• Sonuç bulunamadı

RF MİKROELEKTRONİK OSİLATÖRLER

N/A
N/A
Protected

Academic year: 2022

Share "RF MİKROELEKTRONİK OSİLATÖRLER"

Copied!
29
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

RF MİKROELEKTRONİK

OSİLATÖRLER

(2)

PERFORMANS PARAMETRELERİ:

FREKANS ARALIĞI

• Bir RF osilatörü çıkış frekansı ayarlanabilecek şekilde tasarlanmalıdır. Ayarlanabilir frekans aralığını şu iki faktör belirler.

– Kullanıldığı sistemin ihtiyacı.

– Kullanıldığı sistemin ihtiyacı.

– İhtiyacın üzerine eklenen hata payı. Bu pay sıcaklık değişimi ya da üretimde oluşan hatalar gibi

sebeplerle oluşan frekans kaymalarını karşılayabilmek için eklenmelidir.

(3)

PERFORMANS PARAMETRELERİ:

FREKANS ARALIĞI

• Örnek:

• 2.4 GHz ve 5 GHz kablosuz internet

bantlarında çalışan direkt çevrim alıcısı

tasarlanmak istenmektedir. İki frekansıda tek

tasarlanmak istenmektedir. İki frekansıda tek

bir osilatörün karşılaması istenirse osilatörün

frekans aralığı ne olmalıdır.

(4)

PERFORMANS PARAMETRELERİ:

FREKANS ARALIĞI

• Çözüm:

• Şekildeki gibi bir alıcı devresi kullanılırsa 2.4 GHz bandı için 4.8 GHz ≤ f

LO

≤ 4.96 GHz olur.

Toplamda 4.8 GHz den 5.8 GHz e kadar bir

Toplamda 4.8 GHz den 5.8 GHz e kadar bir

frekans aralığı gerekir.

(5)

PERFORMANS PARAMETRELERİ: Çıkış voltajının Genliği ve Yük Sürebilme

• Mikserlerdeki anahtarlama transistörlerinin tamamen açılıp kapanabilmelerini sağlamak için osilatörlerin

büyük genlikte sinyal üretmeleri gerekmektedir.

• Ayrıca çok düşük genlikli sinyaller osilatörlerin kendi gürültülerinin etkisinin artmasına sebep olmaktadırlar.

gürültülerinin etkisinin artmasına sebep olmaktadırlar.

• Osilatörlerin şekilde görüldüğü gibi birkaç mikser ve frekans sentezleme devresinden

oluşan çoklu yükleri sürmesi gerekebilir.

(6)

PERFORMANS PARAMETRELERİ: Faz Gürültüsü ve Çıkış Dalga Şekli

• İdeal osilatörün frekans spektrumu impulstur. Fakat osilatörün içindeki elemanların gürültüleri bu

spektrumun genişlemesine sebep olur. Bu tip gürültüye faz gürültüsü denir.

• LO sinyalinin keskin şekilde değişmesi mikser

• LO sinyalinin keskin şekilde değişmesi mikser

anahtarlamasının hızlı gerçekleşmesini sağlar. Bu sayede mikserin çevrim kazancı yüksek kalır.

• Keskin geçişler frekans sentezleme devreleri içinde avantajlıdır.

• Bu sebeple osilatör sinyalinin ideal hali kare dalgadır.

• Gerçekte ise kare dalga elde etmek çok zordur.

(7)

PERFORMANS PARMATERELERİ:

Kaynak Hassasiyeti ve Güç Tüketimi

Bir osilatörün çıkış frekansı kaynak voltajına bağlı olarak değişebilir.

Bu durumda kaynak voltajının gürültüsü osilatör çıkışına faz gürültüsü olarak yansır. Bu istenmeyen bir durumdur.

Osilatörün ve bağlı tampon devrelerinin kaynaktan çekmiş oldukları gücün bir kısmı gürültüye dönüştüğünden bu gücün fazla olması da istenmeyen bir durumdur.

(8)

GERİBESLEME YÖNTEMİ

• Bir osilatör negatif geribeslemeli bir yükseltici olarak düşünülebilir. Bu durumda toplam

transfer fonksiyonu aşağıdaki gibi olur. Bu

fonksiyonun paydası sıfır olduğunda osilasyon

fonksiyonun paydası sıfır olduğunda osilasyon

başlar. Osilasyonun başlaması için küçük bir

gürültü sinyali yeterlidir.

(9)

GERİBESLEME YÖNTEMİ

• Şekilde görülen negatif geri besleme

devresinden de anlaşılacağı gibi osilasyonu

başlatan gürültü sinyali geri besleme hattının herhangi bir noktasında olabilir.

herhangi bir noktasında olabilir.

(10)

ω = ω

1 civarında Y/X

• H(jω

1) = -1 olduğu ω = ω

1 frekansı civarında H(jω) yı Taylor serisi olarak aşağıdaki gibi yazabiliriz.

