• Sonuç bulunamadı

114

115

analogları ile ilişkilerini betimlemek açısından bir dizi çıkarım yapılmıştır. Buna göre, 𝑖) faz kazanan parçacıklar her iki etkide de özdeş olmalıdır, 𝑖𝑖) iki olay, singüler bölgelerindeki fiziksel niceliklerin duallerini içermelidir, 𝑖𝑖𝑖) parçacıkların etkileştiği skaler ve vektör potansiyeller (ya da benzeri fiziksel nicelikler) Lorentz ayarında (2.136) denklemini sağlamalıdır. Bu bakış açısından hareketle, VHMW vektör potansiyeli-benzeri teriminden türetilen skaler potansiyel-potansiyeli-benzeri teriminin etkisi ile ortaya çıkacağı düşünülen ve SAB tipi bir etki olan SHMW olayı için düşünsel bir deney düzeneği önerilmiştir.

Üçüncü bölüm, deneysel olarak gözlenen ve güncel çalışmalarla literatürde yer etmiş üç topolojik faz (VAB, VAC ve VHMW) ve ayrıca özel dinamik fazlar (SAB, SAC ve SHMW) için dualite ve özdeşlik ilişkilerinin incelenmesine ayrılmıştır. Yapılan tartışmalar ışığında fazların aralarında betimlenen dualite ve özdeşliklerinin, deneysel olarak henüz gözlenmemiş (manyetik potansiyellerle ilişkili) dördüncü bir topolojik fazın ve skaler analoğunun varlığına işaret ettikleri saptanmış, DVAB ve DSAB olarak isimlendirilen bu fazlar için matematiksel temellendirmeler yapılarak düşünsel deney düzenekleri önerilmiştir.

Dördüncü bölümde, bir ön hazırlık olarak kuantum mekaniğinde durum kavramının etraflıca incelenmesinin ardından, Einstein, Podolsky ve Rosen tarafından önerilen ve daha sonra yapılan çalışmalar ile şekillenen deterministik yerel saklı değişken modellerin uyması beklenen Bell eşitsizlikleri ve bu modellerin deneysel olarak sınanabilmesini olanaklı kılan (aynı zamanda Bell eşitsizliklerinin bir versiyonu olan) CHSH eşitsizlikleri türetilmiştir. Bell-CHSH eşitsizlikleri, iki ve üç boyutlu uzaylarda kuantum mekaniksel beklenen değerler tarafından maksimum derecede ihlal edilen açılarla birlikte sınanmıştır.

Tezin son evresinde, geometrik ve topolojik fazların dolanık kuantum durumlarına etkileri ele alınmıştır. Bu kapsamda, ilk olarak, geometrik fazın etkileşim Hamiltonyeninin anlık enerji özdeğerleri ve keyfi 𝒏̂ doğrultusundaki spin operatörünün ilişkili anlık özvektörlerinin bulunabildiği dolanık bir sisteme olan etkileri bulunmuş, CHSH eşitsizliğinin, geometrik fazın 𝑛𝜋 −1

2𝑐𝑜𝑠−1(√2 − 1) < 𝛾 < 𝑛𝜋 −12𝜋

aralığın-116

da alacağı tüm değerler için ihlal edildiği görülmüştür. Daha sonra, topolojik fazların dolanık kuantum sistemlerine olan etkilerinin ortaya konulabilmesi için, VAB ve VAC olaylarının (ya da dualite ve özdeşlik ilişkileri uyarınca DVAB ve VHMW olaylarının), üç boyutlu sistemlerin Hamiltonyenlerinin serbest ve etkileşim terimlerinin toplamı olarak ifade edilmesinde karşılaşılan güçlükler göz önünde bulundurularak, iki boyutlu uzaya sıkıştırılmış melez (hibrit) sistemlerde incelenmesine karar verilmiştir.

Bu bağlamda, ilk olarak, göreli olmayan kuantum mekaniği çerçevesinde ayar potansiyelleri vasıtası ile basitçe açıklanabilen VAB olayı, göreli kuantum mekaniği kapsamında ele alınarak fazın dolanık kuantum durumlarına olası etkileri araştırılmış, efektif VAB Hamiltonyeninin ve VAB fazının spin polarizasyonlarına bağlı olmamasından ötürü dolanık kuantum durumlarına ölçülebilir etkilerinin olamayacağı sonucuna ulaşılmıştır. Bu sonuç, spin polarizasyon durumlarına açıkça bağlı olmayan tüm topolojik fazlar için doğru olacağından, DVAB olayının da dolanık kuantum sistemlerine ölçülebilir etkilerinin olamayacağı şeklinde genelleştirilmiştir.

