• Sonuç bulunamadı

A note on |A|(K) summability factors for infinite series

N/A
N/A
Protected

Academic year: 2023

Share "A note on |A|(K) summability factors for infinite series"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Volume 2007, Article ID 86095,8pages doi:10.1155/2007/86095

Research Article

A Note on

|

A

|k

Summability Factors for Infinite Series

Ekrem Savas¸ and B. E. Rhoades

Received 9 November 2006; Accepted 29 March 2007 Recommended by Martin J. Bohner

We obtain sufficient conditions on a nonnegative lower triangular matrix A and a se- quenceλnfor the seriesanλn/nannto be absolutely summable of orderk1 byA.

Copyright © 2007 E. Savas¸ and B. E. Rhoades. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, dis- tribution, and reproduction in any medium, provided the original work is properly cited.

A weighted mean matrix, denoted by (N, pn), is a lower triangular matrix with entries pk/Pn, where{pk}is a nonnegative sequence withp0> 0, and Pn:=n

k=0pk.

Mishra and Srivastava [1] obtained sufficient conditions on a sequence {pk}and a sequence{λn}for the seriesanPnλn/npn to be absolutely summable by the weighted mean matrix (N, pn). Bor [2] extended this result to absolute summability of orderk1.

Unfortunately, an incorrect definition of absolute summability was used.

In this note, we establish the corresponding result for a nonnegative triangle, using the correct definition of absolute summability of orderk1, (see [3]). As a corollary, we obtain the corrected version of Bor’s result.

LetA be an infinite lower triangular matrix. We may associate with A two lower trian- gular matricesA andA, whose entries are defined by

ank=n

i=kani, ank=ankan1,k, (1)

respectively. The motivation for these definitions will become clear as we proceed.

LetA be an infinite matrix. The seriesakis said to be absolutely summable byA, of orderk1, written as|A|k, if

 k=0

nk1Δtn1k<, (2)

(2)

whereΔ is the forward difference operator and tn denotes thenth term of the matrix transform of the sequence{sn}, wheresn:=n

k=0ak. Thus

tn=n

k=0

anksk=n

k=0

ank

k ν=0

aν=n

ν=0

aν

n

k=νank=n

ν=0

aaν,

tntn1=

n ν=0

aaν

n1 ν=0

an1,νaν=

n ν=0

aaν,

(3)

sincean1,n=0.

The result to be proved is the following.

Theorem 1. LetA be a triangle with nonnegative entries satisfying (i)an0=1,n=0, 1,...,

(ii)an1,νafornν + 1, (iii)nannO(1),

(iv)Δ(1/ann)=O(1),

(v)nν=0aνν|an,ν+1| =O(ann).

If{Xn}is a positive nondecreasing sequence and the sequences{λn}and{βn}satisfy (vi)|Δλn| ≤βn,

(vii) limβn=0, (viii)|λn|Xn=O(1),

(ix)n=1nXn|Δβn|<, (x)Tn:=n

ν=1(|sν|k/ν)=O(Xn),

then the seriesν=1anλn/nannis summable|A|k,k1.

The proof of the theorem requires the following lemma.

Lemma 2 (see Mishra and Srivastava [1]). Let{Xn}be a positive nondecreasing sequence and the sequences{βn},{λn}satisfy conditions (vi)–(ix) ofTheorem 1. Then

nXnβn=O(1), (4)

 n=1

βnXn<. (5)

Since{Xn}is nondecreasing,XnX0, which is a positive constant. Hence condition (viii) implies thatλnis bounded. It also follows from (4) thatβn=O(1/n), and hence that Δλn=O(1/n) by condition (iv).

Proof. LetTndenote thenth term of the A-transform of the series(anλn)/(nann). Then we may write

Tn=n

ν=0

a

ν i=0

aiλi

aiii =

m i=0

aiλi

aiii

n

ν=ia=n

i=0

aniaiλi

aiii . (6)

(3)

Thus,

TnTn1=n

i=0

aniaiλi

aiii

n1 i=0

an1,iaiλi

aiii =

n i=0

anian1,iaiλi

aiii =

n i=0

aniaiλi

aiii

=

n i=0

aniλi

aiii

sisi1

=

n1 i=0

aniλi

aiiisi+ann λn

annnsn

n i=0

aniλisi1

aiii

=

n1 i=0

ani λi

aiiisi+ann λn

annnsn

n1 i=0

an,i+1 λi+1si

(i + 1)ai+1,i+1

=n

i=0

 aniλi

aiii− an,i+1 λi+1

(i + 1)ai+1,i+1

si+ann λn

nann.

(7)

We may write aniλi

iaii an,i+1λi+1

(i + 1)ai+1,i+1=aniλi

iaii an,i+1λi+1

(i + 1)ai+1,i+1+ an,i+1λi

(i + 1)ai+1,i+1 an,i+1λi

(i + 1)ai+1,i+1

=Δi

ani

iaii

λi+ an,i+1

(i + 1)ai+1,i+1Δλi .

