• Sonuç bulunamadı

View of ON SOME BULLEN-TYPE INEQUALITIES VIA CONFORMABLE FRACTIONAL INTEGRALS | HEALTH SCIENCES QUARTERLY

N/A
N/A
Protected

Academic year: 2021

Share "View of ON SOME BULLEN-TYPE INEQUALITIES VIA CONFORMABLE FRACTIONAL INTEGRALS | HEALTH SCIENCES QUARTERLY"

Copied!
14
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

H¨older’s inequality; Power-mean inequality.

1

Introductions

To establish analytic inequalities, one of the most efficient way is the property of convexity of a dedicated function. Notedly, in the theory of higher transcenden-tal functions, there are many significant applications. We can use the integral inequalities in order to study qualitative and quantitative properties of integrals (see [6, 7, 9]). Thing continuing to bewilder us by indicating new inferences, new difficulties and also new open questions are a major mathematical outcome. The Hermite-Hadamard inequality: Let ϕ : I ⊆ R → R be a convex function and ı1, ı2∈ I with ı1< ı2. ϕ ı1+ ı2 2  ≤ 1 ı2− ı1 Z ı2 ı1 ϕ (κ) dκ ≤ ϕ (ı1) + ϕ (ı2 2)H (1) If ϕ is concave, this double inequality hold in the inverse way. See [1, 2, 5, 7] for details.

The Bullen inequality: 1 ı2− ı1 Z ı2 ı1 ϕ (κ) dκ ≤ 1 2  ϕ (ı1) + ϕ (ı2) 2 + ϕ  ı1+ ı2 2  , B (2)

provided that ϕ : [ı1, ı2] → R is a convex function on [ı1, ı2] (see for example

(2)

Lemma 1 [11]Let ϕ : I → R, I ⊂ R be a differentiable mapping on I◦, and ı1, ı2∈ I, ı1< ı2. If ϕ0 ∈ L ([ı1.ı2]) , t ∈ [0, 1] then Z 1 0 (1 − 2t)  ϕ0  tı1+ (1 − t)  ı1+ ı2 2  + ϕ0  t ı1+ ı2 2  + (1 − t) ı2  dt = 4 ı2− ı1  ϕ (ı1) + ϕ (ı2) 2 + ϕ  ı1+ ı2 2  − 2 ı2− ı1 Z ı2 ı1 ϕ (x) dx  . Here I◦ denotes the interior of I.

2

”Definition and Properties of Conformable

Frac-tional Derivative and Integral

The following definitions and theorems with respect to conformable fractional derivative and integral were referred in [12]-[17].

Definition 2 ( Conformable fractional derivative) Given a function ϕ : [0, ∞) → R. Then the ”conformable fractional derivative” of ϕ of order α is defined by

Dα(ϕ) (t) = lim ε→0

ϕ t + εt1−α − ϕ (t)

ε

for all t > 0, α ∈ (0, 1] . If ϕ is α−differentiable in some (0, ı1) , α > 0, limt→0+ϕ(α)(t)

exist, then define

ϕ(α)(0) = lim

t→0+ϕ

(α)(t) .

We can write ϕ(α)(t) for D

α(ϕ) (t) to denote the conformable fractional

deriva-tives of ϕ of order α.In addition, if the conformable fractional derivative of ϕ of order α exists, then we simply say ϕ is α−differentiable.

Theorem 3 Let α ∈ (0, 1] and ϕ, Λ be α−differentiable at a point t > 0. Then, 1) Dα(aϕ + bΛ) = aDα(ϕ) + bDα(Λ) , for all ı1, ı2∈ R,

2) Dα(λ) = 0, for all constant functions ϕ (t) = λ,

3) Dα(ϕΛ) = ϕDα(Λ) + ΛDα(ϕ) , 4) Dα Λϕ = Dα(ϕ)Λ+DΛ2 α(Λ)ϕ, 5) If ϕ is differentiable, then Dα(ϕ) (t) = t1−α df dt(t) . Also, a) Dα(1) = 0 b) Dα(eat) = at1−αeat, ı1∈ R

c) Dα(sin (at)) = at1−αcos (at) , ı1∈ R

d) Dα(cos (at)) = −at1−αsin (at) , ı1∈ R

(3)

e) Dα 1αtα = 1 f) Dα sin t α α = cos tα α  g) Dα cos t α α = − sin tα α  h) Dα  etαα  = etαα.

