• Sonuç bulunamadı

YAŞLANMA SÜRECİ

6. SONUÇ ve ÖNERİLER

Bu deneysel çalışmada rat karaciğer iskemi-reperfüzyon modelinde, 10 µg/kg ve 100 µg/kg deksmedetomidinin iskemik karaciğer hasarı üzerine etkileri, MDA, SOD, KAT, GSH, GSH-Px ile değerlendirilmiştir.

Karaciğer İR hasarı oksidatif strese neden olur. MDA düzeyini artar; SOD, KAT, GSH ve GSH-Px enzim aktivitelerini azaltır.

Çalışmamızda deksmedetomidinin her iki dozu da İR hasarını azaltmakla birlikte 100 µg/kg’lik dozu daha etkindir.

Karaciğer İR hasarının klinik tedavisinde deksmedetomidin uygulaması karaciğer hasarını azaltabilir.

Deksmedetomidinin karaciğer İR hasarına karşı koruyucu etki mekanizmalarının açığa çıkarılması için ileri çalışmaların yapılması uygun olacaktır.

7. ÖZET

Amaç: Karaciğer İR hasarı hepatik doku ve hücrelerde bir seri hasara sebep olabilir. Bu da hastaların prognozunu, operasyonun başarısını etkileyen temel faktörlerden biridir. Karaciğer nakli sonrası kötü fonksiyon gören greftin yaygın görülen bir sebebidir. İskemi-reperfüzyon hasarının mekanizması tam olarak açıklanamamıştır ancak kanıtlar hasarda anahtar rolün serbest oksijen radikalleri olduğuna işaret etmektedir.

Deksmedetomidin çok güçlü ve ileri derecede selektif bir α2 reseptör agonistidir. Artan klinik kullanımına karşın karaciğer iskemi reperfüzyon hasarına karşı deksmedetomidinin etkileri bilinmemektedir.

Çalışmamızda ratlarda, karaciğer İR ile oluşturulan oksidatif hasara karşı deksmedetomidinin koruyucu etkisi olup olmadığını inceledik.

Gereç ve Yöntem: Çalışmada 40 adet ağırlıkları 250-350 g arasında değişen Sprague-Dawley genç, erkek rat randomize olarak 10’arlı 4 gruba ayrıldı.

Grup 1: Batın açıldı ancak oklüzyon uygulanmadı.

Grup 2: Batın açıldıktan sonra segmental hepatik iskemi modeli ile 60 dakika iskemi ve 60 dakika reperfüzyon uygulandı.

Grup 3: İskemiden 30 dakika önce deksmedetomidin 10 µg/kg periton içine (ip) uygulandı.

Grup 4: İskemiden 30 dakika önce deksmedetomidin 100 µg/kg i.p uygulandı. Deney tamamlandıktan sonra ratlar kalpten kanatılarak sakrifiye edildi. Çıkarılan karaciğer dokuları alüminyum folyoya sarılarak biyokimyasal analizler

Bulgular: Doku MDA düzeyi Grup 1’e göre Grup 2’de anlamlı yüksek idi (p<0.05). Grup 2’ye göre Grup 3 ve 4’te MDA düzeylerinde ki düşüş anlamlı idi (p<0.05).

Doku SOD ve KAT düzeyleri Grup 1’e göre Grup 2’de anlamlı düşük bulundu (p<0.05). Grup 2’ye göre Grup 4’de anlamlı artış olduğu görüldü (p<0.05).

Karaciğer dokusundaki GSH düzeyi Grup 1’e göre Grup 2’de anlamlı düşük bulundu (p<0.05). Grup 2’ye göre Grup 3 ve 4’de GSH düzeylerinde anlamlı artış saptandı (p<0.05).

Doku GSH-Px düzeyi Grup 1’e göre Grup 2 ve Grup 3’de anlamlı düşük bulundu (p<0.05). Grup 3 ve 4 arasında da GSH-Px aktivitesi açısından anlamlı fark vardı (p<0.05).

Sonuç: Ratlarda yapılan deneysel karaciğer İR modelinde deksmedetomidinin doza bağlı olarak karaciğer oksidatif hasarını azalttığı görülmüştür. Araştırmamızın sonuçları, deksmedetomidinin karaciğer iskemi- reperfüzyon hasarındaki muhtemel koruyucu rolünün daha geniş deneysel ve klinik çalışmalarla desteklenmesi gerektiği kanaatini doğurmuştur.

