• Sonuç bulunamadı

Angelone T, Filice E, Pasqua T et al (2013) Nesfatin-1 as a novel cardiac peptide:

identification, functional characterization, and protection against

ischemia/reperfusion injury. Cellular Molecular Life Sciences 70: 495–509.

Arslan BY, Ulus IH, Savcı V (1991) Effecs of intracerebroventricular injected choline on cardiovascular functions and sympathoadrenal activity. Journal of Cardiovascular Pharmacology 17: 814-821.

Ayada C, Turgut G, Turgut S (2015a) The effect of nesfatin-1 on heart L-type Ca+2 channel a1c subunit in rats subjected to chronic restraint stress. Bratisavske Lekarske Listy 116: 236–329.

Ayada C, Turgut G, Turgut S et al (2015b) The effect of chronic peripheral nesfatin-1 application on blood pressure in normal and chronic restraint stressed rats: related with circulating level of blood pressure regulators. General Physiology and

Biophysics 34: 81-88.

Aydin S (2013) Role of NUCB2/nesfatin-1 as a possible biomarker. Current Pharmaceutical Design 19: 6986-6992.

Bastien M, Poirier P, Lemieux I et al (2013) Overview of epidemiology and contribution of obesity to cardiovascular disease. Progress in Cardiovascular Diseases 56: 369–381.

Bernatova I (2014) Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence? Biomedical Research 2014: ID598271.

Bhargava KP, Jain IP, Saxena AK et al (1978) Central adrenoreceptors and choline receptors in cardiovascular control. British Journal of Pharmacology 63: 7-15.

Billington CJ, Epstein LH, Goodwin NJ et al (2000) Overweight, obesity, and health risk. National Task Force on the Prevention and Treatment of Obesity. Archives Internal Medicine 160: 898-904.

Bonner TI, Young AC, Brann MR et al (1988) Cloning and expression of the human and rat M5 muscarinic receptor genes. Neuron 1: 403-413.

Bonnet MS, Ouelaa W, Tillement V et al (2013) Gastric distension activates

NUCB2/nesfatin-1-expressing neurons in the nucleus of the solitary tract. Regulatory Peptides 187: 17-23.

Boutsikou T, Briana DD, Boutsikou M et al (2013) Cord blood nesfatin-1 in large for gestational age pregnancies. Cytokine 61: 591–594.

Boyd WD, Graham-White J, Blackwood G et al (1977) Clinical effects of choline in Alzheimer senile dementia. Lancet 2: 711.

41

Brailoiu GC, Dun SL, Brailoiu E et al (2007) Nesfatin-1: distribution and interaction with a G protein-coupled receptor in the rat brain. Endocrinology 148: 5088–5094.

Brailoiu GC, Deliu E, Tica AA et al (2013) Nesfatin-1 activates cardiac vagal neurons of nucleus ambiguus and elicits bradycardia in conscious rats. Journal of Neurochemistry 126: 739–748.

Brezenoff HE, Carney K, Buccafusco JJ (1982) Potentiation of the carotid artery occlusion reflex by a cholinergic system in the posterior hypothalamic nucleus. Life Sciences 30: 391-400.

Brezenoff HE, Xiao YF (1989) Acetylcholine in the posterior hypothalamic nucleus is involved in the elevated blood pressure in the spontaneously hypertensive rat. Life Sciences 45: 1163-1170.

Buccafusco JJ, Brezenoff HE (1979) Pharmacological study of a cholinergic mechanism within the rat posterior hypothalamic nucleus which mediates a hypertensive response. Brain Research 165: 295-310.

Bundzikova-Osacka J, Ghosal S, Packard BA (2015) Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats. Stress 18: 221–232.

Cabadak H (2006) Muskarinik asetilkolin reseptörlerinin dağılımı ve ilişkili sinyal ileti yolları. Türk Biyokimya Dergisi 31: 141-150.

Cansev M, Yılmaz MS, Ilcol YO et al (2007) Cardiovascular effects of CDP-choline and its metabolites: involment of peripheral autonomic nervous system. Europen Journal of Pharmacology 577: 129-142.

Cappello S, Angelone T, Tota B, et al (2007) Human recombinant chromogranin a-derived vasostatin-1 mimics preconditioning via an adenosine/nitric oxide signaling mechanism. American Journal of Physiology Heart and Circulatory Physiology 293:

719–727.

Caulfield MP, Birdsall NJM (1998) International union of pharmacology XVII.

classification of muscarinic acetylcholine receptors. Pharmacological Reviews 50:

279-290.

Chung Y, Jung E, Kim H (2013) Expression of nesfatin-1/NUCB2 in fetal, neonatal and adult mice. Balsaenggwa Saengsig 17: 461-467.