Theorem 4 (Mean value theorem for conformable fractional differentiable func-tions). Let α ∈ (0, 1] and ϕ : [0, ∞) → R be a continuous on [ı1, ı2] and an

α−fractional differentiable mapping on (ı1, ı2) with 0 ≤ ı1 < ı2. Then, there

exist c ∈ (ı1, ı2) , such that

Dα(ϕ) (c) = ϕ (ı2) − ϕ (ı1) ı2 α − ı1 α .

Definition 5 (Conformable fractional integral). Let α ∈ (0, 1] and 0 ≤ ı1 <

ı2. A fucntion ϕ : [0, ∞) → R is α−fractional integrable on [ı1, ı2] if the

integral Z ı2 ı1 ϕ (x) dαx := Z ı2 ı1 ϕ (x) xα−1dx,

exists and is finite. All α−fractional integrable on [ı1, ı2] is indicated by

L1 α([ı1, ı2]) . Remark 6 Iı1 α (ϕ) (t) = I ı1 1 t α−1ϕ = Z t ı1 ϕ (x) x1−αdx,

where the integral is the usual Riemann improper integral and α ∈ (0, 1] . Theorem 7 Let ϕ : (ı1, ı2) → R be differentiable and α ∈ (0, 1] . Then, for all

t > ı1 we have

Iı1

αD ı1

α(ϕ) (t) = ϕ (t) − ϕ (ı1) .

Theorem 8 (Integration by parts). Let ϕ, Λ : [ı1, ı2] → R be two functions such

that ϕg is differentiable. Then, Z ı2 ı1 ϕ (x) Dı1 α(Λ) (x) dαx = ϕg|ı2 ı1− Z ı2 ı1 Λ (x) Dı1 α(ϕ) (x) dαx.

Theorem 9 Assume that ϕ : [ı1, ∞) → R such that ϕ(n)(t) is continuous and

α ∈ (n, n + 1] . Then, for all t > ı1 we have

Dı1

α (ϕ) (t) I ı1

α = ϕ (t) .

Theorem 10 Let α ∈ (0, 1] and ϕ : [ı1, ı2] → R be a continuous on [ı1, ı2] with

0 ≤ ı1< ı2. Then, |Iı1 α (ϕ) (x)| ≤ I ı1 α |ϕ| (x) . 287

(4)

Many studies in the literature on integral inequalities related to conformable fractional integration have been performed by many researchers. For more de-tails and properties concerning the conformable integral operators, we refer, for example,to the works [18]-[21]. In this paper, we establish the Bullen type inequalities for conformable fractional integral and we will investigate some in-tegral inequalities connected with Bullen-type inequalities for conformable frac-tional integral. The results presented here would provide generalizations of those given. In this study, some new Identity and Bullen type integral inequalities for differentiable functions are established, and are applied to produce some inequalities of special means.”

3

Bullen Type Inequalities for Conformable

Frac-tional Integral.

By using the following lemma, we will give some integral inequalities connected with Bullen-type inequalities for conformable fractional integral.