Anahtar Kelimeler: Karaciğer, iskemi-reperfüzyon, hasar, deksmedetomidin.

8. SUMMARY

Aim: The IR injury of liver may cause a series of damage to hepatic tissue and cells. It is one of the factors which can affect the prognosis of the patients and the success of the operation. The IR injury of liver is a frequent cause of poor graft function in the postoperative period. The mechanism of the ischemia-reperfusion injury has not been fully explained; however, the evidence shows that free oxygen radicals have the key role in the injury.

Dexmedetomidine is a very strong and a highly selective α2 receptor agonist. Its effects against the reperfusion injury have not known despite increasing clinical use of this agent.

The aim of this study was to evaluate the protective effects of dexmedetomidine against oxidative injury resulted from liver IR in rats.

Materials and Methods: 40 Sprague-Dawley young, male rats weighing between 250 and 350 g were randomly separated into four groups, including 10 in the each group.

Group 1: The abdomen was opened but hepatic portal occlusion wasn’t applied. Group 2: After the abdomen was opened, 60 minutes ischemia and 60 minutes reperfusion were applied through segmental hepatic ischemia model.

Group 3: 30 minutes before the ischemia, dexmedetomidine 10 µg/kg was applied into peritoneal cavity.

Group 4: 30 minutes before the ischemia, dexmedetomidine 100 µg/kg was applied into peritoneal cavity.

After the experiment was completed, the rats were sacrificed by making them bleed. The extracted livers were kept in the deep-freezer in -80 ◦C by wrapping them in an aluminum foil.

Results: Tissue MDA level was significantly high in Group 2 than Group 1 (p<0.05). The decrease in Groups 3 and 4 was significant than Group 2 (p<0.05).

Tissue SOD and KAT levels was detected low in Group 2 than Group 1 (p<0.05). There was a significant increase in Group 4 than Group 2 (p<0.05).

The GSH level in the liver tissue was significantly lower in Group 2 than when compared with Group 1 (p<0.05). There was a significant increase in GSH levels in Groups 3 and 4 than Group 2 (p<0.05).

Tissue GSH-Px level was detected significantly low in Groups 2 and 3 when compared with Group 1 (p<0.05). There was a significant difference between Group 3 and 4 in the terms of GSH-Px activity (p<0.05).

Conclusion: In the liver ischemia reperfusion model carried out in the rats, it was concluded that dexmedetomidine was decreased the liver oxidation depending on the dose. The results of this study indicate the potential role of the dexmedetomidine in the protection of reperfusion damage of the liver ischemia and this must be supported by means of detailed experimental and clinical studies.

9. KAYNAKLAR

1. Majino G, Jorris I. Apopitosis, oncosis, and necrosis. An overview of the cell death. Am J Pathol 1995; 146: 3-9.

2. Zhang W, Wang M, Xie HY, Zhou L, et al. Role of Reactive Oxygen species in mediating hepatic ischemia-reperfusion injury and its therapeutic applications in liver transplantation. Transplant proceed 2007; 39: 1332-1337.

3. Morisue A, Wakabayashi G, Shimazu M, Tanabe M, et al.The Role Of Nitric Oxide After A Short Period Of Liver Ischemia–Reperfusion, Journal Of Surgical Research, 2003; 109: 101–109.

4. Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ. Sedative, amnestic and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg. 2000; 90: 699-705.

5. Şahin E, Olguner Ç, Bodur HA, ve ark. Uzak ve Doğrudan İskemik Ön koşullamanın Karaciğerin Reperfüzyon Hasarı Üzerindeki Etkilerinin Karşılaştırılması. Türkiye Klinikleri J Med Sci 2009; 29: 381-387.

6. Carden DL, Granger D. N. Pathophysiology of ischaemia-reperfusion injury. J. Pathology 2000; 190: 255-266.

7. Peralta C, Fern´Andez L, Pan´es J, et al. Preconditioning protects against systemic disorders associated with hepatic ischemia-reperfusion through blockade of Tumor necrosis factor–induced P-selectin up-regulation in the rat. Hepatology 2001; 33: 100–113.

