• Sonuç bulunamadı

Scalar Plane Waves in General Relativity

N/A
N/A
Protected

Academic year: 2021

Share "Scalar Plane Waves in General Relativity"

Copied!
3
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

LETTER]] AL NLIOV0 CIM]~!N'TO VOL. 44, ~-. 8 16 D i c e m b r e 1985

Scalar Plane Waves in General Relativity.

~r HALILSOY

Nuclear Engineering, King Abdulaziz University - P.O. Box

9027,

Jeddah, Saudi Arabia

(rieevuto il 12 A p r i l e 1985)

P A C S . 04.20. - General r e l a t i v i t y .

Summary.

- A m o r e g e n e r a l class of scalar p l a n e w a v e s is p r e s e n t e d in g e n e r a l r e l a t i v i t y . I t is s h o w n t h a t no m a t t e r h o w t h e scalar field is modified, s p a c e - t i m e possesses an essential s i n g u l a r i t y .

Scalar p l a n e w a v e s in g e n e r a l r e l a t i v i t y can be described e i t h e r b y t h e l o n g i t u d i n a l w a v e s of t h e B r i n k m a n n line e l e m e n t

(1)

d s 2 = 2 d u ' d v ' - - dx ' z - dy ' ~ - 2(x '2 ,a_ y , 2 ) h ( u ' ) d u '2 ,

or b y t r a n s v e r s e w a v e s in t h e R o s e n f o r m

(2) ds 2 = 2 e x p [-- M(u)] du dv -- e x p [-- U(u)] (dx ~ + dy 2) .

W h i l e BRI*-KMANN f o r m is s u i t a b l e to h a n d l e s u p e r p o s i t i o n of p l a n e w a v e s , R o s e n f o r m is m o r e c o n v e n i e n t to s t u d y t h e collision of p l a n e waves. Such a s p a c e - t i m e s u p p o r t s s u i t a b l y a massless scalar field, w h i c h w i t h o u t loss of g e n e r a l i t y , we shall d e n o t e b y t h e r e a l f u n c t i o n q~(u).

P u r e g r a v i t a t i o n a l p l a n e w a v e s on t h e o t h e r h a n d are r e p r e s e n t e d b y t h e R o s e n line e l e m e n t

(3) d s 2 = 2 e x p [ - -

M ( u ) ] d u d v - - e x p [ - - U(u)](exp[V(u)]dx2+

e x p [ - -

V(u)]dy~).

Collision b e t w e e n g r a v i t a t i o n a l p l a n e (1,2) a n d scalar p l a n e w a v e s (3) w e r e f o r m u l a t e d

(1) K . KHAN a n d R . PEN'ROSE: Nature, 229, 185 (1971). (3) 1 =~. SZEKERES" J. Malh. Phys. ( N . Y . ) , 13, 286 (1972). (8) ~V. Z. CHAO: J. Phys. A : Math., Nucl. Gen., 15, 2~29 (1982).

(2)

SCALAR PLAlffE WAVES I1r GENERAL RELATIVITY 545

before, so t h a t we shall make use of the field equations directly. The Einstein field equations for colliding gravitational waves are

(4)

u ~ = u=u.,

2 r ~ , - y ~ V ~ - y , r ~ =

o,

2 u . . + 2M. U.-- u~- r~= o,

9.co, + 2~u, ~ o - ~,~- v,~ = o .

2M,,~,+ U,,U~-- V~,V,= O,

whose general solution was presented by SZEK~ES (2). Field equations for colliding real scalar fields arc

(.5)

U ~ = YuU~,

2r

~qr

Z7,r

0,

2 v , , + 2M, Uo-- U,== ~,=,

The striking similarity between the sets of equations (4) a n d (5), prompts one to con- struck scalar field solutions from a given v a c u u m solution. I t can readily be observed that,if (U, V, M) is a know solution for set (4), then b y identifying, r = V, one ob- tains a solution for colliding scalar plane waves, n a m e l y for set (5). This observation was given in (2).

A more general class of scalar wave solution can be obtained b y the choice

(6)

~ = V + ~ U , O = U ,

- g l = M + a V - t - 8 9

where, ~-= real, a r b i t r a r y constant. I t can be checked t h a t (r (7, ~ ) constitutes another solution of (5), whenever (U, V, M) is a k n o w n solution for (4). Note t h a t the class of solution (6) has no V -~ 0, limit, b u t it has, ~ = 0 limit which reduces in the real domain to the solution in (3). I n order to have no-scalar-wave case, we m u s t have b o t h V - = 0 a n d c~ = 0, simultaneously, a n d the resulting space-time then is fiat, as it should.

