 70(2): 238-244.

Yapici, N., M. Zimmer and A. I. Domingos (2014). Cellular and molecular basis of decision-making. EMBO Rep 15(10): 1023-1035

Yao J, Hou W, Yin Z. Optogenetics: a novel optical ma- nipulation tool for medical investigation. Int J Ophthalmol 2012;5(4):517–22.

Zemelman BV, Miesenböck G. Genetic schemes and schema- ta in neurophysiology. Curr Opin Neurobiol 2001;11(4):409– 14.

Zhang F, Wang L, Brauner M, Liewald JF, Kay K, Watzke N et al. Multimodal fast optical interrogation of neural cir- cuitry. Nature 2007;446(7136):633–9.

Zhang, Y., R. Proenca, M. Maffei, M. Barone, L. Leopold and J. M. Friedman (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505): 425-432.

ÖZGEÇMİŞ

Dr. Muhammed İkbal Alp İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesinde lisans eğitimini 2010 yılında tamamladı. Bir süre Şanlıurfa Akçakale’de pratisyen hekim olarak çalıştıktan sonra Konya 112 Ambulans Hizmetleri Komuta Kontrol Merkezinde danışman hekimlik yaptı. İki yıl Selçuk Üniversitesi Tıp Fakültesi yerel etik kurulun üyeliği yanısıra Selçuk Üniversitesi Sinirbilim Araştırlamaları Merkezi yönetim kurulu üyeliği yaptı. 2015 yılından itibaren Medipol Üniversitesi Tıp Fakültesi Fizyoloji Anabilim Dalında Öğretim görevlisi olarak çalışan Dr. İkbal, Medipol Üniversitesi Genetik Tanı Merkezi müdürlüğü yanısıra Medipol Üniversitesi Geleneksel Tedaviler Araştırma ve Uygulama Merkezi ve Medipol Üniversitesi Reneratif ve Restoratif Araştırmalar Merkezinde açlık ve tokluğun sinirsel bağlantıları üzerine sinirbilim araştırmalarına devam etmektedir. Bilimsel hakemli dergilerde yayınlanmış iki makalesi çeşitli platformlarda bilimsel sunumları bulunmaktadır. Ulusal Fizyoloji Derneği, Türkiye Sinirbilimleri ve Beyin Araştırmaları Derneği yanı sıra Society for Neuroscience üyeliği bulunmaktadır. 13. Ulusal Sinirbilim Kongresi genel sekreterliği ve 15. Ulusal Siribibilim Kongresi düzenleme kurulu üyeliği yanısıra, Hücresel ve Moleküler Sinirbilim çalışma grubu üyesidir. Bu grubun düzenlediği Sinirbilim Günüleri etkinliğinde 3 dönem genel sekterelik yaptı. Türkiyede ilk defa olmak üzere 2015 yılında Medipol Üniversitesi bünyesinde Optogenetik Uygulamalar Kursu düzenledi. 2012 yılından itibaren yüzün üzerinde konferans ve bilimsel etkinlik düzenledi. Doktorasını Selçuk Üniversitesi Fizyoloji Doktora Programında 2017 yılında tamamladı.

Benzer Belgeler