8. Baykara B, Tekmen I. Karaciğer İskemi Reperfüzyon Hasarı. DEÜ Tıp Fakültesi Dergisi 2005; 19: 185-194.

9. Huang SS, Wei FC, Hung LM. Ischemic preconditioning attenuates postischemic leukocyte – endothelial cell interactions role of nitric oxide and protein kinase C. Circ J 2006; 70: 1070–1075.

10. Grace PA. Ischaemia-reperfusion injury. Br. J. Surg. 1994; 81: 637-647. 11. Göksel Ş, Berrak ÇY. İskemi Reperfüzyon Hasarı. Klinik Gelişim 5-13 Best B. Ischemia and reperfusion injury in cryonics.

12. Heurteaux C, Lauritzen I, Widmann C, Lazdunski M.Essential role of adenosine, adenosine Al receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning (forebrain ischemia/gene expression). Proc Natl Acad Sci USA 1995; 92: 4666–4670.

13. Collard CD, Gelman S. Phatophsiology, Clinical Manifestations, and Prevention of İschemia-Reperfusion İnjury. Anesthesiology 2001; 94: 1133- 1138.

14. Uz E, Yılmaz HR, Iraz M, ve ark. Effects Of Vitamin E And Caffeic Acid Phenethyl Ester (CAPE) On Methabolic Enzymes Of Rats With Experimental Liver Ischemia-Reperfusion Injury. Ege Tıp Dergisi 2002; 41: 77–82.

15. Yoshikawa T, Murakami M, Yoshida N, et al. Effect of superoxid dismutase and catalase on diseminated intravascular coagulation in rats. Thrombosis and Haemostasis 1993; 50: 869–872.

16. Teoh NC, Farrell GC. Hepatic ischemia reperfusion injury: Pathogenic mechanisms and basis for hepatoprotection Journal of Gastroenterology and Hepatology 2003; 18: 891–902.

17. Junqueira, LC, Carneiro, J. 2003, Basic Histology Text & Atlas, Tenth Edition, USA: McGraw-Hill Companies, 332.

18. Kaplowitz N. Mechanisms of liver injury. Journal of Hepatology, 2000; 32: 39–47.

19. Atila K, Çöker A, Sagol O, et al. Protective effects of carnitine in an experimental ischemia-reperfusion injury. Clinical Nutrition 2002; 4: 309-313. 20. Ferdinand S, Nagy A, Robert T, et al. Hepatic ischemiareperfusion injury. The American Journal of Surgery 2001; 181: 160-166.

21. Jaeschke H. Molecular mechanisms of hepatic ischemiareperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol 2003; 284: G15- G26.

22. Currin RT, Gores GJ, Thurman RG. Protection by acidotic pH against anoxic cell killing in perfused rat liver: evidence for a pH paradox. FASEB Journal 1991; 5: 207–210.

23. Bond JM, Chacon E, Herman B. Intracellular pH and calcium homeostasis during the paradox of reperfusion injury to cultured neonatal rat cardiac myocytes. American Journal of Physiology 1993; 265: 129–137.

24. Kim JS, Ohshima S, Pediaditakis P et al. Nitric oxide: a signaling molecule against mitochondrial permeabilitytransition-and pH- dependent cell death after reperfusion. Free Radical Biology & Medicine 2004; 37: 1943–1950.

25. Martindale, J.L, Holbrook, N.J, , Cellular response to oxidative stres: signaling for suicide and survival, Journal of Cellular Physiology2002;192:1–15. 26. Toyokuni, SReactive oxygen species- induced molecular damage and its application in pathology. Pathology International 1999: 49- 91.

27. Zhang B, Borderie D, Sogni P, Soubrane O, Houssin D,Calmus Y. NO- mediated vasodilation in the rat liver. Role of hepatocytes and liver endothelial cells. J Hepatol 1997; 26: 1348-1355.

28. Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology 2002; 35: 478-491.

29. Ming Z, Han C, Lautt WW. Nitric oxide mediates hepatic arterial vascular escape from norepinephrine-induced constriction. Am J Physiol Gastrointest Liver Physiol 1999; 277: G1200-G1206.

