• Sonuç bulunamadı

On general summability factor theorems

N/A
N/A
Protected

Academic year: 2023

Share "On general summability factor theorems"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Volume 2007, Article ID 10892,10pages doi:10.1155/2007/10892

Research Article

On General Summability Factor Theorems

Ekrem Savas¸

Received 17 August 2006; Revised 6 December 2006; Accepted 2 January 2007 Recommended by Ram Mohapatra

The goal of this paper is to obtain sufficient and (different) necessary conditions for a seriesan, which is absolutely summable of orderk by a triangular matrix method A, 1< ks <, to be such thatanλnis absolutely summable of orders by a triangular matrix methodB. As corollaries, we obtain two inclusion theorems.

Copyright © 2007 Ekrem Savas¸. This is an open access article distributed under the Cre- ative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the recent papers [1,2], the author obtained necessary and sufficient conditions for a seriesanwhich is absolutely summable of orderk by a weighted mean method, 1< ks <, to be such thatanλnis absolutely summable of orders by a triangular matrix method. In this paper, we obtain sufficient and (different) necessary conditions for a seriesanwhich is absolutely summable|A|kto imply the seriesanλnwhich is absolutely summable|B|s.

LetT be a lower triangular matrix,{sn}a sequence.

Then

Tn:=

n ν=0

tsν. (1)

A seriesanis said to be summable|T|k,k1 if

 n=1

nk1TnTn1k<. (2)

(2)

We may associate withT two lower triangular matrices T andT as follows: t=

n

r=νtnr, n,ν=0, 1, 2,...,

t=ttn1,ν, n=1, 2, 3,....

(3)

Withsn:=n

i=0aiλi, yn:=

n i=0

tnisi=

n i=0

tni

i ν=0

aνλν=

n ν=0

aνλν

n i=νtni=

n ν=0

taνλν,

Yn:=ynyn1=

n ν=0

(ttn1νaν=

n ν=0

tλνaν.

(4)

We will callT as a triangle if T is lower triangular and tnn=0 for eachn. The nota- tionΔνameansa− an,ν+1. The notationλ(|A|k,|B|s) will be used to represent the statement that ifanis summable|A|k, thenanλnis summable|B|s.

Theorem 1. Let 1< ks <. Let{λn}be a sequence of constants, A and B triangles satisfying

(i)|bnnλn|/|ann| =O(ν1/s1/k), (ii) (n|Xn|)sk=O(1),

(iii)|annan+1,n| =O(|annan+1,n+1|), (iv)nν=01|Δν(bλν)| =O(|bnnλn|),

(v)n=ν+1(n|bnnλn|)s1|Δν(bλν)| =O(νs1|bννλν|s), (vi)nν=01|bννλν+1||bn,ν+1λν+1| =O(|bnnλn+1|),

(vii)n=ν+1(n|bnnλn+1|)s1|bn,ν+1λν+1| =O((ν|bννλν+1|)s1), (viii)n=1ns1|n

ν=2bλνν2

i=0aνiXi|s=O(1), thenλ(|A|k,|B|s).

Proof. Ifyndenotes thenth term of the B-transform of a sequence{sn}, then yn=

n i=0

bnisi=

n i=0

bni

i ν=0

λνaν=

n ν=0

λνaν

n i=νbni=

n ν=0

bλνaν,

yn1=

n1 ν=0

bn1,νλνaν,

(5)

Yn:=ynyn1=

n ν=0

bλνaν, (6)

wheresn=n

i=0λiai.

Letxndenote thenth term of the A-transform of a seriesan, then as in (6), Xn:=xnxn1=

n ν=0

aaν. (7)

(3)

SinceA is a triangle, it has a unique two-sided inverse, which we will denote by A . Thus we may solve (7) foranto obtain

an=n

ν=0

aXν. (8)

Substituting (8) into (6) yields

Yn=

n ν=0

bλνaν=

n ν=0

bλν

ν

i=0

aνiXi



=

n ν=0

bλν

ν2

i=0

aνiXi+aν,ν1Xν1+aννXν



=

n ν=0

bλνaννXν+

n ν=1

bλνaν,ν1Xν1+

n ν=2

bλν ν2 i=0

aνiXi

= bnnλnannXn+

n1 ν=0

bλνaννXν+

n1 ν=0

bn,ν+1λν+1aν+1,νXν+

n ν=2

bλν ν2 i=0

aνiXi

=bnn

annλnXn+

n1 ν=0

bλνaνν+bn,ν+1λν+1aν+1,ν Xν+

n ν=2

bλν ν2 i=0

aνiXi

=bnn

annλnXn+

n1 ν=0

bλνaνν+bn,ν+1λν+1aνν− bn,ν+1λν+1aνν+bn,ν+1λν+1aν+1,ν Xν

+

n ν=2

bλν ν2 i=0

aνiXi

=bnn

annλnXn+

n1 ν=0

Δνbλν aνν Xν+

n1 ν=0

bn,ν+1λν+1

aνν+aν+1,ν Xν+

n ν=2

bλν ν2 i=0

aνiXi. (9) Using the fact that

aνν+aν+1,ν= 1 aνν

aννaν+1,ν

aν+1,ν+1

, (10)

and substituting (10) into (9), we have the following:

Yn=bnn

annλnXn+

n1 ν=0

Δνbλν aνν Xν+

n1 ν=0

bn,ν+1λν+1

aννaν+1,ν

aννaν+1,ν+1

Xν+

n ν=2

bλν ν2 i=0

aνiXi

=Tn1+Tn2+Tn3+Tn4, say.

(11)

(4)

By Minkowski’s inequality, it is sufficient to show that

 n=1

ns1Tnis<, i=1, 2, 3, 4. (12)

Using (i),

J1:=

 n=1

ns1Tn1s=

 n=1

ns1bnnλn

ann Xn

s

=O(1)

n=1

ns1n1/s1/k sXns

=O(1)

n=1

nk1Xnk

nss/kk+1Xnsk .

(13)

Butnss/kk+1|Xn|sk=(n11/k|Xn|)sk=O((n|Xn|)sk)=O(1), from (ii) ofTheorem 1.

Sinceanis summable|A|k,J1=O(1).

Using (i), (iv), (v), (ii), and H¨older’s inequality,

J2:=

 n=1

ns1Tn2s=

 n=1

ns1n

1 ν=0

Δνbλν aνν Xν





s

 n=1

ns1 n1



ν=0

ν1/s1/kbννλν1Δνbλν Xν s

=O(1)

n=1

ns1

n1

ν=0

ν1s/kbννλνsΔνbλν Xνs

×

n1

ν=0

Δνbλν s1

=O(1)

n=1

nbnnλn s1n1

ν=0

ν1s/kbννλνsΔνbλν Xνs

=O(1)

ν=1

ν1s/kbννλνsXνs 

n=ν+1

nbnnλn s1Δνbλν 

=O(1)

ν=1

ν1s/kbννλνsXνsνs1bννλνs=O(1)

ν=1

νss/kXνs

=O(1)

ν=1

νk1Xνk

νss/kk+1Xνsk

=O(1)

ν=1

νk1Xνk=O(1).

(14)

(5)

Using (iii), (vi), (vii), (ii), and H¨older’s inequality, J3:=

 n=1

ns1Tn3s=

 n=1

ns1

n1 ν=0

bn,ν+1λν+1

aννaν+1,ν

aννaν+1,ν+1

Xν





s



n=1

ns1

n1

ν=0

bn,ν+1λν+1

aννaν+1,ν

aννaν+1,ν+1

Xνs

=O(1)

n=1

ns1

n1

ν=0

bn,ν+1λν+1Xνs

=O(1)

n=1

ns1

n1

ν=0

 bννλν+1

bννλν+1

bn,ν+1λν+1Xνs

=O(1)

n=1

ns1

n1

ν=0

bννλν+11sbn,ν+1λν+1Xνs

×

n1

ν=0

bννλν+1bn,ν+1λν+1s1

=O(1)

n=1

nbnnλn+1 s1n1

ν=0

bννλν+11sbn,ν+1λν+1Xνs

=O(1)

ν=0

bννλν+11sXνs 

n=ν+1

nbnnλn+1 s1bn,ν+1λν+1

=O(1)

ν=0

bννλn+11sXνsνs1bννλν+1s1=O(1)

ν=0

νs1Xνs

=O(1)

ν=0

νk1Xνk

νXν sk=O(1)

ν=0

νk1Xνk=O(1).

(15) From (viii),

 n=1

ns1Tn4s=

 n=1

ns1

n ν=2

bλν ν2 i=0

aνiXi





s

=O(1). (16)

 We now state sufficient conditions, when k=s.

Corollary 1. Let{λn}be a sequence of constants,A and B triangles satisfying (i)|bnn|/|ann| =O(1/|λn|),

(ii)|annan+1,n| =O(|annan+1,n+1|), (iii)nν=01|Δν(bλν)| =O(|bnnλn|),

(iv)n=ν+1(n|bnnλn|)k1|Δν(bλν)| =O(νk1|bννλν|k), (v)nν=01|bννλν+1||bn,ν+1λν+1| =O(|bnnλn+1|),

(vi)n=ν+1(n|bnnλn+1|)k1|bn,ν+1λn+1| =O((ν|bννλν+1|)k1), (vii)n=1nk1|n

ν=2bλνν2

i=0aνiXi|k=O(1), thenλ(|A|k,|B|k).

(6)

A weighted mean matrix is a lower triangular matrix with entries pk/Pn, 0kn, wherePn=n

k=0pk.