İkinci olarak, bütünüyle göreli kuantum mekaniği çerçevesinde incelenen VAC olayında, efektif VAC Hamiltonyeni ve topolojik fazın iki boyutlu uzayda Clifford cebrini sağlayan iki farklı temsili için (𝑠 = ± 1) yukarı ve aşağı spin polarizasyon durumlarına bağlı oldukları bulunmuş, çizgisel yük dağılımının dolanık bir kuantum sistemi için CHSH eşitsizliğine, 𝑆(𝛿𝑉𝐴𝐶) = √2 + √2|𝑐𝑜𝑠(2𝜇𝜆)|, yeni bir değişken olarak gireceği herhangi bir yaklaşıklık ya da kabul yapılmaksızın gösterilmiştir. VAC olayı için elde edilen sonuçlar (VHMW olayı için de doğrudur), kuantum mekaniğinin lokal olmayan özelliklerinin sınanması amacıyla gelecekte yapılacak olan çalışmalar açısından deneysel bir test niteliği taşımaktadır. Topolojik fazlar için iki boyutta yapılan incelemelerin ve ulaşılan sonuçların, geometrik fazlar için yapılan analizlerden daha sade ve uygulanabilir oldukları da açıktır. Bu perspektiften hareketle, VAC fazı VAB fazından daha genel bir topolojik faz olarak yorumlanmış; VAB fazı, VAC olayında hareketli dipollerin durgun çerçevelerinde ortaya çıkan polarize edilmiş, topolojik bir kuantum etkisi olarak tanımlanmıştır.

117

Son olarak, VAB olayı için tasarlanan melez deney düzeneğinin, literatürde sıklıkla yer alan ve VAB olayında elektronların spin oryantasyonlarının önemini araştıran çalışmalar açısından deneysel bir sınama aracı olarak kullanılabileceği gösterilerek çalışma tamamlanmıştır.

118 KAYNAKLAR

Aharonov, Y. and Bohm, D. 1959. Significance of electromagnetic potentials in the quantum theory. Physical Review Letters, 115, 485-491.

Aharonov, Y. and Casher, A. 1984. Topological quantum effects for neutral particles.

Physical Review Letters, 53 (4): 319– 321.

Aharonov, Y. and Anandan, J. 1987. Phase change during a cyclic quantum evolution.

Physical Review Letters, 58, 1593.

Aharonov, Y., Cohen, E. and Rohrlich, D. 2015. Comment on “Role of potentials in the Aharonov-Bohm effect”. Physical Review A, 92(2), 026101.

Aharonov, Y., Coleman, S., Goldhaber, A. S., Nussinov, S., Popescu, S., Reznik, B. and Vaidman, L. 1994. Aharonov-Bohm and Berry phases for a quantum cloud of charge. Physical Review Letters, 73 (7), 918.

Aharonov, Y., Cohen, E. and Rohrlich, D. 2016. Nonlocality of the Aharonov-Bohm effect. Physical Review A, 93(4), 042110.

Alicea, J., Oreg, Y., Refael, G., Von Oppen, F. and Fisher, M.P. 2011. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nature Physics, 7(5), 412.

Alber, G., Delgado, A., Gisin, N. and Jex, I. 2001. Efficient bipartite quantum state purification in arbitrary dimensional Hilbert spaces. Journal of Physics A:

Mathematical and General, 34(42), 8821.

Allman, B.E., Cimmino, A., Klein, A.G. and Opat, G.I. 1992. A Scalar Aharonov-Bohm experiment with neutrons. Physical Review Letters, 68, 2409.

Alvarez-Gaume, L., Nelson, P. 1985. Hamiltonian interpretation of anomalies.

Communications in Mathematical Physics, 99, 103.

Anandan, J. 1992. The geometric phase. Nature 360, 307–313.

Aspect, A. 1976. Proposed experiment to test the nonseparability of quantum mechanics.

Physical Review D, 14 (8): 1944–1951.

Aspect, A., Dalibard, J. and G. Roger, 1982. Experimental test of Bell's inequalities using time-varying analyzers, Physical Review Letters, 49, 25, 1804–1807.

119

Azimov, Y.I. and Ryndin, R.M. 1995. Relationship between the Aharonov-Bohm and Aharonov-Casher effects for various particle spins, JETP Letters, 61, 444-448.

Bachtold, A., Strunk, C., Salvetat, J. P., Bonard, J. M., Forró, L., Nussbaumer, T. and Schönenberger, C. 1999. Aharonov–Bohm oscillations in carbon nanotubes.