30. McCuskey RS. Morphological mechanisms for regulating blood flow through hepatic sinusoids. Liver 2000; 20: 3-7.

31. Colletti LM, Kunkel SL, Walz A et al. The role of cytokine networks in the local liver injury following hepatic ischemia/reperfusion in the rat. Hepatology 1996; 23: 506–514.

32. Takamatsu Y, Shimada K, Chijiiwa K, et al. Role of leukotrienes on hepatic ischemia/reperfusion injury in rats. J Surg Res 2004; 119:14–20.

33. Hafez T, Moussa M, Nesim I,et al. The effect of intraportal prostaglandin E1 on adhesion molecule expression, inflammatory modulator function, and histology in canine hepatic ischemia/ reperfusion injury. J Surg Res 2007;138: 88–99.

34. Natori S, Fujii Y, Kurosawa H,et al. Prostaglandin E1 protects against ischemia-reperfusion injury of the liver by inhibition of neutrophil adherence to endothelial cells. Transplantation 1997; 64: 1514–1520.

35. Kim YI, Kai T, Kitano S et al. Hepatoprotection by a PGI2 analogue in complete warm ischemia of the pig liver. Prostanoid release from the reperfused liver. Transplantation 1994; 58: 875–879.

36. Yoshidome H, Kato A, Edwards MJ, et al. Interleukin-10 suppresses hepatic ischemia/reperfusion injury in mice: implications of a central role for nuclear factor kappaB. Hepatology 1999; 30: 203–208.

37. Motoki A, Adachi N, Liu K et al. Suppression of ischaemia-induced cytokine release by dimaprit and amelioration of liver injury in rats. Basic Clin Pharmacol Toxicol 2008; 102: 394–398

38. Jaeschke H, Farhood A, Smith CW. Neutrophils contribute to ischemia- reperfusion injury in rat liver in vivo. FASEB J 1990;4: 3355-3359.

39. Del Zoppo GJ, Schmid-Schonbein GW, Mori E, et al. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 1991; 22: 1276-1283.

40. Murota S, Fujita H, Wakabayashi Y, Morita I. Cell adhesion molecule mediates endothelial cell injury caused by activated neutrophils. Keio Journal of Medicine 1996; 45: 207-212.

41. Weiss SJ. Tissue destruction by neutrophils. New Engl J Med 1989;320:365-376.

42. Granger DN, Kubes P. The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J Leukoc Biol 1994; 55: 662-675.

43. Chosay JG, Essani NA, Dunn CJ, Jaeschke H. Neutrophil margination andn extravasation in sinusoids and venules of the liver during endotoxin-induced injury. Am J Physiol Gastrointest Liver Physiol 1997; 272: G1195-G1200

44. Essani NA, Fisher MA, Farhood A, et al. Cytokine-induced hepatic intercellular adhesion molecule-1 (ICAM-1) mRNA expression and its role in the pathophysiology of murine endotoxin shock and acute liver failure. Hepatology 1995; 21: 1632-1639.

45. Tsuchihashi S, Fondevila C, Kupiec-Weglinski JW. Heme oxygenase system in ischemia and reperfusion injury. Ann Transplant 2004; 9: 84–87.

46. Farombi EO, Surh YJ. Heme oxygenase-1 as a potential therapeutic target for hepatoprotection. J Biochem Mol Biol 2006; 39: 479–491.

47. Kaizu T, Nakao A, Tsung A, et al. Carbon monoxide inhalation ameliorates cold ischemia/reperfusion injury after rat liver transplantation. Surgery 2005; 138:229-35.

48. Amersi F, Shen XD, Anselmo D, et al. Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology (Baltimore) 2002; 35:815-23.

49. Kalender S, Kalender Y, Öğütçü A, ve ark. Endosulfan-induced cardiotoxicity and free radical metabolism in rats: The protective effect of vitamin E. Toxicology, 2002; 202: 227-235.

50. Shiratori Y, Kiriyama H, Fukushi Y, et al. Modulation of ischemiareperfusion- induced hepatic injury by Kupffer cells. Dig Dis Sci1994; 39: 1265–72.

51. Fisher, M.A, Eversole, R.R, Beuving, L.J, et al. Sinusoidal endothelial cell and parenchymal cell injury endotoxemia and hepatic ischemia-reperfusion: protection by the 21-aminosteroid tirilazad mesylate, International Hepatology Communications1997; 6: 121-129.