Lemma 11 Let α ∈ (0, 1] and ϕ : I ⊂ R+ → R be an α−fractional

differen-tiable function on (ı1, ı2) with 0 ≤ ı1 < ı2. If Dα(ϕ) be an α−fractional

inte-grable function on [ı1, ı2] , then the following identity for conformable fractional

integral holds: 1 4 Z 1 0 (1 − 2tα)  Dα(ϕ)  tαıα1 + (1 − tα)ı α 1 + ıα2 2  (3) +Dα(ϕ)  tαı α 1 + ıα2 2 + (1 − t α) ıα 2  dαt = α ıα 2− ı α 1 Z ı2 ı1 ϕ (xα) dαx − 1 2  ϕ (ıα 1) + ϕ (ıα2) 2 + ϕ  ıα 1+ ıα2 2 

Proof. Integrating by parts Z 1 0 (1 − 2tα) Dα(ϕ)  tαıα1 + (1 − tα)ı α 1+ ıα2 2  dαt + Z 1 0 (1 − 2tα) Dα(ϕ)  tαı α 1 + ıα2 2 + (1 − t α) ıα 2  dαt = (1 − 2tα) ϕ  tαıα1 + (1 − t α )ı α 1 + ıα2 2  1 0 +2α Z 1 0 ϕ  tαıα1 + (1 − tα)ı α 1+ ı α 2 2  dαt + (1 − 2tα) ϕ  tαı α 1 + ıα2 2 + (1 − t α) ıα 2  1 0 +2α Z 1 0 ϕ  tαı α 1 + ıα2 2 ı α 1 + (1 − t α) ıα 2  dαt 288

(5)

= −ϕ (ıα1) − ϕ  ıα 1 + ıα2 2  + 4α ıα 1 − ıα2 Z ı1 ıα1+ıα2 2 α1 ϕ (x α ) dαx −ϕ (ıα 2) − ϕ  ıα 1 + ıα2 2  + 4α ıα 2 − ıα1 Z ı2 ıα1+ıα2 2 α1 ϕ (x α) d αx = −  ϕ (ıα1) + ϕ (ıα2) + 2f  ıα 1+ ıα2 2  + 4α ıα 2 − ıα1 Z ı2 ı1 ϕ (xα) dαx.

Remark 12 If we choose α = 1 in the Lemma 11, then we obtain the Lemma 1.

Theorem 13 Let α ∈ (0, 1]and ϕ : I ⊂ R+ → R be an α−fractional

differen-tiable function on I◦and Dα(ϕ) be an α−fractional integrable function on I with

0 ≤ ı1< ı2. If |ϕ0| be a convex function on I, then the following inequality for

conformable fractional integral holds:

α ıα 2 − ıα1 Z ı2 ı1 ϕ (xα) dαx − 1 2  ϕ (ıα 1) + ϕ (ıα2) 2 + ϕ  ıα 1 + ıα2 2  ≤ (ı α 2 − ıα1) 32 h (ıα1) α−1 |Dα(ϕ) (ıα1)| +2 ı α 1 + ı α 2 2 α−1 Dα(ϕ)  ıα 1+ ı α 2 2  + (ıα2)α−1|Dα(ϕ) (ıα2)| # .

Proof. Since |ϕ0| is a convex function on I, by the using the properties Dα(ϕ ◦ Λ) (t) = ϕ0(Λ (t)) Dα(Λ (t)) and Dα(ϕ (t)) = t1−αϕ0(t) and by Lemma

11 and using the well known absolute value inequality, and we have α ıα 2 − ıα1 Z ı2 ı1 ϕ (xα) dαx − 1 2  ϕ (ıα 1) + ϕ (ı2) 2 + ϕ  ıα 1 + ıα2 2  ≤ 1 4 Z 1 0 |1 − 2tα| Dα(ϕ)  tαıα1 + (1 − tα) ıα 1 + ıα2 2  dαt +1 4 Z 1 0 |1 − 2tα| Dα(ϕ)  tαı α 1 + ıα2 2 + (1 − t α) ıα 2  dαt ≤ α (ı α 2 − ıα1) 8  (ıα1)α−1|Dα(ϕ) (ı1)| Z 1 0 |1 − 2tα| tαd αt  +α (ı α 2 − ıα1) 8  ıα 1 + ıα2 2 α−1 Dα(ϕ)  ıα 1 + ıα2 2  Z 1 0 |1 − 2tα| (1 − tα) d αt ! +α (ı α 2 − ı α 1) 8  ıα 1 + ı α 2 2 α−1 Dα(ϕ)  ıα 1 + ı α 2 2  Z 1 0 |1 − 2tα| tαd αt ! 289