Nature, 397(6721), 673-675.

Bardarson, J.H., Brouwer, P.W. and Moore, J.E. 2010. Aharonov-Bohm oscillations in disordered topological insulator nanowires. Physical Review Letters, 105(15), 156803.

Basu, B. 2006. Relation between concurrence and Berry phase of an entangled state of two spin-(1/2) particles. Europhysics Letters, 73, 833.

Bennett, C.H. and Wiesner, S.J. 1992. Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters, 69(20), 2881.

Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A. and Wootters, W.K. 1993.

Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70(13), 1895.

Bell, J.S. 1964. On the Einstein Podolsky Rosen Paradox. Physics Publishing Company, V.1, 3, 195-290.

Bell, J.S. 1971. Speakable and unspeakable in quantum mechanics. Cambridge University Press, 29-39

Berard, A. and Mohrbach, H. 2006. Spin hall effect and Berry phase of spinning particles. Physics Letters A, 352(3), 190-195.

Berger, S., Pechal, M., Kurpiers, P., Abdumalikov, A.A., Eichler, C., Mlynek, J.A. and Filipp, S. 2015. Measurement of geometric dephasing using a superconducting qubit. Nature Communications, 6(1), 1-6.

Berry, M.V. 1984. Quantal phase factors accompanying adiabatic changes. Proceedings of Royal Society of London A, 392, 45-57.

Berry, M.V. and Robnik, M. 1986. Statistics of energy levels without time-reversal symmetry: Aharonov-Bohm chaotic billiards. Journal of Physics A, 19, 649-668.

Berry, M.V. 1987. The adiabatic phase and Pancharatnam’s phase for polarized light.

Journal of Modern Optics. 34, 11, 1401-1407.

120

Berry, M.V. 1987. Quantum phase corrections from adiabatic iteration. Proceedings of Royal Society of London A, 414, 31-46.

Berry, M.V. 1988. The geometric phase. Scientific American, 259 (6) 26-34.

Berry, M.V. 1990. Quantum adiabatic anholonomy in anomalies, phases, defects, eds U M Bregola, G Marmo and G Morandi. Naples Bibliopolis, 125-181.

Berry, M.V. 1990. Anticipations of the geometric phase. Physics Today, 43, 12, 34.

Berry, M.V. 2010. Geometric phase memories. Nature Physics, 6, 148–150.

Bertlmann, R.A., Durstberger, K., Hasegawa, Y. and Hiesmayr B.C. 2004. Berry phase in entangled systems: A proposed experiment with single neutrons. Physical Review A. 69, 032112.

Bertlmann, R.A., Durstberger, K. 2005. Optimal entanglement witnesses for qubits and qutrits. Physical Review A, 72, 052331.

Blaauboer, M. and DiVincenzo, D.P. 2005. Detecting entanglement using a double-quantum-dot turnstile. Physical Review Letters, 95(16), 160402.

Bliokh, K. Y. 2009. Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium. Journal of Optics A: Pure and Applied Optics, 11(9).

Bohm, D. and Aharonov, Y. 1957. Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Physical Review Letters. 108, 1070.

Bohm, A, Mostafazadeh, A, Koizumi, H, Niu, Q. and Zwanziger, J. 2003. The geometric phase in quantum systems: Foundations, mathematical concepts, and applications in molecular and condensed matter physics. Springer Verlag.

Bomzon, Z. E., Biener, G., Kleiner, V. and Hasman, E. 2002. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters, 27(13), 1141-1143.

Born, M. and Oppenheimer, J. R. 1927. Zur Quantentheorie der molekeln. Annalen der Physik. 84, 457–84.

Bortolotti, F. 1926. Rendiconti Lincei. Scienze Fisiche e Naturali. 4, 552.

Bose, S., Vedral, V. and Knight, P.L. 1998. Multiparticle generalization of entanglement swapping. Physical Review A, 57(2), 822.

121

Bovino, F.A., Castagnoli, G., Ekert, A., Horodecki, P., Alves, C.M., and Sergienko, A.V.

2005. Direct measurement of nonlinear properties of bipartite quantum states. Physical Review Letters, 95(24), 240407.

Bouwmeester, D., Ekert A.K. and Zeilinger A. 2000. The physics of quantum information: Quantum cryptography, quantum teleportation, quantum computation, Springer.

Braunstein, S.L. and Pati, A.K. 2003. Quantum information with continuous variables.

Kluwer Academic, Dordrecht.