52. Öztürk F, Apopitoz, İnönü Üniversitesi Tıp Fakültesi Dergisi, 9: 143-148,s. 53. Krishnaswamy, K, Sushil K, 2000, Oxidative stres and apoptosis, Pathophysiology 2002; 27: 153-163.

54. Rudiger H, Clavien P.A. Tumor necrosis factor-alpha, but not Fas, mediates hepatocellular apoptosis in the murine ischemic liver. Gastroenterology,2002; 122:202– 210.

55. Tsuchiya T, Abe T, Saito T, et al. Induction of immediate early genes and apoptosis after ischemia/reperfusion in fatty liver rats. Transplantation Proceedings, 1998; 30: 2919–2922.

56. Gao W, Bentley R.C, Madden J.F, et al. Apoptosis of sinusoidal endothelial cells is a critical mechanism of prevention of injury in rat liver transplantation, Hepatology, 1998; 27: 1652–1660.

57. Altan N, Sepici Dinçel A, Koca C. 2006, Diabetes Mellitus ve Oksidatif Stres, Türk Biyokimya Dergisi [Turkish Journal of Biochemistry - Turk J Biochem] , 31; 51–56.

58. Akkuş Ş, 1995, Serbest Radikaller ve Fizyopatolojik Etkileri, Mimoza Yayınları, Konya.

59. Mc Cord JM. The evolution of free radicals and oxidative stres. Am J Med. 2000; 108: 652-659.

60. Stahl W and Sies H. Introduction: Reactive oxygen species. Research Monographs, 2002; 1-2.

61. Henry LEA, Halliwell B and Hall DO. The superoxide dismutase activity of various photosynthetic organisms measured by a new and rapid assay technique. Febs Letters. 1976; 66: 2.

62. Özdemir G. Reaktif Oksijen Partikülleri (ROP) (Oksidan Moleküller, Serbest Radikaller). Roche Bilimsel Eserler Serisiİstanbul 1993; 20-26.

63. Fridovich I. Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann NY Acad Sci. 1999; 893: 13-18.

64. Dündar Y, Aslan R. Hücre Moleküler Statüsünün Anşılmasında ve Fizyolojik Önem Açısından Radikaller Antioksidanlar, Cerrahi Tıp Bilimleri Derg. İnsizyon, 1999; 2: 134-142.

65. Suh J, Zhu BZ and Frei B. Ascorbate does not act as apro-oxidant toward lipids and proteins in human plasma exposed to redox-active transition metal ions and hydrogen peroxide. Free Radic Biol Med. 2003; 34: 1306-1314.

66. Cursio R, Gugenheim J, Ricci JE, et al. A caspase inhibitor fully protects rats against lethal normothermic liver ischemia by inhibition of liver apoptosis, FASEB J 1999; 13: 253- 261.

67. Kawashima S. The two faces of endothelial nitric oxide sythase in the pathophysiology of atherosclerosis. Endothelium. 2004; 11: 99-107.

68. Shah, PC, Brolin, RE, Amenta, PS, et al. Effect Of Aging On İntestinal İschemia And Reperfusion İnjury. Mechanisms Of Ageing And Development 1999; 107: 37–50.

69. Çavdar C, Sifil A, Çamsarı T. Reaktif Oksijen Partikülleri Ve Antioksidan Savunmatürk Nefroloji Diyaliz Ve Transplantasyon Dergisi/Office Journal Of The Turkish Nephrology, Association 1997; 3-4: 92-95.

70. Pryor WA. Oxidant in cigarette smoke: Radicals,hydrogen peroxide peroxynitrate and peroxynitrite. Ann ny acad sci 1993; 686:12-27.

71. Esterbauer H, Wag G and Puhl H. Lipid peroxidation and its role in atherogenesis. Br Med Bull 1993; 49: 566-576.

72. Gutteridge J. Lipid peroxidation and Antioxidants as Biomarkers of Tissue Damage. Clin Chem. 1995; 41:18–19.

73. Halliwell B. Vitamin C: antioxidant or pro-oxidant in vivo? Free Radic Res. 1996; 25: 439-54.

74. Ateş B. İntestinal İskemi-Reperfüzyon Uygulamalarında Değişik Antioksidanların Koruyucu Etkilerinin Araştırılması (tez). Malatya: İnönü Üniversitesi Fen Bilimleri Enstitüsü; 2001.