(6)

+α (ı α 2 − ıα1) 8  (ıα2)α−1|Dα(ϕ) (ıα2)| Z 1 0 |1 − 2tα| (1 − tα) d αt  = (ı α 2− ıα1) 32 h (ıα1)α−1|Dα(ϕ) (ıα1)| +2 ı α 1 + ıα2 2 α−1 Dα(ϕ)  ıα 1 + ıα2 2  + (ıα2)α−1|Dα(ϕ) (ıα2)| # . where Z 1 0 |1 − 2tα| tαd αt = Z 1 0 |1 − 2tα| tαtα−1dt = Z 1 21/α 0 (1 − 2tα) tαtα−1dt + Z 1 1 21/α (2tα− 1) tαtα−1dt = 1 4α and Z 1 0 |1 − 2tα| (1 − tα) d αt = Z 1 0 |1 − 2tα| (1 − tα) tα−1dt = Z 1 21/α 0 (1 − 2tα) (1 − tα) tα−1dt + Z 1 1 21/α (2tα− 1) (1 − tα) tα−1dt = 1 4α.

Remark 14 If we choose α = 1 in Theorem (13), then we obtain the following inequality: 1 ı2− ı1 Z ı2 ı1 ϕ (x) dx − 1 2  ϕ (ı1) + ϕ (ı2) 2 + ϕ  ı1+ ı2 2  ≤ ı2− ı1 32  |ϕ0(ı1)| + 2 ϕ0 ı1+ ı2 2  + |ϕ0(ı2)|  .

Theorem 15 Let α ∈ (0, 1]and ϕ : I ⊂ R+ → R be an α−fractional

differen-tiable function on I◦and Dα(ϕ) be an α−fractional integrable function on I with

0 ≤ ı1< ı2 and p, q > 1, 1/p + 1/q = 1. If |ϕ0| q

be a convex function on I, then the following inequality for conformable fractional integral holds:

α ıα 2 − ıα1 Z ı2 ı1 ϕ (xα) dαx − 1 2  ϕ (ıα 1) + ϕ (ıα2) 2 + ϕ  ıα 1 + ıα2 2  290

(7)

≤ α (ı α 2 − ıα1) 8  1 α (1 + p) 1p 1 2α 1q ×   (ı qα 1 ) α−1 (Dα(ϕ) (ıα1)) q + ı α 1 + ıα2 2 q(α−1) Dα(ϕ)  ıα 1 + ıα2 2 q! 1 q + ı α 1 + ıα2 2 q(α−1) Dα(ϕ)  ıα 1 + ıα2 2 q + (ıqα2 )α−1(Dα(ϕ) (ıα2)) q1q # .

Proof. Since |ϕ0|q is a convex function on I, by the using the properties Dα(ϕ ◦ Λ) (t) = ϕ0(Λ (t)) Dα(Λ (t)) and Dα(ϕ (t)) = t1−αϕ0(t) and by Lemma