Bruce, S. 1998. Comment on “Variations on the Aharonov-Bohm effect”. American Journal of Physics. 66(12): 1125-1126.

Brukner, Č., Vedral, V., and Zeilinger, A. 2006. Crucial role of quantum entanglement in bulk properties of solids. Physical Review A, 73(1), 012110.

Bruss, D. and Leuchs, G. (Eds.). 2019. Quantum information: From foundations to quantum technology applications. John Wiley & Sons.

Cavalcanti, D., Brandão, F. G. and Cunha, M. T. 2006. Entanglement quantifiers, entanglement crossover and phase transitions. New Journal of Physics, 8(10), 260.

Cerf, N.J. and Adami, C. 1997. Negative entropy and information in quantum mechanics.

Physical Review Letters, 79(26), 5194.

Chambers, R.G. 1960. Shift of an electron interference pattern by enclosed magnetic flux.

Physical Review Letters, 5, 3-5.

Cimmino, A., Opat, G.I., Klein, A.G., Kaiser, H., Werner, S.A., Arif, M. and Clothier, R.

1989. Observation of the topological Aharonov-Casher phase shift by neutron interferometry. Physical Review Letters, 63, 380.

Clauser, J.F., Horne, M.A., Shimony, A. and Holt, R.A. 1969. Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23, 880.

Cohen, E., Larocque, H., Bouchard, F., Nejadsattari, F., Gefen, Y. and Karimi, E. 2019 Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond.

Nature Reviews Physics, 1, 437–449.

Curty, M., Gühne, O., Lewenstein, M. and Lütkenhaus, N. 2005. Detecting two-party quantum correlations in quantum-key-distribution protocols. Physical Review A, 71(2), 022306.

122

Çıldıroğlu, H.O. 2015. Geometrik fazlar ve kuantum alan teorilerine uygulamaları, Yüksek Lisans Tezi, BOZ, M. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Mühendisliği Anabilim Dalı, Ankara.

Çıldıroğlu, H.O. and Yılmazer. A.U. 2018. Topological effects of Aharonov-Bohm type and the role of the quantum entanglement. AIP Conference Proceedings 2042, 020045.

Çıldıroğlu, H.O. and Yılmazer, A.U. 2019. Dual scalar Aharonov Bohm phase. AIP Conference Proceedings 2178, 030047.

Darboux, G. 1896. Leçons sur la thèorie gènèrale des sufaces I-IV. Gauthier- Villars, Paris.

Delgado, F., Shim, Y.P., Korkusinski, M., Gaudreau, L., Studenikin, S.A., Sachrajda, A.S. and Hawrylak P. 2008. Spin-selective Aharonov-Bohm oscillations in a lateral triple quantum dot. Physical Review Letters, 101(22), 226810.

Deutsch, D. 1985. Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society of London. A.

Mathematical and Physical Sciences, 400(1818), 97-117.

Dowling, J.P., Williams, C.P. and Franson J.D. 1999. Maxwell Duality, Lorentz invariance, and topological phase. Physical Review Letters, 83, 2486.

Dowling, J.P. 2013. Schrödinger's killer app. CRC Press.

Duca, L., Li, T., Reitter, M., Bloch, I., Schleier-Smith, M. and Schneider, U. 2015. An Aharonov-Bohm interferometer for determining Bloch band topology. Science, 347(6219), 288-292.

Einstein, A., Podolsky, B. and Rosen, N. 1935. Can quantum-mechanical description of physical reality be considered complete?. Physical Review Letters, 47, 777.

Ekert, A.K. 1991. Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67(6), 661.

Elion, W.J., Wachters, J.J., Sohn, L.L. and Mooij, J.E. 1993. Observation of the Aharonov-Casher effect for vortices in Josephson-junction arrays. Physical Review Letters, 71(14), 2311.

Feynman, R.P. 1982. Simulating physics with computers. International Journal of Theoretical Physics. 21, 467–488.

123

Freedman, S.J. and Clauser, J.F. 1972. Experimental test of local hidden-variable theories. Physical Review Letters, 28(14), 938.

Fujikawa, K. 1986. Quantum anomaly and geometric phase: Their basic differences.

Physical Letters B, 171,424.

Gillot, J., Lepoutre, S., Gauguet, A., Büchner, M. and Vigue, J. 2013. Measurement of the He-McKellar-Wilkens topological phase by atom interferometry and test of its independence with atom velocity. Physical Review Letters, 111, 030401.

Goldhaber, A.S. 1989. Comment on ‘Topological Quantum Effects for Neutral Particles’.