75. Steenvoorden DP, Van Henegouwen GM. The use of endogenous antioxidants to improve photoprotection. J Photochem Photobiol B 1997; 41:1- 10.

76. Altınısık M. Serbest radikaller 2000-2001 Yılı anabilimdalı seminerleri. Avalible from: URL: www.mustafaaltinisik.org.uk/sunumlarim.htm

77. Fang Y-Z, Yang S and Wu G. Free radicals, antioxidants and nutrition. Nutrition. 2002;18: 872-879.

78. Sies H. Physiological society symposium: Impaired endothelial and smooth muscle Cell function in oxidative stress. Oxidative stress: oxidants and antioxidants. Exp Physiol 1997; 82:291-295.

79. Vertuani S, Angusti A, Manfredini S. The antioxidants and proantioxidants network: an overview. Curr Pharm Des 2004; 10:1677-94.

80. Chaudiere J, Ferrari-Iliou R. Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 1999; 37:949 - 62.

81. Dikmen N, Özgünen T . Asım, İstanbul, Nobel Tıp Kitapevi, 2004.

82. Burtis CA, Ashwood ER, Burns DE. Tietz Textbook of Clinical Chemistry. W.B. Saunders Company. Philadelphia, Pennsylvania; 2006.

83. Altan N, Sepici Dinçel A, Koca C. Diabetes Mellitus ve Oksidatif Stres, Türk Biyokimya Dergisi [Turkish Journal of Biochemistry - Turk J Biochem] 2006; 31: 51–56.

84. Zelko I, Mariani T, Folz R. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and ECSOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 2002; 33:337-

85. Nozik-Grayck E, Suliman H, Piantadosi C. Extracellular superoxide dismutase. Int J Biochem Cell Biol 2005; 37:2466-2471.

86. Bannister J, Bannister W, Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem 1987; 22:111-180. 87. Chelikani P, Fita I, Loewen P. Diversity of structures and properties among catalases. Cell Mol Life Sci 2004; 61:192-208.

88. Zamockı M, Koller F. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol 1999; 72:19-66.

89. del Rio L, Sandalio L, Palma J, et al. Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med 1992; 13:557-80. 90. Brigelius-Flohe R. Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 1999; 27:951-965.

91. Ho Y, Magnenat J, Bronson R, Cao J, et al. Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem 1997; 272:16644-16651.

92. Hayes J, Flanagan J, Jowsey I. Glutathione transferases. Annu Rev Pharmacol Toxicol 2005; 45: 51-88.

93. Sharma R, Yang Y, Sharma A, Awasthi S, Awasthi Y. Antioxidant role of glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid Redox Signal 2004; 6:289-300.

94. Aslan R. Homeostatik Mekanizmanın Korunması ve Sağaltımda Antioksidanlar. Ġlaç ve Tedavi Dergisi 1999; 8: 475-480.

95. Bhana N, Goa KL, McClellan KJ. Dexmedetomidine Drugs 2000;59:263– 268.

96. Young CC, Prielipp RC. Sedative, analgesic, and neuromuscular blocking drugs. In: Murray MJ, Coursin DB, Pearl RG, et al. (eds). Critical Care Medicine: Perioperative Management, 2nd ed. New York: Lippincott Williams & Wilkins; 2002: 147–167.

97. Aantaa R. Assessment of the sedative effects of dexmedetomidine, an alpha2-adrenaceptor agonist with analysis of saccadic eye movements. Pharmacol Toxicol. 1991; 68: 394-398.

98. Aantaa R, Kallio A, Virtanen R. Dexmedetomidine novel alpha2-adrenergic agonist. A review of its pharmacodynamic characteristics. Drugs of the Future 1993; 18: 49-56.

99. Günes Yasemin, Gündüz Murat. Deksmedetomidin Farmakolojik Özellikleri ve Anestezi Pratigindeki Yeri. Arsiv 2006; 15: 176.

100. Anttila M, Penttila J, Helminen A, et al. Bioavailability of dexmedetomidine after extravascular doses in healthy subjects. Br J Clin Pharmacol. 2003; 56:691-693.