11 and using the well known H¨older inequality, we have α ı2− ı1 Z ı2 ı1 ϕ (xα) dαx − 1 2  ϕ (ı1) + ϕ (ı2) 2 + ϕ  ı1+ ı2 2  ≤ 1 4 Z 1 0 (1 − 2tα)pdαt p1Z 1 0  Dα(ϕ)  tαıα1 + (1 − tα)ı α 1 + ıα2 2 q dαt 1q +1 4 Z 1 0 (1 − 2tα)pdαt 1pZ 1 0  Dα(ϕ)  tαı α 1+ ıα2 2 + (1 − t α) ıα 2 q dαt 1q ≤ α (ı α 2 − ıα1) 8  1 α (1 + p) 1p (ıqα1 )α−1(Dα(ϕ) (ıα1)) qZ 1 0 tαdαt + ı α 1 + ıα2 2 q(α−1) Dα(ϕ)  ıα 1 + ıα2 2 qZ 1 0 (1 − tα) dαt !1q +α (ı α 2 − ıα1) 8  1 α (1 + p) 1p  ıα 1 + ıα2 2 q(α−1) Dα(ϕ)  ıα 1 + ıα2 2 qZ 1 0 tαdαt + (ıqα2 )α−1(Dα(ϕ) (ıα2)) qZ 1 0 (1 − tα) dαt  1 q = α (ı α 2 − ı α 1) 8  1 α (1 + p) 1p 1 2α 1q ×   (ı qα 1 ) α−1 (Dα(ϕ) (ıα1)) q + ı α 1 + ıα2 2 q(α−1) Dα(ϕ)  ıα 1 + ıα2 2 q! 1 q + ı α 1 + ıα2 2 q(α−1) Dα(ϕ)  ıα 1 + ıα2 2 q + (ıqα2 )α−1(Dα(ϕ) (ıα2)) q1q # . where Z 1 0 (1 − 2tα)pdαt = Z 1 0 (1 − 2tα)ptα−1dt 291

(8)

= Z 1 21/α 0 (1 − 2tα)ptα−1dt + Z 1 1 21/α (2tα− 1)ptα−1dt = 1 α (1 + p) and Z 1 0 tαdαt = Z 1 0 tαtα−1dt = 1 2α Z 1 0 1 − tαdαt = Z 1 0 (1 − tα) tα−1dt = 1 2α

Corollary 16 If we choose α = 1 in Theorem 15, then we obtain the following inequality. 1 ı2− ı1 Z ı2 ı1 ϕ (x) dx −1 2  ϕ (ı1) + ϕ (ı2) 2 + ϕ  ı1+ ı2 2  ≤ ı2− ı1 8  1 1 + p 1p 1 2 1q × " (ϕ0(ı1)) q +  ϕ0 ı1+ ı2 2 q1q +  ϕ0 ı1+ ı2 2 q + (ϕ0(ı2)) q 1 q# .

Remark 17 If we choose p = q = 2 in Corollary 16, then we obtain the follow-ing inequality. 1 ı2− ı1 Z ı2 ı1 ϕ (x) dx − 1 2  ϕ (ı1) + ϕ (ı2) 2 + ϕ  ı1+ ı2 2  ≤ ı2− ı1 8 1 61/2 ×   (ϕ 0 1)) 2 +  ϕ0 ı1+ ı2 2 2! 1 2 +  ϕ0 ı1+ ı2 2 2 + (ϕ0(ı2)) 2 !12 .

Theorem 18 Let α ∈ (0, 1]and ϕ : I ⊂ R+ → R be an α−fractional

differen-tiable function on I◦and Dα(ϕ) be an α−fractional integrable function on I with

0 ≤ ı1 < ı2 and q ≥ 1. If |ϕ0|q be a convex function on I, then the following

inequality for conformable fractional integral holds: α ıα 2 − ıα1 Z ı2 ı1 ϕ (xα) dαx − 1 2  ϕ (ıα 1) + ϕ (ıα2) 2 + ϕ  ıα 1 + ıα2 2  ≤ α (ı α 2 − ıα1) 8  1 2α 1−1q 1 4α 1q × 292

(9)