Using the solutions (U, V, M) of Szekeres, (6) reads explicitly,

(7)

exp [ ~] __ (w § P~kll2 (r + q~k'/~ t-2~ '

\ w -- p /

\ r -- q/

exp [-- g?] = t 2 ,

(3)

546 where, t h e s t a n d a r d n o t a t i o n s are, as in (2) t 2 = w 2 _ p 2 = r 2 _ q ~ = 1 - - u * a - - v ~ * ~ , r z = l - - p 2 ,

p = u'~l~O(u),

b ~ v"~'~O(v),

k ~ - 8 ( 1 - - 1 / ,

X

n~l

M. HALILSOY w: = 1 -- q2 , i---- 1 , 2 .

Also n o t e t h a t scaling of t h e n u l l co-ordinates, which is at o u r disposal, does n o t c h a n g e t h e f e a t u r e of t h e p r o b l e m .

E m p l o y i n g x as a (( screening )) p a r a m e t e r we p r o c e e d n o w to c o n s t r u c t r e g u l a r scalar fields, at least locally, since, as it s t a n d s in (7), tlle scalar field has u n d e s i r e d features.

W e consider two p a r t i c u l a r cases.

1) L e t t i n g e = -

kl/2 ( - kJ2),

yields in t h e i n c o m i n g regions w e l l - b e h a v e d scalar p l a n e waves. T h e n o n v a n i s h i n g c o m p o n e n t T u u = 092 ( T v v = q)2) of t h e energy- m o m e n t u m tensor, T~v = ~b~ q)v-- ~ gl~v q)a ~ is also finite. F o r t h e ~t = 2 case (impul-

waves) one gets,

fdu T,~,=

s i r e 4.

T h e s p a c e - t i m e metric, h o w e v e r , possesses t h e

p(u) =

l(q(v) = 1) singularity. More- over, t h e r e g u l a r n a t u r e s of q) a n d Tar in t h e i n c o m i n g regions is n o t s h a r e d in t h e s c a t t e r i n g region.

2) L e t , ~ ~ -- (k~ + k2)/2 (for simplicity, also l e t / c l = k2), one has

e x p [~5]

= (w + p)-~(r + q)-a,

w h i c h is r e g u l a r at t h e s p a c e - t i m e s i n g u l a r i t y p2 + q2 = 1 of t h e i n t e r a c t i o n region. U n f o r t u n a t e l y e n e r g y - m o m e n t u m t e n s o r of this scalar field d i v e r g e s for (p, q) -~ (1, 0) a n d (0, 1). M o r e o v e r , t h e i n c o m i n g w a v e l i m i t of this w a v e d i v e r g e s for p = 1 ( = q). T h e conclusion d r a w n o u t is t h a t using f r e e d o m s at our disposal it is impossible to ob- t a i n an e v e r y w h e r e r e g u l a r scalar field w i t h a p h y s i c a l e n e r g y - m o m e n t u m tensor. L o c a l l y this can be a t t a i n e d , b u t globally, for s c a t t e r i n g scalar w a v e s not. S p a c e - t i m e e m e r g e s i r r e s p e c t i v e of t h e chosen scalar field, a l w a y s singular. This reflects once m o r e t h e singular n a t u r e of colliding g r a v i t a t i o n a l w a v e s since, a f t e r all, we h a v e e m p l o y e d Szekeres singular solutions. T h i s r e s u l t is c o n f o r m w i t h t h e s i n g u l a r i t y t h e o r e m p r o v e d b e f o r e (4).

Referanslar

Benzer Belgeler

Plane waves in general relativity, whether pure gravita- tional, scalar, electromagnetic (em), neutrino, or any combination of these are known to exhibit nonlinear features,

We shall now derive a new family of exact solutions of the Einstein's field equations which correspond to the colli- sion oflinearly polarized plane gravitational waves with

Wand V are functionally dependent, which is the basic —M’A is also not correct in the same reference, but assumption of the theorem stated above, it turns out should be M = M’. that

We present a new family of exact solutions for the Einstein equations that describes colliding gravitational shock waves with cross polarizationI. In the limit of single polarization

Furthermore, the thin-shell under our investigation has spherically symmetric whose inside and outside space-times are both spherical solutions of the Einstein equations.. Our

We intend to spot-light the prototype space-time element and the particle’s motion from the stand points of the two Global structures of colliding gravitational

- - We study the interacting electromagnetic shock waves with nonconstant profiles in general relativity. It is shown that by modi- fying the metric functions

It is well known that the extremals of the harmonic map action between two riemannian manifolds provide genuine solutions for the Einstein field equations in the