Physical Review Letters, 62, 482.

Hagen, C.R. 1990. Aharonov-Bohm scattering of z particles with spin. Physical Review Letters, 64, 503-506.

Hagen, C.R. 1990. Exact equivalence of spin 1/2 Aharonov-Bohm and Aharonov-Casher effects. Physical Review Letters, 64, 2347.

Hagen, C.R. 1991. Spin dependence of the Aharonov-Bohm effect. International Journal of Modern Physics A, 6, 18, 3119 - 3149.

Hamilton, W.R. 1837. Third supplement to an essay on the theory of systems of rays.

Trans. R. Ir. Acad.17, 1-144.

Hannay, J.H. 1985. Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian. Journal of Physics A: Mathematical and General, 18(2), 221.

Hasegawa, R.P., Peterson, B.W. and Goldberg, M.E. 2004. Prefrontal neurons coding suppression of specific saccades. Neuron, 43(3), 415-425.

Hashemi, B., Cildiroglu, H.O. and Yilmazer, A.U. 2019. Scalar He-Mckellar-Wilkens effect. AIP Conference Proceedings 2178, 030046.

He, X.G. and McKellar, B.H.J. 1991. The Aharonov-Casher effect and Berry’s phase.

CERN-TH, 6074/91, 1991.

He, X.G. and McKellar, B.H.J. 1993. Topological phase due to electric dipole moment and magnetic monopole interaction. Physical Review Letters A, 47, 3424.

He, X.G. and McKellar, B.H.J. 2001. Topological effects, dipole moments, and the dual current in 2+ 1 dimensions. Physical Review A 64 (2), 022102.

124

He, X.G. and McKellar, B.H.J. 2017. Relativistic dipole interaction and the topological nature for induced HMW and AC phases. Physics Letters A, 381, 21, 1780-1783.

Herzberg, G. and Longuet-Higgins, H.C. 1963. Intersection of potential energy surfaces in polyatomic molecules. Discussions of the Faraday Society, 35, 77-82.

Holstein, B.R. 1991. Variations on the Aharonov-Bohm effect. American Journal of Physics. 370, 59,12, 1080-1085.

Holstein, B.R. 1995. The Aharonov-Bohm effect and variations. Contemporary Physics, 36(2), 93-102.

Horodecki, R. and Horodecki, P. 1994. Quantum redundancies and local realism. Physics Letters A, 194(3), 147-152.

Horodecki, R., Horodecki, P. and Horodecki, M. 1996. Quantum α-entropy inequalities:

Independent condition for local realism?. Physics Letters A, 210(6), 377-381.

Hosten, O. and Kwiat, P. 2008. Observation of the spin Hall effect of light via weak measurements. Science, 319(5864), 787-790.

Hyllus, P., Alves, C.M., Bruß, D. and Macchiavello, C. 2004. Generation and detection of bound entanglement. Physical Review A, 70(3), 032316.

Jackson, J.D. 1999. Classical electrodynamics. 3rd ed. New York: John Wiley & Sons.

Jayannavar, A. 2002. Effect of quantum entanglement on AB oscillations, spin-polarized transport and current magnification effect. Journal of Physics, 58, 173.

Khalilov, V.R. 2006. Aharonov-Bohm effect with spin-polarized electrons. Modern Physics Letters A, 21, 1647-1656.

Kocher, C.A. and Commins, E.D. 1967. Polarization correlation of photons emitted in an atomic cascade. Physical Review Letters, 18, 575.

König, M., Tschetschetkin, A., Hankiewicz, E. M., Sinova, J., Hock, V., Daumer, V. and Molenkamp, L. W. 2006. Direct observation of the Aharonov-Casher phase.

Physical Review Letters, 96(7), 076804.

Kretzschmar, M. 1965. Aharonov-Bohm scattering of a wave packet of finite extension.

Zeitschrift für Physik, 185(1), 84-96.

Kwiat, P.G. and Chiao, R.Y. 1991. Observation of a nonclassical Berry’s phase for the photon. Physical Review Letters, 66, 588.

125

Larocque, H., Gagnon-Bischoff, J., Bouchard, F., Fickler, R., Upham, J., Boyd, R.W. and Karimi, E. 2016. Arbitrary optical wavefront shaping via spin-to-orbit coupling. Journal of Optics, 18(12), 124002.

Li, B., Hewak, D.W., and Wang, Q.J. 2018. The transition from quantum field theory to one-particle quantum mechanics and a proposed interpretation of Aharonov–

Bohm effect. Foundations of Physics, 48(7), 837-852.