(ıqα1 )α−1(Dα(ϕ) (ıα1)) q + ı α 1 + ıα2 2 q(α−1) Dα(ϕ)  ıα 1 + ıα2 2 q! 1 q +  ı α 1 + ıα2 2 q(α−1) Dα(ϕ)  ıα 1 + ıα2 2 q + (ıqα2 )α−1(Dα(ϕ) (ıα2)) q !1q . Proof. Since |ϕ0|q is a convex function on I, by the using the properties Dα(ϕ ◦ Λ) (t) = ϕ0(Λ (t)) Dα(Λ (t)) and Dα(ϕ (t)) = t1−αϕ0(t) and assume

that q ≥ 1, by Lemma 11 and using the well known power-mean inequality, we have α ıα 2 − ıα1 Z ı2 ı1 ϕ (xα) dαx − 1 2  ϕ (ıα 1) + ϕ (ıα2) 2 + ϕ  ıα 1 + ıα2 2  ≤ α (ı α 2 − ıα1) 8 Z 1 0 (1 − 2tα) dαt 1−1q ×  (ıqα1 )α−1(Dα(ϕ) (ıα1)) qZ 1 0 (1 − 2tα) tαdαt + ı α 1 + ıα2 2 q(α−1) Dα(ϕ)  ıα 1 + ıα2 2 qZ 1 0 (1 − 2tα) (1 − tα) dαt !1q +α (ı α 2 − ı α 1) 8 Z 1 0 (1 − 2tα) dαt 1− 1 q ×  ıα 1+ ıα2 2 q(α−1) Dα(ϕ)  ıα 1 + ıα2 2 qZ 1 0 (1 − 2tα) tαdαt + (ıqα2 )α−1(Dα(ϕ) (ı2)) qZ 1 0 (1 − 2tα) (1 − tα) dαt 1q = α (ı α 2 − ıα1) 8  1 2α 1−1q 1 4α 1q × (ıqα1 )α−1(Dα(ϕ) (ıα1)) q + ı α 1 + ı α 2 2 q(α−1) Dα(ϕ)  ıα 1 + ı α 2 2 q! 1 q +  ı α 1 + ıα2 2 q(α−1) Dα(ϕ)  ıα 1 + ıα2 2 q + (ıqα2 )α−1(Dα(ϕ) (ıα2ı2)) q !q1 . where Z 1 0 (1 − 2tα) dαt = Z 1 21/α 0 (1 − 2tα) tα−1dt + Z 1 1 21/α (2tα− 1) tα−1dt = 1 2α and Z 1 0 (1 − 2tα) tαdαt 293

(10)

= Z 1 21/α 0 (1 − 2tα) tαtα−1dt + Z 1 1 21/α (2tα− 1) tαtα−1dt = 1 4α, Z 1 0 (1 − 2tα) (1 − tα) dαt = Z 1 21/α 0 (1 − 2tα) (1 − tα) tα−1dt + Z 1 1 21/α (2tα− 1) (1 − tα) tα−1dt = 1 4α.

Corollary 19 If we choose α = 1 in Theorem 18, then we obtain the following inequality. 1 ı2− ı1 Z ı2 ı1 ϕ (x) dx − 1 2  ϕ (ı1) + ϕ (ı2) 2 + ϕ  ı1+ ı2 2  ≤ ı2− ı1 8  1 2 1+1q × "  (ϕ0(ı1)) q +  ϕ0 ı1+ ı2 2 q1q +  ϕ0 ı1+ ı2 2 q + (ϕ0(ı2)) q 1 q# .

Remark 20 If we choose q = 1 in Corollary 19, then we obtain Remark 14.

4

Applications

Let A (ı1, ı2) = ı1+ ı2 2 , Lp(ı1, ı2) = ıp+12 − ıp+11 (p + 1) (ı2− ı1) !1/p , ı16= ı2, p ∈ R, p 6= −1, 0

be the arithmetic mean, generalized logarithmic mean for ı1, ı2> 0 respectively.

Proposition 21 Let s ∈ (0, 1] , ı1, ı2> 0, then

Lnn(ıα1, ıα2) −1 2[A (ı nα 1 , ı nα 2 ) + A nα 1, ı α 2)] ≤ n (ı α 2 − ıα1) 16 h A(ıα1) n−1 , (ıα2) n−1 + An−1(ıα1, ıα2) i .