Collins S (2014) A heart-adipose tissue connection in the regulation of energy metabolism. Nature Reviews Endocrinology 10: 157–163.

Colmers WF (2007) Less fat with nesfatin-1. Trends in Endocrinology &

Metabolism 18: 131-132.

Criscione L, Reis DJ, Talman WT (1983) Cholinergic mechanisms in the nucleus tractus solitarii and cardiovascular regulation in the rat. Brain Research 88: 47-55.

42

Dale HH (1914) The action of certain esters and ethers of choline, and their relation to muscarine. Journal of Pharmacology and Experimental Therapeutics 6: 147-190.

Darambazar G, Nakata M, Okada T et al (2015) Paraventricular NUCB2/nesfatin-1 is directly targeted by leptin and mediates its anorexigenic effect. Biochemical and Biophysical Research Communications 456: 913-918.

Feijo´o-Bandı´n S, Rodrı´guez-Penas D, Garcı´a-Ru´a V et al (2013) Nesfatin-1 in human and murine cardiomyocytes: synthesis, secretion, and mobilization of GLUT-4. Endocrinology 154: 4757–4767.

Foo K, Brismar H, Broberger C (2008) Distribution and neuropeptide coexistence of nucleobindin-2 mRNA/nesfatin-like immunoreactivity in the rat CNS. Neuroscience 156: 563-579.

Garcia-Galiano D, Navarro VM, Gaytan F et al (2010a) Expanding roles of NUCB2/nesfatin-1 in neuroendocrine regulation. Journal of Molecular Endocrinology 45: 281–290.

Garcia-Galiano D, Navarro VM, Roa J et al (2010b) The anorexigenic neuropeptide, nesfatin-1, is indispensable for normal puberty onset in the female rat. Journal of Neuroscience 30: 7783–7792.

Garcia-Galiano D, Pineda R, Ilhan T et al (2012) Cellular distribution, regulated expression, and functional role of the anorexigenic peptide, NUCB2/nesfatin-1, in the testis. Endocrinology 153: 1959–1971.

Goebel M, Stengel A, Wang L, et al (2009) Restraint stres activates nesfatin-1-immunoreactive brain nuclei in rats. Brain Research 1300: 114-124.

Goebel M, Stengel A, Wang L et al (2009) Nesfatin-1 immunoreactivity in rat brain and spinal cord autonomic nuclei. Neuroscience Letter 452: 241-246.

Goebel-Stengel M, Wang L, Stengel A et al (2011) ‘Localization of nesfatin-1 neurons in the mouse brain and functional implication. Brain Research 1396: 20-34.

Goebel-Stengel M, Wang L (2013) Central and peripheral expression and

distribution of NUCB2/nesfatin-1. Current Pharmaceutical Design 19: 6935-6940.

Gonzalez R, Tiwari A, Unniappan S (2009) Pancreatic beta cells colocalize insulin and pronesfatin immunoreactivity in rodents. Biochemical and Biophysical Research Communications 381: 643–648.

Gotoh K, Masaki T, Chiba S et al (2013) Nesfatin-1, corticotropin-releasing hormone, thyrotropin-releasing hormone, and neuronal histamine interact in the hypothalamus to regulate feeding behavior. Journal of Neurochemistry 124: 90-99.

Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends in Pharmacology 27: 482-491.

43

Hagiwara Y, Ohi M, Kubo T (2005) Cholinergic stimulation in the posterior hypothalamic nucleus activates angiotensin II-sensitive neurons in the arterior hypothalamic area of rats. Brain Research Bulletin 67: 203-209.

Hofmann T, Stengel A, Ahnis A et al (2013) NUCB2/nesfatin-1 is associated with elevated scores of anxiety in female obese patients. Psychoneuroendocrinology 38:

2502–2510.

Hofmann T, Ahnis A, Elbelt U et al (2015) NUCB2/nesfatin-1 is associated with elevated levels of anxiety in anorexia nervosa. Public Library of Science 38: 2502-2510.

İşbil- Büyükcoşkun N, Güleç G, Ozluk K (2001) Central injection of capropril inhibits the blood pressure response to intracerebroventricular choline. Brazillian Journal of Medical and Biological Research 34: 815-820.

İşbil- Büyükcoşkun N, Ilcol YO, Cansev M et al (2008) Central choline supresses plasma renin response to graded hemorhage. Clinical and Experimental

Pharmacology and Physiology 35: 1023-1031.

Jego S, Salvert D, Renouard L et al (2012) Tuberal hypothalamic neurons secreting the satiety molecule nesfatin-1 are critically involved in paradoxical (REM) sleep homeostasis. Public Library of Science 7, e52525.