Li, H.-Z. 2002. Quantum non-integrable phase factor and integral formalism for gauge field. Modern Physics Letters A, 17, 30, 1955-1960.

Li, H.-Z. 1998. Global properties of simple quantum systems - Berry’s phase and others.

Shanghai Scientific and Technical Publishers.

Llyod, H. 1833. On the phenomena presented by light in its passage along the axes of biaxial crystal. Phil. Mag. 2, 112-20 and 207-10.

Lloyd, S. 1997. Capacity of the noisy quantum channel. Physical Review A, 55(3), 1613.

Lo, H.K. and Chau, H.F. 1999. Security of quantum key distribution. Science, 283 (quant-ph/9803006), 2050-2056.

Longuet-Higgins, H.C., Öpik, U., Pryce, M.H.L. and Sack, R.A. 1958. Studies of the Jahn-Teller effect. II. The dynamical problem. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 244 (1236), 1-16.

Maciejko, J., Kim, E.A. and Qi, X.L. 2010. Spin Aharonov-Bohm effect and topological spin transistor. Physical Review B, 82, 195409.

Malhotra, T., Gutiérrez-Cuevas, R., Hassett, J., Dennis, M.R., Vamivakas, A.N., and Alonso, M.A. 2018. Measuring geometric phase without interferometry. Physical Review Letters, 120(23), 233602.

Malykin, G.B. and Kharlamov, S.A. 2003. Topological phase in classical mechanics. UFN, 173:9 , 985–994.

Masanes, L., Liang, Y.C. and Doherty, A.C. 2008. All bipartite entangled states display some hidden nonlocality. Physical Review Letters, 100(9), 090403.

Maudlin, T. 2018. Ontological clarity via canonical presentation: Electromagnetism and the Aharonov–Bohm effect. Entropy, 20(6), 465.

McKellar, B.H.J., He, X.G. and Klein, A.G. 2014. Topological phases reviewed: AB, AC, and HMW phases. AIP Conference Proceedings, 1588, 59.

126

McKellar, B.H.J. 2014. Magnetic dipoles and quantum topological phases. The Universe, 2, 6-14.

McKellar, B.H.J. 2016. Aharonov–Bohm types of phases in Maxwell and Yang–Mills field theories. World Scientific Publishing Co. Pte. Ltd., 355-376.

Mead, C.A. and Truhlar, D.G. 1979. On the determination of Born-Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei, Journal of Chemical Physics, 70, 2284.

Mead, C.A. 1992. The geometric phase in molecular systems. Reviews of Modern Physics, 64(1), 51.

Messiah, A. 1965. Quantum Mechanics Volume II, North Holland Publishing Company.

Mignani, R. 1991. Aharonov-Casher effect and geometrical phases. Journal of Physics A:

Math. Gen. 24, L421LL423.

Nagasawa, F., Frustaglia, D., Saarikoski, H., Richter, K. and Nitta, J. 2013. Control of the spin geometric phase in semiconductor quantum rings. Nature Communications, 4, 1.

Nielsen, M.A. and I.L. Chuang. 2000. Quantum computation and quantum information.

Cambridge University Press, Cambridge, England.

Noguchi, A., Shikano, Y., Toyoda, K. and Urabe, S. 2014. Aharonov–Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap. Nature Communications, 5,1, 1-6.

O'Hara, J.G. 1982. The prediction and discovery of conical refraction by William Rowan Hamilton and Humphrey Lloyd (1832-1833). Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, Vol. 82A, No. 2.

Olariu, S. and Popescu, I.I. 1985. The quantum effects of electromagnetic fluxes. Reviews of Modern Physics, 57(2), 339.

Ou, Z.Y. and Mandel, L. 1988. Violation of Bell's inequality and classical probability in a two-photon correlation experiment. Physical Review Letters. 61, 50.

Pak, N.K. 2009. Mikro evren için yeni paradigma: Kuantum teorisi. Bilim ve Ütopya, 183, 7.

Pak, N.K. 2014. Yoğunlaştırılmış kuantum ayar alan teorisi atölye çalışması notları.

Hacettepe Üniversitesi, Fizik Mühendisliği Bölümü, Mart-Haziran, 2014.

127

Pancharatnam, S., 1956. Generalized theory of interference and its applications.

Proceedings of the Indian Academy of Sciences, A. 44. 257.

Pearle, P. and Rizzi, A. 2017. Quantum-mechanical inclusion of the source in the Aharonov-Bohm effects. Physical Review A, 95(5), 052123.