Corollary 2. Let 1< ks <. Let{λn}be a sequence of constants, letB be a triangle such thatB, and let{pn}satisfy

(i)bννλν=O((pν/Pν)ν1/s1/k), (ii) (n|Xn|)sk=O(1),

(iii)nν=11|Δν(bλν)| =O(|bnnλn|),

(iv)n=ν+1(n|bnnλn|)s1|Δν(bλν)| =O(νs1|bννλν|s), (v)nν=11|bννλν||bn,νλν| =O(|bnnλn|),

(vi)n=ν+1(n|bnnλn|)s1|bn,νλν| =O((ν|bν,νλν|)s1), thenλ(|N, pn|k,|B|s).

Proof. Conditions (i), (ii), (iii)–(vii) ofTheorem 1reduce to conditions (i)–(vi), respec- tively, ofCorollary 1.

WithA=(N, pn),

annan+1,n= pn

Pn pn

Pn+1 = pnpn+1

PnPn+1 =annan+1,n+1, (17)

and condition (ii) ofTheorem 1is automatically satisfied.

A matrixA is said to be factorable if ank=bnckfor eachn and k.

SinceA is a weighted mean matrix,A is a factorable triangle and it is easy to show that its inverse is bidiagonal. Therefore condition (viii) ofTheorem 1is trivially satisfied. 

We now turn our attention to obtaining necessary conditions.

Theorem 2. Let 1< ks <, and letA and B be two lower triangular matrices with A satisfying



n=ν+1nk1Δνak=Oaννk

. (18)

Then necessary conditions forλ(|A|k,|B|s) are (i)|bννλν| =O(|aνν|ν1/s1/k),

(ii)n=ν+1ns1|Δνbλν|s)=O(|aνν|sνss/k),

(iii)n=ν+1ns1|bn,ν+1λν+1|s=O(n=ν+1nk1|an,ν+1|k)s/k. Proof. Define

A=

ai

:aiis summable|A|k

,

B=

bi

:biλiis summable|B|s

. (19)

(7)

WithYnandXnas defined by (6) and (7), the spacesAandBare BK-spaces, with norms given by

a 1=

X0k+

 n=1

nk1Xnk 1/k

,

a 2=

Y0s+

 n=1

ns1Yns 1/s

,

(20)

respectively.

From the hypothesis of the theorem, a 1<implies that a 2<. The inclusion mapi : ABdefined byi(x)=x is continuous, since AandBare BK-spaces. Ap- plying the Banach-Steinhaus theorem, there exists a constantK > 0 such that

a 2K a 1. (21)

Letendenote thenth coordinate vector. From (6) and (7), with{an}defined byan= enen+1,n=ν, an=0 otherwise, we have

Xn=

0, n < ν, a, n=ν, Δνa, n > ν,

Yn=

0, n < ν, bλν, n=ν, Δνbλν

, n > ν.

(22)

From (20),

a 1=

νk1aννk+



n=ν+1nk1Δνak 1/k

,

a 2=

νs1bννλνs+



n=ν+1ns1Δνbλν s 1/s

,

(23)

recalling thatbνν=bνν=bνν. From (21), using (18), we obtain νs1bννλνs+



n=ν+1ns1Δνbλν s

Ks



νk1aννk+



n=ν+1nk1Δνaks/k

Ks



νk1aννk+O(1)aννks/k

=Oaννk

νk1+ 1 s/k=Oνk1aννk s/k .

(24)

Referanslar

Benzer Belgeler

National, Seminar, “Geleneğin Ötesine Geçişte Bir Örnek: Kübizm”, Teknoloji Sanat Işbirliği Deneyimlemeleri Projesi, Arçelik Çayırova Campus, Istanbul, 21 October

At this slower deposition rate on a single facet, relative to the average time for the deposited atoms to diffuse to the other facets, a considerable number of adatoms is likely

Üstüner P, Balevi A, Özdemir M, Demirkesen C: Specific cutaneous involvement of a mixed-type mature plasmacytoid dendritic cell tumor in chronic myelomonocytic leukemia.

Üstüner P, Balevi A, Özdemir M, Demirkesen C: Specific cutaneous involvement of a mixed-type mature plasmacytoid dendritic cell tumor in chronic myelomonocytic leukemia.

In his last novel ( for Forster wrote more fiction), A Passage To India (1924) he es the relations between the English relations, between the English and Indians in India in the

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Bahar 2008/1 Güven açısından yeni bir alternatifin eklenmesi durumu incelendiğinde ve yeni alternatifin bütün

Sağlık Yüksekokulu Birinci ve Dördüncü Sınıf Ebelik Bölümü Öğrencilerinin Demografik Özellikleri ile Stresle Başetme Yaklaşımları Arasındaki İlişkinin

Marmara University, Faculty of Medicine, Anesthesiology and Reanimation, Istanbul / Turkey.. 1995-2000