Proof. The claim follows from Theorem 13 applied to convex function ϕ (κ) = κn where n ∈ N.

(11)

Example 22 If we take α = 1, n = 2 in Proposition 21, then we can obtain inequality following L22(ı1, ı2) − AA (ı1, ı2) , A2(ı1, ı2)  ≤ (ı2− ı1) 4 A (ı1, ı2) .

Proposition 23 Let α ∈ (0, 1] , ı1, ı2> 0, p, q > 1, then

Lnn(ıα1, ıα2) −1 2[A (ı nα 1 , ı nα 2 ) + A nα 1, ı α 2)] ≤ nα (ı α 2 − ı α 1) 8  1 α (1 + p) 1p 1 2α 1q ×    (ıα1)n−1 q +  ı α 1 + ıα2 2 n−1!q! 1 q +  ı α 1 + ıα2 2 n−1!q +(ıα2)n−1 q1q # .

Proof. The claim follows from Theorem 15 applied to convex ϕ (κ) = κnwhere

n ∈ N.

Example 24 If we take α = 1, p = q = n = 2 in Proposition 23, then we can obtain the following inequality

L22(ı1, ı2) − 1 2A ı 2 1, ı22 + A2(ı1, ı2)  ≤ ı2− ı1 4 ×   ı 2 1+  ı1+ ı2 2 2! 1 2 +  ı1+ ı2 2 2 + ı22 !  1 2 .

Proposition 25 Let α ∈ (0, 1] , ı1, ı2> 0, q ≥ 1, then

Lnn(ıα1, ıα2) −1 2[A (ı nα 1 , ı nα 2 ) + A nα 1, ı α 2)] ≤ α (ı α 2 − ıα1) 8  1 2α 1−1q  1 4α 1q ×    (ıα1)n−1 q +  ı α 1 + ıα2 2 n−1!q! 1 q +  ı α 1 + ıα2 2 n−1!q +(ıα2) n−1q1q # . 295

(12)

Proof. The claim follows from Theorem 18 applied to convex ϕ (κ) = κnwhere n ∈ N.

Example 26 If we take α = 1, q = 2, n = 2 in Proposition 25, then we can obtain inequality following

L22(ı1, ı2) − 1 2A ı 2 1, ı 2 2 + A 2 (ı1, ı2)  ≤ (ı2− ı1) 8  1 8 12 × ı21+ ı1+ ı2 2 2! 1 2 +  ı1+ ı2 2 2 + ı22 !12 . 296

(13)

297

References

[1] Bessenyei, M., P´ales, Z., Characterization of convexity via Hadamard’s in-equality, Math. Inequal. Appl., 9(2006), 53-62.

[2] Dragomir, SS., Agarwal, RP., Cerone, P., On Simpson’s inequality and applications, J. of Ineq. and Appl., 5(2000), 533-579.

[3] Dragomir, SS., Pearce, CEM., Selected topics on Hermite-Hadamard inequalities and applications, RGMIA monographs, Victoria University, 2000. [Online: http://www.staff.vu.edu.au/RGMIA/monographs/hermite-hadamard.html].

[4] Hadamard, J., ´Etude sur les propri´et´es des fonctions enti`eres en particulier d’une fonction consid´er´ee par Riemann, J. Math. Pures Appl., 58(1893), 171-215.

[5] Mitrinovi´c, DS, Lackovi´c, IB., Hermite and convexity, Aequationes Math., 28(1985), 229-232.

[6] Mitrinovic, DS., Pecaric, JE., Fink, AM., Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.

[7] Niculescu, CP., Persson, L., Convex Functions and their Applications, A Contemporary Approach, in: CMS Books in Mathematics, 23, Springer-Verlag, New York, 2006.