Pearle, P, and Rizzi, A. 2017. Quantized vector potential and alternative views of the magnetic Aharonov-Bohm phase shift. Physical Review A, 95(5), 052124.

Peng, H., Lai, K., Kong, D., Meister, S., Chen, Y. and Qi, X.L. 2010. AB interference in topological insulator nanoribbons. Nature Materials, 9 (3), 225-229.

Peshkin, M. 1981. The Aharonov-Bohm effect: Why it cannot be eliminated from quantum mechanics. Physics Reports, 80(6), 375-386.

Popescu, S. 2010. Dynamical quantum non-locality. Nature Physics, 6(3), 151-153.

Rohrlich, D. 2009. Aharonov Casher Effect. Compendium of Quantum Physics, 3-6.

Rowe, M.A., Kielpinski, D., Meyer, V., Sackett, C.A., Itano, W.M., Monroe, C. and Wineland, D.J. 2001. Experimental violation of a Bell's inequality with efficient detection. Nature, 409(6822), 791-794.

Roy, S.M. 1980. Condition for nonexistence of Aharonov-Bohm effect. Physical Review Letters, 44(3), 111.

Rytov, S.M, 1938. On transition from wave to geometrical optics. Dokl. Akad. Nauk.

SSSR.

Schrödinger, E. 1935. The Present Status of Quantum Mechanics. Die Naturwissenschaften V.23, 48.

Schumacher, B. and Nielsen, M.A. 1996. Quantum data processing and error correction.

Physical Review A, 54(4), 2629.

Shor, P.W. 1995. Scheme for reducing decoherence in quantum computer memory.

Physical Review A, 52(4), R2493.

Silverman, M.P. 1990. Two-solenoid Aharonov-Bohm experiment with correlated particles. Physics Letters A, 148, 154-157.

Simon, B. 1983. Holonomy, the quantum adiabatic theorem, and Berry's phase. Phys.

Reo. Leri. 51, 2167.

128

Sjöqvist, E. 2015. Geometric phases in quantum information physics. International Journal of Quantum Chemistry, 115, 1311-1326.

Son, D.T. and Yamamoto, N. 2012. Berry curvature, triangle anomalies, and the chiral magnetic effect in Fermi liquids. Physical Review Letters, 109(18), 181602.

Sponar, S., Klepp, J., Loidl, R., Filipp, S., Durstberger-Rennhofer, K., Bertlmann, R.A., Badurek, G., Rauch, H. and Hasegawa, Y. 2010. Geometric phase in entangled systems: A single-neutron interferometer experiment. Physical Review A, 81, 042113.

Sponar, S., Klepp, J., Durstberger-Rennhofer, K., Loidl, R., Filipp, S., Lettner, M., Bertlmann, R.A., Badurek, G., Rauch, H. and Hasegawa, Y. 2010. New aspects of geometric phases in experiments with polarized neutrons. Journal of Physics A: Mathematical and Theoretical, V.43, 35.

Steane, A. (1996). Multiple-particle interference and quantum error correction.

Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452(1954), 2551-2577.

Stobińska, M. and Wódkiewicz, K. 2005. Witnessing entanglement with second-order interference. Physical Review A, 71(3), 032304.

Stone, M. 1986. Born-Oppenheimer approximation and the origin of Wess-Zumino terms: Some quantum-mechanical examples. Physical Review D, 33, 1191.

Su, H.Y., Chen, J.L., Wu, C., Deng, D.L. and Oh, C.H. 2013. Testing Leggett's inequality using Aharonov-Casher effect. Scientific Reports, 3, 2492.

Tanaka, A. and Miyamoto, M. 2007. Quasienergy anholonomy and its application to adiabatic quantum state manipulation. Physical Review Letters, 98, 160407.

Tittel, W., Brendel, J., Gisin, N., and Zbinden, H. 1999. Long-distance Bell-type tests using energy-time entangled photons. Physical Review A, 59(6), 4150.

Tonomura, A., Osakabe, N., Matsuda, T., Kawasaki, T., Endo, J., Yano, S. and Yamada, H. 1986. Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Physical Review Letters, 56(8), 792.

Turgut, S. 2009. EPR düşünce deneyi. Bilim ve Ütopya, 183, 16-21.

Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M. and Ömer, B. 2007. Entanglement-based quantum communication over 144 km. Nature Physics, 3(7), 481-486.

129

Vaidman, L. 2012. Role of potentials in the Aharonov-Bohm effect. Physical Review A, 86(4), 040101.

Vaidman, L. 2015. Reply to “Comment on ‘Role of potentials in the Aharonov-Bohm effect”. Physical Review A, 92(2), 026102.