(8)

Also we may write

Δi

ani

iaii

λi=ani

iaiiλi an,i+1

(i + 1)ai+1,i+1λian,i+1

iaii λi+an,i+1

iaii λi

=Δi ani

λi

iaii +an,i+1λi

 1

iaii 1 (i + 1)ai+1,i+1

.

(9)

Hence,

TnTn1=

n1 i=0

Δi ani iaii λisi+

n1 i=0

an,i+1λi

 1

iaii 1 (i + 1)ai+1,i+1

si

+

n1 i=0

an,i+1

(i + 1)ai+1,i+1Δii)si+λn

n sn

=Tn1+Tn2+Tn3+Tn4, say.

(10)

To finish the proof of the theorem, it will be sufficient to show that

 n=1

nk1Tnrk<, forr=1, 2, 3, 4. (11)

(4)

Using H¨older’s inequality and (iii),

I1=

m+1

n=1

nk1Tn1k

m+1

n=1

nk1

n1



i=0



Δi ani iaii λisi



 k

=O(1)m+1

n=1

nk1

n1

i=0

Δi ani

λisik

=O(1)m+1

n=1

nk1

n1



i=0

Δi

aniλiksik n1



i=0

Δi

ani k1

.

(12)

But using (ii), Δi

ani

= ani− an,i+1=anian1,ian,i+1+an1,i+1=anian1,i0. (13)

Thus using (i),

n1 i=0

Δi

ani =n1

i=0

an1,iani =11 +ann=ann. (14)

From (viii), it follows that λn=O(1). Using (iii), (vi), (x), and property (5) of Lemma 2,

I1=O(1)m+1

n=1

nannk1n1 i=0

λiksikΔi ani

=O(1)m+1

n=1

nannk1

n1

i=0

λik1λiΔi

anisik

=O(1)m

i=0

λisik m+1

n=i+1

nannk1Δi ani

=O(1)m

i=0

λisikaii=λ0s0ka00+O(1)m

i=1

λisik i

=O(1) + O(1)m

i=1

λi i

r=1

srk

r

i1



r=1

srk r

=O(1) m



i=1

λii

r=1

srk

r

m1 j=0

λj+1j

r=1

srk r

=O(1)m

1 i=1

Δλii

r=1

1

rsrk+O(1)λmm

i=1

sik i

(5)

=O(1)m1

i=1

ΔλiXi+O(1)λmXm

=O(1)m

i=1

βiXi+O(1)λmXm=O(1), I2=

m+1

n=1

nk1Tn2k=

m+1

n=1

nk1n

1 i=0

an,i+1λiΔ

 1 iaii

si





k

=O(1)m+1

n=1

nk1 n1

i=0

an,i+1λiΔ

 1 iaii

sik

.

(15) Now

Δ

 1 iaii

= 1

iaii 1 (i + 1)ai+1,i+1

= 1

iaii 1

(i + 1)ai+1,i+1+ 1

(i + 1)aii 1 (i + 1)aii

= 1

(i + 1)

 1 aii 1

ai+1,i+1

+ 1

aii

1 i

1 i + 1

= 1

(i + 1)

Δ

1 aii

+ 1

iaii

.

(16)

Thus using (iv) and (ii),



Δ

 1 iaii

 =



 1 i + 1

Δ

1 aii

+ 1

iaii

 ≤ 1 i + 1

ai+1,i+1aii

aiiai+1,i+1 + 1 iaii



= 1 i + 1

O(1) + O(1).

(17)

Hence, using H¨older’s inequality, (v) and (iii), I2=O(1)m+1

n=1

nk1 n1

i=0

an,i+1λi 1

i + 1sik

=O(1)m+1

n=1

nk1 n1

i=0

an,i+1aiiλisik

=O(1)m+1

n=1

nk1

n1



i=0

an,i+1aiiλiksik n1



i=0

aiian,i+1 k1

=O(1)m+1

n=1

nannk1n1 i=0

an,i+1aiiλiksik

(6)

=O(1)m

i=0

λiksikaii m+1

n=i+1

nannk1an,i+1

=O(1)m

i=0

λiksikaii m+1

n=i+1an,i+1.

(18) From [4],

m+1

n=i+1an,i+1 ≤1. (19)

Hence, I2=O(1)m

i=1

λiksikaii=O(1)m

i=1

λiλik1sik1 i =

m i=1

λisik

i =O(1), (20) as in the proof ofI1.