[8] Sarikaya, M.,Z., Set, E., ¨Ozdemir, ME., On new inequalities of Simpson’s type for convex functions, RGMIA Res. Rep. Coll., 13(2)(2010), Article2. [9] Wu, S., Debnath, L., Inequalities for convex sequences and their

(14)

298

[10] Xi, B., Qi,F., Some Integral Inequalities of Hermite-Hadamard Type for Convex Functions with Applications to Means, Journal of Function Spaces and Appl., Vol 2012, Article ID 980438, 14 p., doi:10.1155/2012/980438. [11] C¸ akmak, M.,Refinements of Hadamard’s Type Inequalities for

s, m, (α, m) −Convex Functions, (2018), submitted.

[12] Abdeljawad, T., On conformable fractional calculus. Journal of Computa-tional and Applied Mathematics,(2015), 279, 57–66.

[13] Anderson D.R., Taylors formula and integral inequalities for conformable fractional derivatives. In: Pardalos, P., Rassias, T. (eds) Contribu-tions in Mathematics and Engineering. Springer, Cham, (2016), 25- 43 https://doi.org/10.1007/978-3-319-31317- 7-2.

[14] Khalil, R., Al horani, M., Yousef, A. and Sababheh, M., A new definition of fractional derivative. Journal of Computational Applied Mathematics, (2014), 264, 65-70.

[15] Iyiola, O.S. and Nwaeze, E.R., Some new results on the new conformable fractional calculus with application using D’Alambert approach. Progr. Fract. Differ. Appl., (2016), 2(2), 115-122.

[16] Abu Hammad, M. and Khalil, R., Conformable fractional heat differential equations. International Journal of Differential Equations and Applications, (2014), 13( 3), 177-183.

[17] Abu Hammad, M. and Khalil, R., Abel’s formula and wronskian for con-formable fractional differential equations. InternationalJournal of Differen-tial Equations and Applications, (2014), 13(3), 177-183.

[18] Akkurt, A., Yıldırım, M.E. and Yıldırım, H., On some integral inequalities for conformable fractional integrals. Asian Journal of Mathematics and Computer Research, (2017), 15(3), 205-212.

[19] Akkurt, A., Yıldırım, M.E. and Yıldırım, H., A new generalized fractional derivative and integral. Konuralp Journal of Mathematics, (2017), 5(2), 248–259.

[20] Budak, H., Usta, F., Sarikaya, M.Z. and Ozdemir, M.E. On generalization of midpoint type inequalities with generalized fractional integral operators. Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matemticas, (2018), https://doi.org/10.1007/s13398-018-0514-z. [21] Usta, F., Budak, H., Sarikaya, M.Z. and Set, E., On generalization of

trape-zoid type inequalities for s-convex functions with generalized fractional in-tegral operators. Filomat, (2018), 32(6).

Referanslar

Benzer Belgeler

Bulgular gözlemleri de içerecek şekilde görüş- melerdeki alıntılardan örnekler verile- rek yorumlanmış ve öne çıkan beş ana tema başlığı (boşanmalar için

İşletmenin yabancı sermaye ile ortaklık yapıp yapmama durumuna göre örgüt- çevre etkileşimi arasında anlamlı bir fark olup olmadığını belirlemek amacıyla

Changes in maternal behavior have been observed in mice, rats and other laboratory animals a il]. Differences in maternal aggression have been observed between

These results show that acute administration of rapamycin, especially in 5 mg/kg dose of rapamycin prolongs the latency of maternal aggression, and decreased the number of attacks,

After the use of sugammadex as a reversal agent and rocu- ronium as a neuromuscular blocking agent, the time to reach TOF 0.7, 0.8 and 0.9 in relation to intubation time and the

Of the mechanical properties; experiments of compression strength parallel to grain were conducted in accordance with TS 2595 (1977), bending strength in accordance with TS

Numerous experimental studies have been carried out to investigate the effect of deep cryogenic heat treatment on the mechanical properties of tool steels; however, very little

Changes in biomass accumulation and total Cd content in leaf, bark and roots of black poplar plants exposed to individual Cd, sodium nitroprusside (SNP) and combined Cd +