Jochem J, Savci V, Filiz N et al (2010) Involvement of the histaminergic system in cytidine 5'-diphosphocholine-induced reversal of critical haemorrhagic hypotension in rats. Journal of Physiology and Pharmacology 61: 37-43.

Kang MJ, Koh HC (2007) Involment of guanylate cyclase in the cardiovascular response induced by adenosine A2B receptor stimulation in the posterior

hypothalamus of the anesthetized rats. Autonomic Neuroscience: Basic and Clinical 134: 55-60.

Kim J, Chung Y, Kim H et al (2014) The tissue distribution of nesfatin-1/NUCB2 in Mouse. Balsaeng’gwa Saengsig 18: 301–309.

Kolgazi M, Cantali-Ozturk C, Deniz R et al (2015) Nesfatin-1 alleviates gastric damage via direct antioxidant mechanisms. Journal of Surgical Research 193: 111-118.

Krejci A, Michal P, Jakubik J et al (2004) Regulation of signal transduction at M2 muscarinic receptors. Physiology Research 53: 131-140.

Kubo T, Misu Y (1981) Cardiovascular response to microinjection of physiostigmine and choline into the dorsal medullary site of the rat. Neuropharmacology 20: 1091-1095.

Kuksis M, Ferguson AV (2014) Cellular actions of nesfatin-1 in the subfornical organ. Journal of Neuroendocrinology 26: 237-246.

Li XD, Buccafusco JJ (2004) Role of α7 nicotinic acetylcholine receptors in the pressor response to intracerebroventricular injection of choline: blockade by amyloid

44

peptide Aβ1-42. Journal of Pharmacology and Experimental Therapeutics 309: 1206-1212.

Lumsden NG, Khambata RS, Hobbs AJ (2010) C-type natriuretic peptide (CNP):

cardiovascular roles and potential as a therapeutic target. Current Pharmaceutical Design 16: 4080–4088.

Maejima Y, Sedbazar U, Suyama S et al (2009) ‘Nesfatin-1 regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-ındependent melanocortin pathway. Cell Metabolism 10: 355-65.

Maejima Y, Shimomura K, Sakuma K et al (2013) Paraventricular nucleus nesfatin-1 neurons are regulated by pituitary adenylate cyclase-activating polypeptide

(PACAP). Neuroscience Letter 551: 39-42.

Martin JR (1992) Pressor response to posterior hypothalamic administration of carbachol is mediated by muscarinic M3 receptor. Europen Journal of Pharmacology 215: 83-91.

Martin JR (1996) Mechanisms of the cardiovascular response to posterior hypothalamic nucleus administration of carbachol. Journal of Cardiovascular Pharmacology 27: 891-900.

Mazza R, Gattuso A, Filice M et al (2015) Nesfatin-1 as a new positive inotrope in the goldfish (Carassius auratus) heart. General and Comperative Endocrinology 224:

160-167.

Merali Z, Cayer C, Kent P et al (2008) Nesfatin-1 increases anxiety- and fear-related behaviors in the rat. Psychopharmacology 201: 115–123.

Messer WS, Bohnett J, Stibbe J (1990) Evidence for preferantial involvement of M1 muscarinic receptors in representational memory. Neuroscience Letters 116: 184-189.

Methvin JM, Martin JR (1998) Cardiovascular responses evoked by carbachol microinjection into the posterior hypothalamus involves ganglionic nicotinic and muscarinic mechanisms. Journal of Autonomic Pharmacology 18: 177-187.

Mimee A, Smith PM, Ferguson AV (2012) Nesfatin-1 influences the excitability of neurons in the nucleus of the solitary tract and regulates cardiovascular function.

American Journal of Physiology Regulatory, Integrative and Comparative Physiology 302: 1297-1304.

Moreau JM, Ciriello J (2013) Nesfatin-1 induces Fos expression and elicits dipsogenic responses in subfornical organ. Behavioural Brain Research 250: 343-350.

Nakata N, Manaka K, Yamamoto S et al (2011) Nesfatin-1 enhances glucose-induced insulin secretion by promoting Ca+2 influx through L-type channels in mouse islet β cells. Endocrine Journal 58: 305–313.

45

Nathanson NM (2001) Muscarinic acetylcholine receptors. Encyclopedia of Life Sciences 1-6.

Nees F (2015) The nicotinic cholinergic system function in the human brain.

Neuropharmacology 96: 289-301.

Oh-I S, Shimizu H, Satoh T et al (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443: 709–712.

