• Sonuç bulunamadı

6. SONUÇLAR

6.1 Gelecek Çalışmalar

Önerilen görüntü oluşturma algoritmasında akustik sinyalin yeri, oluşturulan dalga şekli ile zaman ekseninde kaydırılıp korelasyon hesabı yapılarak bulunmuştur. Bu yöntemde zamanda kaydırma işlemi örnek sayısı fazla olan sinyallerde işlem yükü meydana getirecek böylece algoritmanın çalışma süresi uzayacaktır. Algoritmada PA sinyal konumunun otomatik tespitini örnek sayısı artmış olsa da hızlı bir şekilde tespit edebilecek alternatif yöntemlerin geliştirilmesi hedeflenmektedir.

Çalışmada, PA sinyal konumunun belirlenmesinin yanısıra PAM sisteminden alınan zaman sinyallerinin filtrelenmesi gerçekleştirilmiştir. Gelecek çalışmalarda tezde

72

önerilen ön sinyal işleme yöntemlerine ek olarak, gürültü modellemesi ile filtreleme performanslarının daha iyi şekilde değelendirilmesi ve oluşturulan görüntülerin işlenmesi ile daha kaliteli görüntülerin elde edilmesi hedeflenmektedir.

73 KAYNAKLAR

Aytac-Kipergil, E., Demirkiran, A., Uluc, N., Yavas, S., Kayikcioglu, T., Salman, S., and Unlu, M.B. 2016. Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy.

Scientific Reports, 6.

Alfaouri, M., and Daqrouq, K. 2008. ECG signal denoising by wavelet transform thresholding. American Journal of applied sciences, 5(3), 276-281.

Aqil, M., Jbari, A., and Bourouhou, A. 2017. ECG Signal Denoising by Discrete Wavelet Transform. International Journal of Online Engineering (iJOE), 13(09), 51-68.

Beard, P. 2011. Biomedical photoacoustic imaging. Interface focus, rsfs20110028.

Bell, A.G. 1880. On the production and reproduction of sound by light. American Journal of Science, (118), 305-324.

Bhoi, A. K., Tamang, J. S., and Mishra, P. 2012. Wavelet packet based Denoising of EMG Signal. International Journal of Engineering Research and Development, 4(2), 78-83.

Brand, C., Winkler, A., Hess, P., Miklós, A., Bozóki, Z., and Sneider, J. 1995. Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C 2 H 4. Applied optics, 34(18), 3257-3266.

Chen, Z., Rank, E., Meiburger, K. M., Sinz, C., Hodul, A., Zhang, E., and Kittler, H.

2017. Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging. Scientific reports, 7(1), 17975.

Cheng, J. 2017. Investigating signal denoising and iterative reconstruction algorithms in photoacoustic tomography (T). University of British Columbia. Retrieved from https://open.library.ubc.ca/cIRcle/collections/24/items/1.0354460

Dolet, A., Varray, F., Roméo, E., Dehoux, T., and Vray, D. 2017. Spectrophotometry and Photoacoustic Imaging: A Comparative Study. IRBM, 38(6), 352-356.

Donoho, D. L., and Johnstone, J.M. 1994. Ideal spatial adaptation by wavelet shrinkage.

biometrika, 81(3), 425-455.

Ermilov, S.A., Khamapirad, T., Conjusteau, A., Leonard, M.H., Lacewell, R., Mehta, K., and Oraevsky, A. A. 2009. Laser optoacoustic imaging system for detection of breast cancer. Journal of biomedical optics, 14(2), 024007-024007.

Esenaliev, R.O., Karabutov, A.A., and Oraevsky, A.A. 1999. Sensitivity of laser opto- acoustic imaging in detection of small deeply embedded tumors. IEEE Journal of Selected Topics in Quantum Electronics, 5(4), 981-988.

74

Ford, S.J., Bigliardi, P.L., Sardella, T.C., Urich, A., Burton, N.C., Kacprowicz, M., and Razansky, D. 2016. Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography.

Journal of Investigative Dermatology, 136(4), 753-761.

Gradolewski, D., Tojza, P.M., Jaworski, J., Ambroziak, D., Redlarski, G. and Krawczuk, M. 2015. Arm EMG wavelet-based denoising system. In Mechatronics-Ideas for Industrial Application (pp. 289-296). Springer, Cham Holan, S.H. and Viator, J.A. 2008. Automated wavelet denoising of photoacoustic

signals for circulating melanoma cell detection and burn image reconstruction.

Physics in medicine and biology, 53(12), N227.