Vallone, G., Pomarico, E., Mataloni, P., De Martini, F. and Berardi, V. 2007. Realization and characterization of a two-photon four-qubit linear cluster state. Physical Review Letters, 98(18), 180502.

Vladimirsky, V.V. 1941. Dokl. Akad. Nauk SSSR, 31, 222. English translation in: B.

Markovski and S. I. Vinitsky (Eds.), Topological Phases in Quantum Theory.

World Scientific, Singapore, 11.

Webb, R.A., Washburn, S., Umbach, C.P. and Laibowitz, R.B. 1985. Observation of the Aharonov-Bohm oscillations in normal-metal rings. Physical Review Letters, 54(25), 2696.

Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. and Zeilinger, A. 1998. Violation of BI under strict Einstein locality conditions. Physical Review Letters, 81(23), 5039.

Wilczek, F. and Zee, A. 1984. Appearance of gauge structure in simple dynamical systems. Physical Review Letters, 52, 2111.

Wilkens, M. 1994. Quantum phase of a moving dipole. Physical Review Letters, 72, 5.

Whitney, R.S. and Gefen, Y. 2003. Berry phase in a nonisolated system. Physical Review Letters, 90(19), 190402.

Wu, L.A., Bandyopadhyay, S., Sarandy, M.S. and Lidar, D.A. 2005. Entanglement observables and witnesses for interacting quantum spin systems. Physical Review A, 72(3), 032309.

Yale, C.G., Heremans, F.J., Zhou, B.B., Auer, A., Burkard, G. and Awschalom, D.D.

2016. Optical manipulation of the Berry phase in a solid-state spin qubit. Nature Photonics, 10(3), 184.

Yurke, B. and Stoler, D. 1992. Bell’s-inequality experiments using independent-particle sources. Physical Review A, 46(5), 2229.

Zeilinger, A., Gaehler, R. and Horne, M.A. 1991. On the topological nature of the Aharonov-Casher effect. Physical Review Letters, 154, 93.

130

Zeilinger, A., Horne, M.A. and Greenberger D.M. 1992. Hıgher Order Quantum Entanglement. NASA. Goddard Space Flight Center, Workshop on Squeezed States and Uncertainty Relations, 73-81.

Zwanziger, J.W., Koenig, M. and Pines, A. 1990. Berry’s phase. Annual Review of Physical Chemistry 41, 601–646.

131 ÖZGEÇMİŞ

Adı Soyadı : Hasan Özgür ÇILDIROĞLU Doğum Yeri : Ankara-Altındağ

Doğum Tarihi : 19 Nisan 1988 Medeni Hali : Bekar

Yabancı Dili : İngilizce - Almanca

Eğitim Durumu

Lise : Fethiye Kemal Mumcu Anadolu Lisesi (2006), Ankara Lisans : Hacettepe Üniversitesi Mühendislik Fakültesi

Fizik Mühendisliği Bölümü (2011), Ankara.

Anadolu Üniversitesi Açıköğretim Fakültesi Sosyoloji Bölümü (2020), Eskişehir.

Yüksek Lisans : Hacettepe Üniversitesi Fen Bilimleri Enstitüsü Fizik Mühendisliği Bölümü (2015), Ankara.

Doktora : Ankara Üniversitesi Fen Bilimleri Enstitüsü Fizik Mühendisliği Bölümü (2020), Ankara.

Çalıştığı Kurumlar

2014-2015 : Ankara Üniversitesi Mühendislik Fakültesi Fizik Mühendisliği Bölümü Genel Fizik Anabilim Dalı

2015-2016 : Hacettepe Üniversitesi Mühendislik Fakültesi Fizik Mühendisliği Bölümü Genel Fizik Anabilim Dalı

2016- : Ankara Üniversitesi Mühendislik Fakültesi Fizik Mühendisliği Bölümü Fizik Mühendisliği Anabilim Dalı

Yayınlar

Çıldıroğlu, H.O. and Yılmazer. A.U. 2018. Topological effects of Aharonov-Bohm type and the role of the quantum entanglement. AIP Conference Proceedings 2042, 020045.

Çıldıroğlu, H.O. and Yılmazer, A.U. 2019. Dual scalar Aharonov Bohm phase. AIP Conference Proceedings 2178, 030047.

Hashemi, B., Çıldıroğlu, H.O. and Yılmazer, A.U. 2019. Scalar He-Mckellar-Wilkens effect. AIP Conference Proceedings 2178, 030046.

Benzer Belgeler