Osaki H, Shimizu (2014) Peripheral administration of nesfatin-1 increases blood pressure in mice. Hypertension Research 37: 185–186.

Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates (5th edition).

Elsevier Academic Press, San Diego, California.

Perry E, Walker M, Grace J et al (1999) Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends in Neurosciences 22: 273-280.

Prast H, Philippu A (1992) Release of endogenous acetylcholine in the hypothalamus of conscious rats. Naunyn-Schmiedeberg’s Archives of Pharmacology 346: 1-3.

Price CJ, Samson WK, Ferguson AV (2008) Nesfatin-1 inhibits NPY neurons in the arcuate nucleus. Brain Research 1230: 99–106.

Ramanjaneya M, Chen J, Brown JE et al (2010) Identification of nesfatin-1 in human and murine adipose tissue: a novel depot-specific adipokine with increased levels in obesity. Endocrinology 151: 3169–3180.

Rao ZR, Yamano M, Wanaka A (1987) Distribution of cholinergic neurons and fibers in the hypothalamus of the rat using choline acetyltransferase as a marker.

Neuroscience 20: 923-934.

Ruggiero DA, Giuliano R, Anwar M et al (1990) Anatomical substrates of

cholinergic- autonomic regulation in the rat. Journal of Comparative Neurology 292:

1-53.

Savci V, Cavun S, Goktalay G (2002) Cardiovascular effects of

intracerebroventricularly injected CDP-choline in normotensive and hypotensive animals: the involvement of cholinergic system. Naunyn-Schmiedeberg's Archives of Pharmacology 365: 388-98.

Scarr E, Gibbons AS, Neo J (2013) Cholinergic connectivity: it’s implications for psychiatric disorders. Frontiers in Cellular Neuroscience 7: 55.

Sedbazar U, Ayush EA, Maejima Y et al (2014) Neuropeptide Y and alpha-melanocyte stimulating hormone reciprocally regulate nesfatin-1 neurons in the paraventricular nucleus of the hypothalamus. Neuroreport 25: 1453-1458.

Sharp DB, Wang X, Mendelowitz D (2014) Dexmedetomidine decreases inhibitory but not excitatory neurotransmission to cardiac vagal neurons in the nucleus

ambiguus. Brain Research 1574: 1–5.

46

Shimizu H, Oh-I S, Hashimoto K et al (2009a) Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin-independent mechanism. Endocrinology 150: 662-671.

Shimizu H, Oh-I S, Okada S et al (2009b) Nesfatin-1: an overview and future clinical application. Endocrine Journal 56: 537-543.

Srimal RC, Jaju BP, Sinha JN et al (1969) Analysis of the central vasomotor effects of choline. Europen Journal of Pharmacology 5: 239-244.

Stengel A, Goebel M, Yakubov I et al (2009) Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa.

Endocrinology 150: 232–238.

Stengel A, Taché Y (2010) Nesfatin-1 role as possible new potent regulator of food intake. Regulatory Peptides 163: 18-23.

Stengel A, Taché Y (2011) Minireview: nesfatin-1 an emerging new player in the brain-gut, endocrine, and metabolic axis. Endocrinology 152: 4033-4038.

Strecker A (1862) Uber eingige neue bestandtheile der schweingalle. Annalen der Chemie und Pharmacie183: 964-965.

Sulak O, Malas MA (2002) Kolinerjik sistemin morfogenetik olaylarda ve kanser oluşumundaki rolü. Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi 9: 14-17.

Swinburn BA, Caterson I, Seidell JC et (2004) Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutrition 7: 123-146.

Tache Y, Bonaz B (2007) Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. The Journal of Clinical Investigation 117: 33–40.

Tanida M, Niijima A, Shen J et al (2006) Dose-different effects of orexin-A on the renal sympathetic nerve and blood pressure in urethane-anesthetized rats.

Experimental Biology and Medicine 231: 1616-1625.

Tanida M, Shen J, Nagai K (2009) Possible role of the histaminergic system in autonomic and ardiovascular responses to neuropeptide Y. Neuropeptides 43: 21–29.

Tanida M, Shintani N, Morita Y et al (2010) Regulation of autonomic nerve activities by central pituitary adenylate cyclase-activating polypeptide. Regulatory Peptides 161: 73–80.

Tanida M, Mori M (2011) Nesfatin-1 stimulates renal sympathetic nerve activity in rats. NeuroReport 22: 309–312.

Topuz BB, Altinbas B, İlhan T et al (2014) Centrally administered CDP-choline induced cardiovascular responses are mediated by activation of the central phospholipase- prostaglandin signalling cascade. Brain Research 1563: 61-71.