Heijblom, M., Steenbergen, W. and Manohar, S. 2015. Clinical photoacoustic breast imaging: the Twente experience. IEEE pulse, 6(3), 42-46.

Hill, E.R., Xia, W., Clarkson, M.J. and Desjardins, A.E. 2017. Identification and removal of laser-induced noise in photoacoustic imaging using singular value decomposition. Biomedical optics express, 8(1), 68-77.

Jansen, K., Wu, M., van der Steen, A.F. and van Soest, G. 2014. Photoacoustic imaging of human coronary atherosclerosis in two spectral bands. Photoacoustics, 2(1), 12-20.

Jiao, S., Jiang, M., Hu, J., Fawzi, A., Zhou, Q., Shung, K.K. and Zhang, H.F. 2010.

Photoacoustic ophthalmoscopy for in vivo retinal imaging. Optics express, 18(4), 3967-3972.

Li, C. and Wang, L.V. 2009. Photoacoustic tomography and sensing in biomedicine.

Physics in medicine and biology, 54(19), R59.

Liao, L.D., Lin, C.T., Shih, Y.Y.I., Duong, T.Q., Lai, H.Y., Wang, P.H. and Chen, Y.Y. 2012. Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy. Journal of Cerebral Blood Flow & Metabolism, 32(6), 938-951.

Liu, M. 2017. Photoacoustic imaging and its preclinical application in ophthalmology.

Acta Ophthalmologica, 95(S259).

Liu, M., Chen, Z., Sinz, C., Rank, E., Zabihian, B., Zhang, E.Z. and Drexler, W. 2017, February. Combined multimodal photoacoustic tomography, optical coherence tomography (OCT) and OCT based angiography system for in vivo imaging of multiple skin disorders in human (Conference Presentation). In SPIE BiOS (pp.

100370T-100370T). International Society for Optics and Photonics.

Lutzweiler, C. and Razansky, D. 2013. Optoacoustic imaging and tomography:

reconstruction approaches and outstanding challenges in image performance and quantification. Sensors, 13(6), 7345-7384. (PRIME), 2012 International Conference on (pp. 278-283). IEEE.-

75

Mallidi, S., Luke, G.P. and Emelianov, S. 2011. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends in biotechnology, 29(5), 213-221.

Mehrmohammadi, M., Joon Yoon, S., Yeager, D. and Y Emelianov, S. 2013.

Photoacoustic imaging for cancer detection and staging. Current molecular imaging, 2 (1), 89-105.

Merry, R.J.E. and Steinbuch, M. 2005. Wavelet theory and applications. literature study, Eindhoven university of technology, Department of mechanical engineering, Control systems technology group.

Misiti, M., Misiti, Y., Oppenheim, G. and Poggi, J. M. 1996. Wavelet toolbox. The MathWorks Inc., Natick, MA, 15, 21.

Oh, J.T., Li, M.L., Zhang, H.F., Maslov, K., Stoica, G. and Wang, L.V. 2006. Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. Journal of biomedical optics, 11(3), 034032-034032.

Park, S., Aglyamov, S.R., Scott, W.G., Emelianov, S.Y., Sethuraman, S., Rubin, J.

M. and Smalling, R. W. 2006, October. 1E-5 synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging. In Ultrasonics Symposium, 2006. IEEE

Patil, P.B. and Chavan, M.S. 2012, March. A wavelet based method for denoising of biomedical signal. In Pattern Recognition, Informatics and Medical Engineering Saalberg, Y., Bruhns, H. and Wolff, M. 2017. Photoacoustic spectroscopy for the determination of lung cancer biomarkers—A preliminary investigation. Sensors, 17(1), 210.

Seena. V, Lineeta Gloria Prakash 2012."A Comparitive Analysis Of Wavelet Based Method For Denoising Of ECG Signal", International Journal of Electrical, Electronics and Data Communication (IJEEDC), Volume-2,Issue-8,pp 9- 12 , Siphanto, R.I., Thumma, K.K., Kolkman, R.G.M., Van Leeuwen, T.G., De Mul, F.

F.M., Van Neck, J.W. and Steenbergen, W. 2005. Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis. Optics express, 13(1), 89-95.

Stoffels, I., Morscher, S., Helfrich, I., Hillen, U., Leyh, J., Burton, N.C. and Roesch, A.

2015. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Science translational medicine, 7(317), 317ra199-317ra199.

Tam, A. 1986 Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381–431. (doi:10.1103/ RevModPhys.58.381)

76

Taflove, A. and Hagness, S.C. 2005. Computational Electrodynamics: The Finite-Difference Time-Domain Method, Norwood, MA: Artech House, 2005.