101. Vertanen R, Savola JM, Sano V, Nyman L. Characterization of selectivity, specificity and potency of medetomidine as alpha-2 adrenoreceptor agonists. Eur J Pharmacol 1988; 150: 9-14

102. Reid K, Hayashi Y, Guo TZ, et al. Chronic administration of an alpha 2 adrenergic agonist desensitizes rats to the anesthetic effects of dexmedetomidine. Pharmacol Biochem Behav 1994; 47: 171-177.

103. Maccioli GA. Dexmedetomidine to facilitate drug withdrawal. Anesthesiology 2003; 98: 575-577.

104. Davies MF, Haimor F, Lighthall G, Clark JD. Dexmedetomidine fails to cause hyperalgesia after cessation of chronic administration. Anesth Analg. 2003;96: 195-200.

105. Maier C, Steinberg GK, Sun GH, Zhi GT, Maze M. Neuroprotection by the alpha 2-adrenoreceptor agonist dexmedetomidine in a focal model of cerebral ischemia. Anesthesiology 1993; 79: 306- 312.

106. Prielipp RC, Wall MH, Tobin JR, et al. Dexmedetomidine-induced sedation in volunteers decreases regional and global cerebral blood flow Anesth Analg 2002; 95: 1052-1059

107. Ishiyama T, Dohi S, Iida H, Watanabe Y, Shimonaka H. Mecanisms of dexmedetomidine-induced cerebrovasculer effects in canine in vivo experiments Anesth Analg. 1995; 81: 1208-1215.

108. Ohata H, Iida H, Dohi S, Watanabe Y. Intravenous Dexmedetomidine inhibits cerebrovascular dilation induced by isoflurane and sevoflurane in dogs. Anesth Analg 1999; 89: 370-377.

110. Jalonen J, Hynynen M, Kuitunen A, et al. Dexmedetomidine as an anesthetic adjunct in coronary artery bypass grafting. Anesthesiology. 1997; 86: 331-345.

111. Ronald D. Miller. Miller’s Anesthesia Sixth Edition. 2005.

112. Ruesch S, Levy JH, et al. Treatment of persistent tachycardia with dexmedetomidine during off-pump cardiac surgery. Anesth Analg. 2002; 95: 316-318.

113. Wijeysundera DN, Naik JS, Beattie WS. Alpha-2 adrenergic agonists to prevent perioperative cardiovascular complications: a meta-analysis. Am J Med. 2003; 114: 742-52.

114. Roekaerts P, Prinzen F, Willingers H. The effect of dexmedetomidine on systemic haemodynamics, regional myocardial function and blood flow during coronary artery stenosis in acute anaesthetized dogs. J Cardiothorac Anesth. 1994; 8:58.

115. Willigers HM, Prinzen FW, Roekaerts PM, et al. Dexmedetomidine decreases perioperative myocardial lactat release in dogs. Anesth Analg 2003; 96: 657–764.

116. Belleville JP, Ward DS, Bloor BC, Maze M. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology 1992; 77: 1125–33.

117. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology 2000; 93: 382-394.

118. Ronald D. Miller. Miller’s Anesthesia Sixth Edition. 2005.

119. Maze M, Virtanen R, Daunt D, Banks SJ, Stover EP, Feldman D. Effects of dexmedetomidine, anovel imidazole sedative anesthetic agent, on adrenal steroidogenesis: in vivo and in vitro studies. Anesth Analg 1991; 73: 204-208. 120. P.V.N. Nascimento, L.R. Carvahlo and A.B. Teixeria. Renal effects of dexmedetomidine, experimental study in dogs. Anesthesiology 2003; A502. 121. D.L. Herr, S.T. Sum-Ping and M. ICU sedation after coronary artery bypass graft surgery: dexmedetomidine-based versus propofol-based sedation regimens. J Cardiothorac Vasc Anesth 2003; 17: 576-584.

122. Khan ZP, Ferguson CN, Jones RM. alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia 1999; 54:146– 165.

123. Gertler R, Brown HC, Mitchell DH, Silvius EN. Dexmedetomidine: a novel sedative-analgesic agent. Proc (Baylor University Medical Center) 2001; 14:13– 21.

124. Ma D, Hossain M, Rajakumaraswamy N, et al. Dexmedetomidine produces its neuroprotective effect via the alpha2A-adrenoceptor subtype. Eur J

Benzer Belgeler