• H(jω

1) = -1 olduğundan

(11)

BARKHAUSEN KRİTERİ

• Osilasyonun başlaması için geribesleme hattından A noktasına geri dönen sinyalin A noktasındaki orijinal sinyalle aynı fazda olması gerekir. Bunun içinde

yukarıda verilen kriterlerin sağlanması gerekir.

• Negatif beslemenin fazı sabit 180 dereceyken transfer fonksiyonu frekansa bağımlıdır.

(12)

NEDEN |H(jw 1 )| = 1

• Sinyalin geribesleme hattı üzerinden attığı her turda genliğinin sürekli artabilmesi için tur

kazancının en az bir olması gerekir.

|H(jω

1

)| = 1 bu yüzden başlatabilme şartı olarak da bilinir.

1

da bilinir.

|H(jω

1

)| > 1 olduğu zaman yine osilasyon başlar

ve tam osilasyona ulaşmak daha kısa sürer.

(13)

VOLTAJ SALINIM ÖRNEĞİ

• Aşağıda görülen devre frekansında giriş sinyali ile sürülürse çıkış dalgalarını çiziniz.

• Giriş sinyalinin yeterince yüksek olduğunu varsayarsak M1 ve M2 tam anahtarlama

yapabilirler. DC de her iki koldan da Iss/2 akım yapabilirler. DC de her iki koldan da Iss/2 akım

geçer. O halde her bir koldaki akım Iss/2 ortalama

değer ve Iss tepe değerine sahip kare dalga olur.

(14)

TEK PORT YÖNTEMİ

• Osilatörler geri besleme yöntemiyle analiz edilebildiği gibi tek port yöntemi ilede analiz edilebilirler.

• Bu yöntemde kayıplı bir LC rezonatörün kaybı

negatif dirence sahip bir yükseltici tarafından

giderilerek kayıpsız devre elde edilmiş olur ve

giderilerek kayıpsız devre elde edilmiş olur ve

osilasyon sağlanır.

(15)

NEGATİF DİRENÇLİ DEVRE

(16)

KAYIPLI ENDÜKTÖR VE NEGATİF DİRENÇLİ DEVRE

• Önceki devreyi şekildeki gibi ifade ettiğimizde sadece bir endüktör bağlayarak rezonatör yapısı elde ederiz.

• Bu yapıda seri direnci paralel hale çevirerek negatif direncin değerini böylece osilasyon başlatma şartını buluruz.

Osilasyon başlatma şartı:

(17)

AYARLANMIŞ OSİLATÖR

LC ayarlanmış rezonatörlü yükselticiler kullanarak osilatör yapmak istiyoruz.

Düşük freknasta, L1 baskın olur

|Vout/Vin| çok küçüktür ve

(Vout/Vin) -90°°°°civarındadır

Rezonans frekansında

Giriş ile çıkış arası faz 180°°°°dir

Yüksek frekansta

|Vout/Vin| düşer(Vout/Vin) +90°°°° Ye yaklaşır

(18)

AYARLI YÜKSELTİCİ KASKAD BAĞLANTISI

• İki tane LC yüklü yükseltici devresi şekildeki gibi bağlanırsa rezonansta toplam tur fazı 360 derece

olduğundan osilasyonu başlatma için ilk şart sağlanmış olur.

• İkinci şart ise her bir basamağın voltaj kazancının karesi olan toplam tur kazancının rezonansta birden büyük

olan toplam tur kazancının rezonansta birden büyük olmasıdır.

(19)

ÇAPRAZ BAĞLI OSİLATÖR

• Az önce gösterilen devre aşağıdaki gibi de çizilebilir. Devrenin osilasyon frekansını C1 kapasitörü ve parazitik kapasitörlerin L1

endüktörü ile rezonansa girdiği frekans belirler.

• Bu devre için osilasyon sinyalinin büyüklüğü:

(20)

KAYNAK HASSASİYETİ

• Çapraz bağlı osilatörde kaynak voltajındaki herhangi bir gürültü X ve Y noktalarına direk yansır. Çünki herhangi bir DC akım endüktör

üzerinden geçtiğinden kaynaktan X noktasına DC voltaj sıfırdır. X ve Y noktasının voltaj değerleri de voltaj sıfırdır. X ve Y noktasının voltaj değerleri de C

DB

kapasitanslarını değiştirdiğinden

osilasyon frekansını değiştirir.

Böylece kaynak gürültüsü faz gürültüsü haline

dönmüş olur.

(21)

ÇAPRAZ BAĞLI OSİLATÖR: TEK PORT YÖNTEMİ

gm1 = gm2 =gm

Osilasyon başlangıç şartı:

(22)

ÜÇ NOKTA OSİLATÖRLERİ

• Tek port yönteminde gösterilen negatif direnç devresinin hiçbir ucu toprağa ya da kaynağa bağlı değildir. Bu sebeple aynı devre üç farklı şekilde yapılabilir.