TafloveA. HagnessS. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method.

Telenkov, S. and Mandelis, A. 2010. Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains. Review of Scientific Instruments, 81(12), 124901.

Telenkov, S. A., Alwi, R. and Mandelis, A. 2013. Photoacoustic correlation signal-to-noise ratio enhancement by coherent averaging and optical waveform

optimization. Review of Scientific Instruments, 84(10), 104907.

Valluru, K.S. and Willmann, J.K. 2016. Clinical photoacoustic imaging of cancer.

Ultrasonography, 35(4), 267.

Yao, J., and Wang, L. V. 2013. Photoacoustic microscopy. Laser and photonics reviews, 7(5), 758-778.

Yao, J., Wang, L., Yang, J. M., Maslov, K.I., Wong, T.T., Li, L. and Wang, L.V.

2015. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nature methods, 12(5), 407-410.

Zhang, H. F., Maslov, K., Stoica, G. and Wang, L.V. 2006. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature biotechnology, 24(7), 848-851.

Zhang, J., Yang, S., Ji, X., Zhou, Q. and Xing, D. 2014. Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography. Journal of the American College of Cardiology, 64(4), 385-390.

Zhou Y., Wang L.V. 2016 Translational Photoacoustic Microscopy. In: Olivo M., Dinish U. (eds) Frontiers in Biophotonics for Translational Medicine.

Progress in Optical Science and Photonics, vol 3. Springer, Singapore

Wang, L.V. 2008a. Prospects of photoacoustic tomography. Medical physics, 35(12), 5758- 5767.

Wang, L.V. 2008b. Tutorial on photoacoustic microscopy and computed tomography.

IEEE Journal of Selected Topics in Quantum Electronics, 14(1), 171-179.

Wang, L.V. and Hu, S. 2012. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 335(6075), 1458-1462.

Xiao, J. and He, J. 2010. Multispectral quantitative photoacoustic imaging of osteoarthritis in finger joints. Applied optics, 49(30), 5721-5727.

Xia, J., Yao, J. and Wang, L.V. 2014. Photoacoustic tomography: principles and advances. Electromagnetic waves (Cambridge, Mass.), 147, 1.

77

Xu, M. and Wang, L.V. 2006. Photoacoustic imaging in biomedicine. Review of scientific instruments, 77(4), 041101.

Web Sitesi: https://www.mathworks.com/help/wavelet/ref/thselect.html, Erişim Tarihi:

12.9.2017.

Web Sitesi: (https://www.mathworks.com/help/wavelet/ref/wthresh.html), Erişim Tarihi: 12.9.2017.

Web Sitesi: (https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4338) Erişim Tarihi: 21.01.2018.

Web Sitesi: (http://kanser.gov.tr/daire-faaliyetleri/kanser-istatistikleri.html).

Erişim Tarihi: 21.01.2018.

78 ÖZGEÇMİŞ

Adı Soyadı : Gökhan GÜNEY Doğum Yeri : Çorum

Doğum Tarihi : 21.01.1991 Medeni Hali : Bekar Yabancı Dili : İngilizce Eğitim Durumu:

Lise : Çorum Anadolu Lisesi (2009)

Lisans : Erciyes Üniversitesi, Biyomedikal Mühendisliği Bölümü, (2015) : Erciyes Üniversitesi, Elektrik&Elektronik Mühendisliği Bölümü,

(2015) (Çift Anadal)

Yüksek Lisans : Ankara Üniversitesi Fen Bilimleri Enstitüsü Elektirk-Elektronik Mühendisliği Anabilim Dalı ( Şubat 2016 - Mart 2018)

Çalıştığı Kurum:

Ankara Üniversitesi Mühendislik Fakültesi Biyomedikal Mühendisliği Bölümü Araştırma Görevlisi (2015-…)

Ulusal Konferans Yayınları:

1) Güney, G., Birgül, Ö., Aytaç-Kipergil, E., Demirkiran, A., Uluç, N., & Ünlü, M.

B.’’ Fotoakustik Mikroskopta Görüntü Oluşturma ve Gürültü Analizi’’, IEEE 25. Sinyal İşleme ve Uygulamaları Kurultayı, 15-18 Mayıs 2017, Antalya, Türkiye

2) Güney, G., Birgül, Ö., Uluç, N., Demirkiran, A., Aytaç-Kipergil, E., & Ünlü, M.

B.’’ . ‘Noise Reduction in Photoacoustic Imaging using Wavelet Transform’.

In Biomedical Engineering Meeting (BIYOMUT), 2017 21th National . IEEE.