Uğur M (2008) Sigara Bağımlılığı ve Kadın. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Sürekli Tıp Eğitimi Etkinlikleri 62: 127-142.

47

Ulus IH, Wurtman RJ (1979) Selective response of rat peripheral sympathetic nervous system to various stimuli. Journal of Physiology 293: 513-523.

Ulus IH, Arslan BY, Savci V et al (1995) Restoration of blood pressure by choline treatment in rats made hypotensive by haemorrhage. British Journal of Pharmacology 116: 1911-1917.

Ulus IH, Cansev M (2010) Kolin’in merkezi ve periferik kolinerjik nöronlarda ve kolinerjik iletimdeki işlevi. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi 1: 68-80.

Vas S, Ádori C, Könczöl K et al (2013) Nesfatin-1/NUCB2 as a potential new element of sleep regulation in rats. Public Library of Science 8, e59809.

Visscher TL, Seidell JC, Molarius A et al (2001) A comparison of body mass index, waist-hip ratio and waist circumference as predictors of all-cause mortality among the elderly: the Rotterdam study. International Journal of Obesity and Related Metabolics Disorders 25: 1730-1735.

Xiao YF, Brezenoff HE (1988) The role of M2 muscarinic receptors in the posterior hypothalamus in the pressor response to intracerebroventricularly- injected

neostigmine. Neuropharmacology 27: 1061-1065.

Yalçın M, Çavun S, Yılmaz MS et al (2005) Involvement of brain thromboxane A2 in hypotension induced by haemorrhage in rats. Clinical Experimental Pharmacology and Physiology 32: 960-967.

Yalçın M, Çavun S, Yılmaz MS et al (2006) Activation of the central cholinergic system mediates the reversal of hypotension by centrally administrated U-46619, a thromboxane A2 analog, in hemorrhaged rats. Brain Research 1118: 43-51.

Yalçın M, Savcı V, Jochem J (2009) Involvement of the cholinergic system in the central histamine-induced reversal of critical haemorrhagic hypotension in rats.

Journal of Physiology and Pharmacology 60: 133-137.

Yamawaki H, Takahashi M, Mukohda M et al (2012) A novel adipocytokine, nesfatin-1 modulates peripheral arterial contractility and blood pressure in rats.

Biochemical and Biophysical Research Communications 418: 676–681.

Yilmaz MS, Altınbaş B, Güvenç G et al (2015) The role of centrally injected nesfatin-1 on cardiovascular regulation in normotensive and hypotensive rats.

Autonomic Neuroscience 193: 63-68.

Ying J, Zhang Y, Gong S et al (2015) Nesfatin-1 suppresses cardiac L-type Ca+2 channels through melanocortin Type 4 receptor and the novel protein kinase C theta ısoform pathway. Cellular Physiology Biochemistry 36: 555–568.

Yoshida N, Maejima Y. (2010) Stressor-responsive central nesfatin-1 activates corticotropin-releasing hormone, noradrenaline and serotonin neurons and evokes hypothalamic-pituitary-adrenal axis. Aging (Albany NY) 2: 775-784.

48

Yosten GL, Samson WK (2009) Nesfatin-1 exerts cardiovascular actions in brain:

possible interaction with the central melanocortin system. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology 297: 330-336.

Yosten GLC, Samson WK (2010) The anorexigenic and hypertensive effects of nesfatin-1 are reversed by pretreatment with an oxytocin receptor antagonist.

American Journal Physiology Regululatory Integrative and comparative physiology 298: 1642–1647.

Yosten GLC, Redlinger L, Samson WK (2012) Evidence for a role of endogenous nesfatin-1 in the control of water drinking. Journal of Neuroendocrinology 24: 1078–

1084.

Yosten GL, Samson WK, (2014) Neural circuitry underlying the central hypertensive action of nesfatin-1: melanocortins, corticotropin-releasing hormone, and oxytocin.

American Journal Physiology Regululatory Integrative and comparative physiology 306: 722–727.

Zhang AQ, Li XL, Jiang CY et al (2010) Expression of nesfatin-1/NUCB2 in rodent digestive system. World Journal of Gastroenterology 16: 1735-1741.

Zhao Y, Ma X, Wang Q et al (2015) Nesfatin-1 correlates with hypertension in overweight or obese Han Chinese population. Clinical Experimental Hypertension 37: 51-56.

49

NTS Nükleus traktus solitaryus NUCB2 Nükleobindin 2

PACAP Hipofiz adenilat siklaz-aktif polipeptid

PH Posterior Hipotalamus

PKC Protein kinazı C

pmol Pikomol

REM Hızlı göz hareketleri uykusu s.y.v. Serebral yan ventrikül

Benzer Belgeler