C1 = C2, olduğu durumda osilasyonun başlangıç şartı:

(23)

ÜÇ NOKTA OSİLATÖR: DİFERANSİYEL DEVRE

• Üç nokta osilatörlerin diğer bir sıkıntısı diferansiyel sinyal üretememeleridir. Bu

durumu çözmek için iki osilatör şekildeki gibi bağlanabilir.

bağlanabilir.

• Bu devrede R1 direnci yüksek tutulursa ortak

mod sinyali önlenmiş olur.

(24)

VOLTAJ KONTROLLÜ OSİLATÖR

Grafiğin eğimi (K

VCO

)VCO nun kazancı ya da

hassasiyeti olarak bilinir. Birimi rad/Hz/V dir.

(25)

MOS KAPSİTÖR İLE VCO

• Osilasyon frekansını değiştirmek için devrenin toplam kapasitansını değiştirebiliriz. Bunun için şekildeki devre kullanılabilir.

• Mv1 ve Mv2 transistörlerinin kapasitanslarının kontrol voltajına göre değişimleri grafikte verilmiştir. X ve Y

noktaları VDD voltajındadırlar.

noktaları VDD voltajındadırlar.

(26)

FREKANS ARALIĞI HESABI

• Mv1 ve Mv2 nin oluşturduğu değişken kapasitans C

var

<< C

1

kabul edersek:

Kapasitansın C

var1

den C

var2

, ye kadar

değişebildiğini kabul edersek Ayarlanabilir

frekans aralığı:

(27)

LC VCO

• MOS kapasitörlü VCO da ayarlı kapasitans bölgesinin tamamını kullanamamızın sebebi Mv1 ve Mv2 yi

negatif voltajla besleyemememizdir. Bunu yapabilmek için X ve Y noktalarını VDD/2 ye çekmeyi deneyebiliriz.

Bunun içinse akım kaynağını yukarı çekerek şekildeki Bunun içinse akım kaynağını yukarı çekerek şekildeki devreyi oluşturabiliriz.

(28)

LC VCO

Soldaki klasik VCO devresinde kapasitansın yarısı

kullanılırken sağdaki LC VCO devresinde tamamı kullanılır.

Fakat soldaki devrede akımdaki bir değişim X noktasındaki voltaja ΔVCM = (ΔI/2)rs olarak yansır, Sağdaki devrede ise ΔVCM = (ΔI/2)(1/gm) olarak yansır. Tipik olarak 1/gm rs den çok büyük olduğundan sağdaki devre akım gürültüsünü

daha fazla faz gürültüsüne çevirir.

(29)

KAPASİTİF BAĞLANTILI VCO

Önceki gürültü problemini çözmek için şekildeki devre kullanılır. Bu devrede akım kaynağı klasik VCO da olduğu gibi aşağıdadır fakat Cs1 ve Cs2 kapasitörleri P ve Q

noktalarını X ve Y noktalarından DC olarak ayırdığı için X ve Y VDD de iken P ve Q VDD/2 de kalabilir ve tüm kapasitans bölgesi kullanılmış olur.

bölgesi kullanılmış olur.

Referanslar

Benzer Belgeler

Çeviren dişli motordan aldığı dönme hareketini çevrilen dişliye iletir.. Böylece dişliler diş boşluklarına aldıkları akışkanı

Dıştaki dişli aldığı bu dönme hareketini, içteki dişliye (rotor dişlisi) iletir. Dişliler arasında hilal şeklinde bir

Pistonlu pompaların etki şekli , akışkanın pompa silindirinde piston tarafından ileri doğru itilmesi şeklinde olur.. Bu bakımdan pistonlu

Radyal pistonlu pompalarda pistonların üzerinde bulunduğu silindir bloğunun ekseni ile gövde ekseni arasında kaçıklık vardır.... Radyal pistonlu pompalarda pistonlar tahrik

Devre elemanlarının akışkanla doldurulması ve hava alma işlemi bittikten sonra, depodaki akışkan seviyesi kontrol edilmelidir.. Eksiklik

 Uzun strok gereken uygulamalarda silindirin çok fazla yer işgal etmemesi için kullanılır. İç içe geçen farklı çaplardaki silindirlerden oluşur. Teleskobik silindirlerin

Hidrolik devrelerde basınçlı sıvının (Yağ) depodan alınıp alıcılara ve çalışma hatlarına kadar iletmekte.. borular ve içi tel katmanlı bezli lastik hortumlar

Gizlenecek olan veri genellikle bir anahtar (key) ilave edilerek veri gömme algoritmaları kullanılarak taşıyıcı nesne içerisne gömülür. Bu şekilde elde edilen, içerisinde