Using (iii), H¨older’s inequality, and (v),

I3=

m+1

n=1

nk1Tn3k=

m+1

n=1

nk1n

1 i=0

an,i+1 Δλi

si

(i + 1)ai+1,i+1





k

=O(1)m+1

n=1

nk1

n1

i=0

an,i+1Δλisi k

=O(1)m+1

n=1

nk1 n1

i=0

aii

aiian,i+1Δλisik

=O(1)m+1

n=1

nk1 n1

i=0

aiian,i+1

akii Δλiksik n1

i=0

aiian,i+1k1

=O(1)m+1

n=1

nannk1n1 i=0

aiian,i+1

akii Δλiksik

=O(1)m+1

n=1 n1 i=0

an,i+1Δλiksik 1 akiiaii

=O(1)m

i=0

aii

akiiΔλiksik m+1

n=i+1

an,i+1

=O(1)m

i=0

 Δλi

aii

k1

Δλisik

=O(1)m

i=0

Δλisik=O(1)m

i=0

sikβi.

(21)

(7)

Since|si|k=i(TiTi1) by (x), we have

I3=O(1)m

i=1

iTiTi1

βi. (22)

Using Abel’s transformation, (vi), and (5),

I3=O(1)m1

i=1

TiΔi

+O(1)mTnβn

=O(1)m1

i=1

iΔβiXi+O(1)m1

i=1

Xiβi+O(1)mXnβn=O(1).

(23)

Using (viii) and (x),

I4=

m+1

n=1

nk1Tn4k=

m+1

n=1

nk1snλn

n





k

=

m+1

n=1

snkλnk1 n

=m+1

n=1

snk

n λnλnk1=O(1),

(24)

as in the proof ofI1. 

Corollary 3. Let{pn}be a positive sequence such thatPn=n

k=0pk→ ∞and satisfies (i)npnO(Pn);

(ii)Δ(Pn/pn)=O(1).

If{Xn}is a positive nondecreasing sequence and the sequences{λn}and{βn}are such that (iii)|Δλn| ≤βn,

(iv)βn0 asn→ ∞, (v)|λn|Xn=O(1) as n→ ∞, (vi)n=1nXn|Δβn|<, (vii)Tn=n

ν=1|sν|k=O(Xn),

then the series(anPnλn)/(npn) is summable|N, pn|k,k1.

Proof. Conditions (iii)–(vii) ofCorollary 3are, respectively, conditions (vi)–(x) ofTheo- rem 1.

Conditions (i), (ii), and (v) ofTheorem 1are automatically satisfied for any weighted mean method. Conditions (iii) and (iv) ofTheorem 1become, respectively, conditions

(i) and (ii) ofCorollary 3. 

Acknowledgment

The first author received support from the Scientific and Technical Research Council of Turkey.

(8)

References

[1] K. N. Mishra and R. S. L. Srivastava, “On|N, p–– n|summability factors of infinite series,” Indian Journal of Pure and Applied Mathematics, vol. 15, no. 6, pp. 651–656, 1984.

[2] H. Bor, “A note on|N, p–– n|ksummability factors of infinite series,” Indian Journal of Pure and Applied Mathematics, vol. 18, no. 4, pp. 330–336, 1987.

[3] T. M. Flett, “On an extension of absolute summability and some theorems of Littlewood and Paley,” Proceedings of the London Mathematical Society. Third Series, vol. 7, pp. 113–141, 1957.

[4] B. E. Rhoades and E. Savas¸, “A note on absolute summability factors,” Periodica Mathematica Hungarica, vol. 51, no. 1, pp. 53–60, 2005.

Ekrem Savas¸: Department of Mathematics, Faculty of Sciences and Arts, Istanbul Ticaret University, Uskudar, 34672 Istanbul, Turkey

Email addresses:ekremsavas@yahoo.com; esavas@iticu.edu.tr

B. E. Rhoades: Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA Email address:rhoades@indiana.edu

Referanslar

Benzer Belgeler

National, Seminar, “Geleneğin Ötesine Geçişte Bir Örnek: Kübizm”, Teknoloji Sanat Işbirliği Deneyimlemeleri Projesi, Arçelik Çayırova Campus, Istanbul, 21 October

At this slower deposition rate on a single facet, relative to the average time for the deposited atoms to diffuse to the other facets, a considerable number of adatoms is likely

Üstüner P, Balevi A, Özdemir M, Demirkesen C: Specific cutaneous involvement of a mixed-type mature plasmacytoid dendritic cell tumor in chronic myelomonocytic leukemia.

Üstüner P, Balevi A, Özdemir M, Demirkesen C: Specific cutaneous involvement of a mixed-type mature plasmacytoid dendritic cell tumor in chronic myelomonocytic leukemia.

Yildiz Technical University, Faculty of Arts and Sciences, Department of Mathematics, Istanbul, 34220,

Ekrem Savas¸: Department of Mathematics, Faculty of Science and Arts, Istanbul Ticaret University, Uskudar, 34672 Istanbul, Turkey. Email

Panel nedensellik analizlerinin sonuçlarına göre 1990 sonrası dönemde OECD ülkelerinde sendikal yoğunluk oranları [sendikalaşma], sosyal harcamaların nedeni iken sosyal

Marmara University, Faculty of Medicine, Anesthesiology and Reanimation, Istanbul / Turkey.. 1995-2000